用户名: 密码: 验证码:
生物组织光学断层成像与光学参数提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物组织光学参数与组织成份、结构和健康状态直接相关,对组织光学参数进行非接触、快速、准确的在体测量具有重要的意义。光学相干层析成像(OCT)技术具有非侵入、高分辨、高动态范围的优点,在组织光学参数检测应用中具有很高的研究价值。本文对OCT系统特性进行了理论分析、数值模拟和实验验证,并在此基础上探讨了光学参数提取的可行性和具体方法。
     首先讨论了OCT系统的原理和信号特征,分析了快速扫描延迟线的光学系统结构和色散特性;使用扩展惠更斯-菲涅耳原理对OCT系统进行了噪声分析,并对具有不连续层状结构的样本最大探测深度进行了讨论;实验中利用组织模拟液对理论方法进行了验证。
     建立了基于快速扫描延迟线的时域OCT系统,可以实现100线/s以上的扫描频率和2 mm以上的扫描光程。系统采用光纤迈克尔逊干涉结构,使用1550 nm光源,纵向分辨率14 gm,并成功对实际生物组织进行了层析成像实验。对于系统可能存在的色散问题,研究并设计了通过数值变换进行色散补偿的方法,对于水或者快速扫描延迟线产生的色散成功进行了二阶和三阶色散补偿。使用OCT系统实现了透明和浑浊物质折射率的精确测量。
     系统的讨论了光在生物组织中的传输特性,考虑到OCT系统的光学结构,我们进行了有针对性的理论分析。第一步,建立了聚焦光束的数学模型,使用单页双曲线模拟入射光束分布,精确地模拟了入射光的初始状态;第二步,使用蒙特卡洛方法对OCT信号进行了数值模拟。对光子传输光程过程、出射位置、能量状态以及在干涉平面上的分布进行了追踪统计,实现了OCT系统的数值模拟。在此基础上研究了OCT信号与散射系数、吸收系数以及散射相函数(各向异性因子)之间的依赖关系。对各种参数样品的模拟结果进行了系统分析,确定了吸收系数、散射系数和各向异性因子对纵向干涉信号衰减方式的影响。在此基础上,提出了基于比例缩放的压缩算法,有效提高了数值模拟的效率,并在此基础上实现了快速反向蒙特卡洛运算。
     应用最优化理论,结合最小二乘法和快速蒙特卡洛运算实现了从OCT信号中提取样品散射和吸收系数。在积累大量蒙特卡洛模拟数据的基础上,使用前馈人工神经网络同样实现了光学参数的拟合求解。实验中,主要使用组织模拟液IntralipidTM(英脱利匹特,脂肪乳注射剂)和印度墨水配置不同光学参数样品。在进行OCT干涉测量后,拟合求解了光学参数。对含糖模拟液和牛奶制品也进行了相同的实验测量,结果验证了参数提取方法的可行性。实验验证了NaCK、KCl以及葡萄糖浓度对折射率的影响,通过实验验证了葡萄糖浓度的变化对溶液散射和吸收系数会产生影响,这对于血糖的无损测量具有重要意义。论文最后讨论了进一步完善理论和实验方法的设想。
The optical properties of biomedical tissues clearly relate with ingredients, structure and status of human health. Optical Coherence Tomography (OCT) is an imaging technologies with noninvasive property, high resolution and high dynamic range. This technology is of great value for measuring optical parameters of turbid materials, such as tissues. In this thesis, the basic theories of OCT have been researched. The signal of OCT system is simulated by Monte Carlo numerical algorithm. The paper also discusses the possibility of reconstruction of optical parameter of turbid samples by OCT system. Verification based on experiment has been presented. This thesis makes research on the following aspects.
     First and foremost, the principle and signal characteristics were explained and discussed. Derivative process for the dispersion properties of rapid scanning optical delay line (RSOD) was given out in detail. The extended Huygens-Fresnel principle is quoted for analyzing signal to noise ratio and maximum probing depth in turbid samples. Theoretical conclusions have been verified by experiments in phantom liquid sample.
     A time-domain OCT system has been build up with RSOD for tissue measurement with 1550 nm optical source. The system could execute depth scanning at speed of 100 times per second with resolution of 14μm and maximum probing depth of 2 mm. We performed numerical dispersion compensation for water and RSOD up to the second order. The refractive index of transparent and turbid liquid was measured by OCT accurately.
     We analyzed transformation of photon in a systematic way with consideration of optical scheme. The geometry model of focused optical beam was established by describing with myriads of hyperboloids of one sheet. The initial status of photons can be determined in accordance to Gaussian distribution the way a focused beam performs. OCT signals were simulated by means of Monte Carlo and the propagating trajectory, weight and position on correlate plane of each photon will be recorded. With assistant of Monte Carlo simulation, the relationship of OCT signal and optical parameters was revealed by adding up effects of a large number of photons. Numerical results have presented relation of signal intensity and depth of target layer with different scattering coefficient, absorption coefficient and anisotropy parameter. A condensed method based on scaling path and weight of photons was introduced to accelerating simulation procedure, which makes the fast inverse Monte Carlo reality.
     A new algorithm of measuring optical parameters of turbid material was put forward by OCT system and depth dependent signals. The method is a inverse process of Monte Carlo and reconstruction of parameters by optimization methods or artificial neural networks. Liquid mixture of IntralipidTM and India ink was measured and analyzed by inverse Monte Carlo. IntralipidTM with glucose and milk were also used as samples. The influence of NaCl, KCl and glucose on refractive index of liquid is measured by OCT system. Results of experiments show that the degrading speed of OCT signal is sensitive with concentration of fat, color agent and glucose. These ingredients change scattering or absorption properties of turbid phantoms. Some suggestions about theory and experiment were put forward at the end of this thesis.
引文
[1]G. L. Cote, Noninvasive optical glucose sensing—an overview[J], J. Clin. Eng.,1997, 22:253-259.
    [2]田丰华,蔡刚等,利用近红外光谱监测皮肤血氧输运[J],光谱学与光谱分析,2002,22(2):209-212.
    [3]R.M. Cothren, M.V. Sivak, V.J. Dam, et al., Detection of dysplasia at colonoscopy using laser-induced fluorescence:A blinded study[J], Gastrointestinal Endoscopy., 1996,44(2):168-176.
    [4]刘刚,邢达,王海珉等,胆结石中蛋白质的傅里叶变换红外光谱和表面增强拉曼光谱研究[J],光学学报,2002,22(4):441-446.
    [5]J.A. Izatt, M.R. Hee, G.M. Owen, et al., Optical coherence microscopy in scattering media[J], Optics Letters,1994,19(8):590-592.
    [6]J. M. Schmitt, Optical Coherence Tomography (OCT):A Review[J]. IEEE J. Select. Topics Quantum Electron.,1999,5(4):1205-1215
    [7]Z.P. Qin, K.L. Li, L. Ren, et al., Photodynamic therapy of port wine stains-a report of 238 cases[J], Photodiagnosis and Photodynamic Therapy,2007,4:53-59.
    [8]吴意平,常建民,杨敏,等,氨基酮戊酸光动力疗法治疗尖锐湿疣的临床观察[J],中华皮肤科杂志,2010:43(8):28-32.
    [9]马少吟,刘玉梅,光动力治疗寻常痤疮的进展[J],国际皮肤与性病学杂志,2008,34(6)
    [10]丁新民,徐勤枝,顾摇瑛,光动力学治疗肿瘤的简史和现状[J],中国肿瘤,2003,12(3):151-155.
    [11]徐可欣,高峰,赵惠娟,生物医学光子学[M],科学出版社,2007.
    [12]N. Marcuvitz., On the theory of plasma turbulence [J], J.Math.Phys,1974,15:869-879.
    [13]P. N. Prasad, Introduction to Biophotonics[M], New York:Wiley,2003.
    [14]B.C. Wilson, A Monte Carlo model for the absorption and flux distributions of light in tissue[J], Medical Physics,1983,10(6):824-830.
    [15]E. Salomatina, B. Jiang, J. Novak, A. N. Yaroslavsky, Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range[J], J. Biomed. Opt.2006,11(6):064026-1-9.
    [16]T. Hamaoka, T. Katsumura, N. Murase, Britton Chance, Quantification of ischemic muscle deoxygenation by near infrared time-resolved spectroscopy[J], J. Biomed. Opt.,2000,5(1):102-105.
    [17]H. Liu, Y. Song, K. LWorden, X. Jiang, A Constantinescu, R P Mason, Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy[J], Appl. Opt.,2000,39:5231-5243.
    [18]李晨曦,赵会娟,王秋殷,宋扬,徐可欣,基于双积分球和锁相放大测量的近红外多波长光学参量测量系统的研究[J],光子学报,2009,38(7):1811-1815.
    [19]S Michael,B Patterson,B Chance, et al. Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties [J]. Appl. Opt.1989,28: 2331-2336.
    [20]L. F. Gate, Comparison of the photon diffusion model and Kubelka-Munk equation with the exact solution of the radiative transport equation[J], Appl.Opt.,1974,13(2):236-238.
    [21]A. Kienle, M. S. Patterson et al., Noninvasive determination of the optical properties of two-layered turbid media[J],Appl.Opt.,1998,37(4):779-791.
    [22]S. Chandrasekhar, Radiative Transfer, Oxford University Press, London,1960.
    [23]L. Suddeath, V. Sahai, A. Wilser et al., Finite element solution of the forward imaging problem associated with time and frequency-domain measurements of photon migration, Proc.SPIE,1993,1888:117-127.
    [24]S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, Determining the optical properties of turbid media by using the adding-doubling method, Appl. Opt.,1993,32:559-568.
    [25]Z. Fayad, V. Fuster, Clinical imaging of the high-risk or vulnerable atherosclerotic plaque[J], Cire. Res.,2001,89:305-316.
    [26]J.C. Kennedy, R. H. Pottier, and D. C. Pross, Photodynamic therapy with endogenous protoporphyrin IX:Basic principles and present clinical experience^], J. Photochem. Photobiol. B,1990,6:143-148.
    [27]R.O. Esenaliev, K. V. Larin, I. V. Larina, et al., Noninvasive monitoring of glucose concentration with optical coherence tomography[J], Opt. Lett.,26(13):992-994.
    [28]A. I. Kholodnykh, I. Y. Petrova, M. Motamedi, et al., Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography[J], IEEE J. Select. Topics Quantum Electron.,9(2):210-220.
    [29]L. Thrane, H. T. Yura, and P. E. Andersen, Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle[J], J. Opt. Soc. Am. A, Vol. 17, No.3(2000):484-490.
    [30]L. Thrane, M. H. Frosz, T. M. Jorgensen, et al., Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures[J], Opt. Lett.,29(14):1641-1643.
    [31]D. Levitz, L. Thrane, M. H. Frosz, et al., Determination of optical scattering properties of highly scattering media in optical coherence tomography images[J].Opt. Express., 2007,12(2):249-259.
    [32]R. Graaff, M. Koelink, F. de Mul, W. Zijlstra, and A. C. M. Dassel, Condensed Monte Carlo simulations for the description of light transport[J], Appl. Opt.1993,32(4): 426-434.
    [33]Q. Liu, N. Ramanujam, Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media[J]. J. Opt. Soc. Am. A,2007, 24(4):1011-1025.
    [34]J. Swartling, A. Pifferi, A. M. K. Enejder, et al., Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues[J], J. Opt. Soc. Am. A,20(4):714-727.
    [35]C. K. Hayakawa, J. Spanier, F. Bevilacqua et al. Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues[J]. Opt. Let.,2001, 26(17):1335-1337.
    [36]赵会娟,阎长斐,张顺起等,基于微扰蒙特卡洛的薄层状组织光学参数重构技术[J],纳米技术与精密工程,2009,7(3):254-259.
    [37]D. Huang, E. A. Swanson, C. P. Lin et al.. Optical coherence tomography [J], Science, 1991,254(5035):1178-1181.
    [38]Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging[J]. J. Opt. Soc. Am B,9:903-908.
    [39]J.A. Izatt, M.D. Kulkarni, S. Yazdanfar, et al., In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography[J]. Opt. Lett., 22:1439-1441.
    [40]E. Beaurepaire, A.C. Boccara, M. Lebec, et al., Full-field optical coherence microscopy [J]. Opt. Lett.,1998,23:244
    [41]Angela Baumgartner, Christoh K. Hitzenberger, et al. Optical Coherence Tomography of dental structures [J], SPIE,1998,3248:130-136.
    [42]C. E. Saxer, J. F. D. Boer, B. H. Park, et al. High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin[J], Opt. Lett.,2000,25(18):1355-1357.
    [43]K. Wiesauera, M. Pircherb, E. Gotzingerb, et al. En-face scanning optical coherence tomography with ultra-high resolution for material investigation[J], Opt. Express, 2005,13:1015-1024.
    [44]W. Drexler, J. G. Fujimoto Eds., Optical coherence tomography:technology and application[M], New York:Springer Berlin Heidelberg,2008:87-88.
    [45]P. Targowski, M. G'ora, M. Wojtkowski, Optical Coherence Tomography for Artwork Diagnostics[J], Laser Chemistry,2006:1-11.
    [46]曾楠,何永红,马辉,用于玉石结构分析的光学相干层析技术[J],光学精密工程,2008,16(7):1335-1342.
    [47]曾楠,何永红,马辉,等.应用于珍珠检测的光学相干层析技术[J].中国激光,2007,34(8):1140-1145.
    [48]L H Wang, S L Jacques, L Q Zheng, MCML-Monte Carlo modeling of photon transport in multi-layered tissues [J], Computer Methods and Programs in Biomedicine,1995,47:131-146.
    [49]Y. T. Pan, R. Birngruber, J. Rosperich, et al., Low-coherence optical tomography in turbid tissue:theoretical analysis[J], Appl. Opt.1995,34(28):6564-74.
    [50]G. Yao, L.V. Wang, Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media[J], Phys Med Biol,1999,44(9):2307-2320.
    [51]Andreas Tycho, Thomas M. Jorgensen, Harold T. Yura, et al., Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems [J], Appl. Opt.,2002,41(31):6676-6691.
    [52]J. M. Schmitt, K. Ben-Letaief, Efficient Monte Carlo simulation of confocal microscopy in biological tissue [J]. J. Opt. Soc. Am. A,1996,13 (5):952-961.
    [53]G. J. Tearney, M. E. Brezinski and J. F. Southern, et al. Determination of the refractive index of highly scattering human tissue by optical coherence tomography[J], Opt. Lett,1995,20(21):2258-2260.
    [54]S. A. Alexandrov, A. V. Zvyagin, K. K. M. B. D. Silva, et al. Bifocal optical coherenc refractometry of turbid media[J], Opt. Lett.,2003,28(2):117-119.
    [55]J.M. Schmitt, A. Knuttel, R.F. Bonner, Measurement of optical properties of biological tissues by low-coherence reflectometry[J], Appl. Opt.1993,32:6032-6042.
    [56]R. O. Esenaliev, K. V. Larin, I. V. Larina, et al. Noninvasive monitoring of glucose concentration with optical coherence tomography[J], Opt. Lett.,2001,26(13): 992-994.
    [57]A.I. Kholodnykh, I.Y. Petrova, K.V. Larin, et al. Precision of measurement of tissue optical properties with optical coherence tomography[J], Appl. Opt.,2003,42(16) 3027-3037.
    [58]D. J. Faber, M.C.G. Aalders, E. G. Mik, et al. Oxygen Saturation-Dependent Absorption and Scattering of Blood[J], Phys. Rev. Letters,2004,93(2):028102-1-4.
    [59]L. Thrane, H. T. Yura,P. E. Andersen, Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle[J], J. Opt. Soc. Am. A, Vol. 17, No.3(2000):484-490.
    [60]I. V. Turchin, E. A. Sergeeva, L.S. Dolin, et al. Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies[J], J. Biom. Opt.,2005,10(6):064024-1-11.
    [61]L. Thrane, M.H. Frosz, T.M. Jφrgensen, et al. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures[J], Opt. Lett.,2004,29(14):1641-1643.
    [62]B.E. Bouma, G.J. Tearney, Handbook of Optical Coherence Tomography[M]. Presented by Marcel Dekker, Inc.2001.
    [63]Y. Pan, J.Welzel, R. Birngruber, et al.. Optical coherence-grated imaging of biological tissues[J]. IEEE J Selected Topics Quantum Electron,1996,2:1029-1034.
    [64]C.B. Su, Achieving variation of the optical path length by a few millimeters at millisecond rates for imaging of turbid media and optical interferometry:A new technique[J]. Opt Lett,1977,22:665-467.
    [65]V.M. Gelikonov, A.M. Sergeev, G.V. Gelikonov, et al. Compact fast-scanning OCT device for in vivo biotissue imagining. Presented at Conference on Lasers and Electro-Optics,1996.
    [66]K.F. Kwong, D. Yankelevich, K.C. Chu, et al.400-Hz mechanical scanning optical delay line[J]. Opt Lett,1993,18:558-560.
    [67]X. Liu, M. J. Cobb, X. Li, Rapid scanning all-reflective optical delay line for real-time optical coherence tomography[J], Opt. Lett.,2004,29(l):80-82.
    [68]J. M. Schmitt, A. Knuttel, R. F. Bonner, Measurement of optical properties of biological tissues by low-coherence refiectometry[J], Appl. Opt.,1993,32(30): 6032-6042.
    [69]J. M. Schmitt, A. Knuttel, A. S. Gandjbakhche, and R. F. Bonner, Optical characterization of dense tissues using low-coherence interferometry, in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE,1993,1889:197-211.
    [70]Stephen T, Flock, Michael S, et al. Monte Carlo modeling of light propagation in highly scattering tissues-I:model predictions and comparison with diffusion theory[J]. IEEE Trans. Biomed. Eng.,1989,36:1162-1168.
    [71]J. M. Schmitt, A. Knuttel, Model of optical coherence tomography of heterogeneous tissue[J], J. Opt. Soc. Am. A,1997,14(6):1231-1242.
    [72]R. F. Lutomirski, H. T. Yura, Propagation of a finite optical beam in an inhomogeneous medium[J], Appl. Opt.,1971,10(7):1652-1658.
    [73]胡鸿璋,凌世德,应用光学原理[M],机械工业出版社,1993.
    [74]葛惠民,薛平,茅卫红,基于飞秒掺钛蓝宝石激光器和光子晶体光纤的超高分辨光学相干CT[J],科学通报,2008,53(12):1379-1382.
    [75]N. Nishizawa, Y. Chen, P. Hsiung, et al. Real-time ultrahigh-resolution optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 urn [J]. Opt. Lett.,2004,29(24):2846-2848.
    [76]C. K. Hitzenberger, A. Baumgartner, A. F. Fercher. Dispersion induced multiple signal peak splitting in partial coherence interferometry[J]. Optics Comm,1998,154(4):179-185.
    [77]K. Asaka, K. Ohbayashi. Dispersion matching of sample and reference arms in optical frequency domain refiectometry-optical coherence tomography using a dispersion-shifted fiber[J]. Opt Express,2007,15(8):5030-5042.
    [78]李栋,丁志华,孟捷.双光栅快速扫描光学延迟线的色散补偿[J].光学学报,2007,27(3):505-309.
    [79]E, D. J. Smith, A. V. Zvyagin, D. D. Sampson. Real-time dispersion compensation in scanning interferometry[J]. Opt Lett 2002,27(22):1998-2000.
    [80]陶淘,廖然,吕俊.一种新的光学相干层析成像中色散现象的补偿方法[J].光学仪器,2006,28(5):22-26.
    [81]A. H. Harvey, J. S. Gallagher, J. M. H. Levelt Sengers. Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density [J]. Phys. Chem. Ref. Data,1998,27(4):761-774.
    [82]G. Yao, L.V. Wang. Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media[J].Phys. Med. Biol.,1999,44(9):2307-2320.
    [83]林林,张梅,张怀岑.聚焦光束在生物组织中传输的数值模拟[J],中国医学影像技术,2010,26(12):2375-2378.
    [84]张凤生.高斯光束的数值模拟新方法[J],光子学报,2008,37(6):1259-1262.
    [85]B.C. Wilson, G. Adam, A Monte Carlo model for the absorption and flux distributions of light in tissue[J]. Medical Physics,1983,10(6):824-830.
    [86]Y. Pan, R. Birngruber, J. Rosperich, et al. Low-coherence optical tomography in turbid tissue:theoretical analysis[J], Appl. Opt.,1995,34(28):6564-6574.
    [87]A. Tycho, T.M. Jogensen, H.T. Yura, et al, Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems[J], Appl. Opt.,2002,41(31):6676-6691.
    [88]R. Graaff, M. H. Koelink, F. F. M. de Mul, et al. Condensed Monte Carlo simulations for the description of light transport[J], Appl. Opt.,1993,32(4):426-434.
    [89]G. M. Palmer, N. Ramanujam, Monte Carlo-based inverse model for calculating tissue optical properties. Part I:Theory and validation on synthetic phantoms[J], Appl. Opt., 2006,45(5):1062-1071.
    [90]Q. Liu, N. Ramanujam, Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media[J]. J. Opt. Soc. Am. A,2007, 24(4):1011-1025.
    [91]C. K. Hayakawa, J. Spanier, F. Bevilacqua et al. Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues[J]. Opt. Let.,2001, 26(17):1335-1337.
    [92]赵会娟,阎长斐,张顺起,等.基于微扰蒙特卡洛的薄层状组织光学参数重构技术[J],纳米技术与精密工程,2009,7(3):254-258.
    [93]A. Sassaroli, C. Blumetti, F. Martelli et a/.,Monte Carlo procedure for investigating light propagation and imaging of highly scattering media[J].Appl. Opt.,1998,37(31): 7392-7400.
    [94]C. J.M. Moes, M. J.C van Gemert, Measurements and calculations the energy fluence rate in a scattering and absorbing phantom at 633 nm[J]. Appl.Opt.,1989,28(12): 2292-2296.
    [95]C. Chen, J. Q. Lu, H. Ding et al., A primary method for determination of optical parameters of turbid samples and application to intralipid between 550 and 1630nm[J], Opt. Express,2006,14(16):7420-7435.
    [96]郭本恒,吴昊,陈剑,乳品化学[M],北京:中国轻工业出版社,1998.
    [97]M. Kinnunen, Z. Zhao, and R. Myllyla, Glucose-Induced Changes in the Optical Properties of Intralipid[J]. Optics and Spectroscopy,2006,101(1):54-59.
    [98]Handbook of Chemistry and Physics[M],55th ed., Ed. By R. C. Weast (CRC, Cleveland,1974).
    [99]C.F. Bohren, D.R. Huffman, Absorption and scattering of small particles[M], Wiley, 1983.
    [100]B.E. Bouma, L. E. Nelson, G. J. Tearney et al., Optical Coherence Tomographic imaging of human tissue at 1.55 μm and 1.81 μm using er-and tm-doped fiber sources[J], J. Bio. Opt.,1998,3(1):76-79.
    [101]L. Lin, Y. Gao, M. Zhang, Signal and noise analysis of optical coherence tomography in highly scattering material at 1550nm[J],SPIE Conference Photonics Asia,2010,78451-7.
    [102]丁士釿,郭丽华,人工神经网络基础[M],哈尔滨工程大学出版社,2008.
    [103]Simon Haykin,神经网络原理[M],机械工业出版社,2004.
    [104]袁亚湘,孙文瑜,最优化理论与方法[M],科学出版社,1997.
    [105]薛定宇,陈阳泉,高等应用数学问题的MATLAB求解[M],清华大学出版社,2008.
    [106]http://www.bme.ogi.edu/biomedicaloptics/index.html
    [107]R. Graaff, et al. Reduced light-scattering properties for mixtures of spherical particles:a simple approximation derived from Mie calculations[J]. Appl. Opt.1992, 31(10):1370-1376.
    [108]V.V. Tuchin, et al. Light propagation in tissues with controlled optical properties[J]. J. Biomed. Opt.1997,2(4):401-417.
    [109]R. S. Longhurst, Geometrical and Physical Optics[M],Longman, London,1973.
    [110]H. Li and S. Xie, Measurement method of the refractive index of bio tissue by total internal reflection[J], Appl. Opt.1996,35(10):1793-1795.
    [111]F. P. Bolin, L. E. Preuss, R. C. Taylor, et al., Refractive index of some mammalian tissues using a fiber optic cladding method [J], Appl. Opt.1989,28(12):2297-2303.
    [112]W. V. Sorin, D. F. Gray, Simultaneous thickness and group index measurement using optical low coherence refractometry[J], IEEE Photon. Technol. Lett.1992, 4(1):105-107.
    [113]G. J. Tearney, M. E. Brezinski, J. F. Southern, et al. Determination of the refractive index of highly scattering human tissue by optical coherence tomography[J], Opt. Lett.1995,20(21):2258-2260.
    [114]X. Wang, C. Zhang, L. Zhang, et al. Simultaneous refractive index and thickness measurements of bio-tissue by optical coherence tomography[J], J. Biomed. Opt. 2002,7(4):628-632.
    [115]L. V. Wang, Prospects of photoacoustic tomography [J], Med. Phys.,2008,35(12): 5758-5767.
    [116]Z. Guo, L. Li, and L. V. Wang, On the speckle free nature of photoacoustic tomography[J], Med. Phys.,2008,35(12):4084-4088.
    [117]向良忠,邢达,谷怀民,等.基于探测超声的生物组织无损光声层析成像[J],光子学报,2007,36(7):1307-1311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700