用户名: 密码: 验证码:
切换时滞系统稳定性的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有着广泛的工程背景和理论研究意义的切换时滞系统是一类重要的混杂系统。切换系统由多个子系统和切换规则组成,每个子系统只在切换规则激活下才成为系统模型,并且系统的状态轨迹在系统模型发生变化的时刻仍然连续。如果子系统或者切换规则包含时滞,就称之为切换时滞系统。本文所关注的内容是有关切换时滞系统Lyapunov意义下的稳定(主要指渐近稳定)和有界输入有界输出稳定(简称BIBO稳定)的判别方法的研究。
     首先,针对系数矩阵存在Hurwitz线性凸组合的混合时滞(离散时滞和分布时滞)的切换线性系统,通过线性划分状态空间,构造各子系统渐近稳定的区域,并设计一个依赖于状态的切换信号,利用Lyapunov泛函和不等式分析技巧,讨论了这一类切换混合时滞系统的渐近稳定性。由Lyapunov方程和不等式的形式给出了这一类切换混合时滞系统渐近稳定的与时滞相关的充分条件。
     其次,依次讨论了连续时间大系统、连续时间单时滞系统、混合时滞系统、多重混合时滞系统和离散时间单时滞系统的BIBO稳定性质。对于连续时间大系统,本文利用Lyapunov函数和不等式技巧,以线性矩阵不等式(LMI)的形式给出了连续时间多变量反馈控制大系统BIBO稳定的条件。在此基础上通过矩阵分析的技巧给出了状态反馈控制器的设计方法并将其推广到系统结构中存在不确定项的情形。对于连续时间单时滞系统、混合时滞系统、多重混合时滞系统,本文运用Lyapunov泛函理论并结合Riccati方程、线性矩阵不等式,分别给出了系统时滞无关和时滞相关的BIBO稳定性判据,并将其推广到时滞系统结构中存在扰动项和不确定项的情形,合理引入自由矩阵和运用Schur补引理,给出了当不确定项满足范数有界条件时,系统时滞无关和时滞相关的鲁棒BIBO稳定性判据。对于离散时间单时滞系统,采用了将离散时滞系统转化为无时滞的离散系统的方法,设计控制律,运用迭代法和矩阵范数的性质,给出了系统时滞无关的BIBO稳定的条件。
     最后,分两种情形讨论了状态反馈控制下切换线性时滞系统BIBO稳定的问题。针对系数矩阵也存在Hurwitz线性凸组合的切换时滞系统,通过对状态空间有效的划分,设计一类状态依赖的切换规则,利用Lyapunov泛函理论和不等式技巧,给出了切换时滞系统的状态反馈控制器的设计方法和在状态反馈控制下BIBO稳定的与时滞相关的充分条件。由线性矩阵不等式的形式给出的结论可由Matlab工具箱快速得到可行解。对于切换域是固定的一类切换时滞系统,通过构造分段连续的二次Lyapunov泛函和Riccati方程,得到了在这类固定切换域的约束下切换时滞系统BIBO稳定的充分条件。系统的切换信号受事件驱动,依赖于系统状态的变化。
Switched systems are important class of hybrid systems,which have been widely applied to the engineering and have great significance of theoretical study. Switched systems consist of more than one subsystem and a switching rule indicating the active subsystem at each instant of time. The state trajectory of system is continuous at the time when the model is changed. If time delays are in each subsystem or in the switching rule, it is called switched systems with delays. Founding the criteria of stability of switched systems with delays in the sense of Lyapunov (focusing on asymptotical stability) and Bounded Input and Bounded Output stability (shorting for BIBO stability) is the main consideration of this paper.
     Firstly, assuming that there exists a Hurwitz linear convex combination in the coefficient matrices of switched linear systems with mixed delays (both discrete and distributed time delays), this paper is to propose the uniform asymptotic stability conditions for this class of switched systems by Lyapunov functional and inequality technique. According to the linear partition of state space, we can construct the stable regions and a state dependent switching rule. By a defined Lyapunov equation and certain inequality, sufficient conditions of stability are given.
     Secondly, this paper is to discuss the BIBO stability of continuous large scale systems, continuous systems with single delay, mixed delays, multiple mixed delays and discrete systems with single delay. For continuous large scale systems, we use Lyapunov function and inequality to obtain the novel BIBO stabilization criteria expressed in terms of linear matrix inequality (LMI) for continuous multivariable feedback systems. Based on this, the design of state feedback is given by matrix transform. The issue of robust BIBO stabilization for uncertain large scale systems is also addressed. For continuous control systems with single delay, mixed delays, multiple mixed delays, delay-independent and delay-dependent stabilizable criteria for these control systems are presented by theory of Lyapunov functional and Riccati equation, linear matrix inequality technique to guarantee that the bounded input lead to the bounded output. The robust BIBO stability for such systems with perturbation and uncertainty is also discussed. When the norm condition of time-varying uncertain matrices is satisfied, novel robust BIBO stabilization criteria delay-independent and delay-dependent are also established by the introduction of free-weighting matrices and the Schur’s lemma. For the discrete systems with time delay, an equivalent transformation to get systems without delay is presented and a control law is designed. At last, delay-independent BIBO stability criteria are given by iterative relation and theory of matrix norm.
     Lastly, this paper is concerned with the problems of BIBO stabilization of the switched linear systems in presence of time delays under feedback control. This part consists of two cases. Under the assumption that there also exists a Hurwitz linear convex combination in the coefficient matrices of delayed switched linear systems, criteria of BIBO stabilization are established by linear partition of state space and a state-dependent switching rule. Stabilization criteria and the design of state feedback controller are derived and proposed by Lyapunov functional and inequality technique. BIBO stabilization criteria are given in terms of LMI and can be easily solved by LMI Toolbox in Matlab. For switched delay systems in fixed switching regions, the main contribution of the paper is the derivation of sufficient conditions of BIBO stabilization in the form of algebraic Riccati matrix equation based on piecewise quadratic Lyapunov functional. The switching rule is driven by event and state-dependent.
引文
[1] Witsenhausen H S. A class of hybrid-state conitnuous-time dynamic systems. IEEE Trans. Automatic Control, 1966, 11 (6): 665-683.
    [2] Athams M. Command and Control (C2) Theory: A Challenge to Control Science. IEEE Trans. Automatic Control, 1987, 32 (4): 286-293.
    [3] Grossman R L, Nerode A, Ravn A P, et al. Hybrid Systems. Lecture Notes in Computer Science. Springer-Verlag, 1993, 736: 1-474.
    [4] Antsaklis P J, Kohn W, Nerode A, Sastry S, et al. Hybrid Systems II. Lecture Notes in Computer Science. Springer-Verlag, 1995, 999: 1-552.
    [5] Alur R, Henzinger T A, Sontog E D. Hybrid Systems III: Verification and Control. Lecture Notes in Computer Science. Springer-Verlag, 1996, 1066: 1-604.
    [6] Antsaklis P J, Kohn W, Nerode A, Sastry S, et al. Hybrid Systems IV. Lecture Notes in Computer Science. Springer-Verlag, 1997, 1273: 1-404.
    [7] Antsaklis P J, Kohn W, Lemmon M, Nerode A, Sastry S, et al. Hybrid Systems V. Lecture Notes in Computer Science. Springer-Verlag, 1999, 1567: 1-445.
    [8] Antsaklis P J, Nerode A (Guest Editors). Special Issue on Hybrid Systems. IEEE Trans. Automatic Control, 1998, 43 (4): 455-579.
    [9] Morse A, Pantelides C, Sastry S, Schumacher J (Guest Editors). Special Issue on Hybrid Systems. Automatica, 1999, 35 (3): 347-535.
    [10] Evans R, Savkin A V (Guest Editors). Special Issue on Hybrid Systems. System& Control Letters, 1999, 38 (3): 139-207.
    [11] Johansen T A, Molengraft R V, Nijmeijer H (Guest Editors). Special Issue on Switched Systems, Piecewise and Polytopic Linear Systems. International Journal of Control, 2002, 75 (16-17): 1241 -1434.
    [12]高军伟.切换系统建模、控制理论与应用研究.铁道科学研究院博士学位论文, 2003.
    [13] Antsaklis P J, Nerode A. Hybrid control systems: An introductory discussion to the special issue. IEEE Trans. Automatic Control, 1998, 43 (4): 457-459.
    [14] Leonessa A, Haddad W M and Li H. Global Stabilization of Centrifugal Compressors via Stability—Based Switching Controllers. Proceedings of the 37th IEEE Conference on Decisionand Control, 1998:2569-2574.
    [15] Leonessa A, Haddad W M and Chellaboina V. Nonlinear System Stabilization via Stability Based Switching. Proceedings of the 37th IEEE Conference on Decision and Control, 1998: 2983-2996.
    [16] Karimi A and Landau I D. Robust Adaptive Control of a Flexible Transmission System Using Multiple Models. Proceedings of the 37th IEEE Conference on Decision and Control, 1998: 2259 -2264.
    [17] Morse A S. Supervisory control of families of linear set-point controllers-Part II: Exact matching. IEEE Trans. Automatic Control, 1996, 41 (10): 1413-1431.
    [18] Narendra K S and Balakrishnan J. Adaptive control using multiple models. IEEE Trans. Automatic Control, 1997, 42 (2): 171-187.
    [19] Feng G and Ma J. Quadratic stabilization of uncertain discrete time fuzzy dynamic systems. IEEE Trans. Circuits and Systems l: Fundamental Theory and Applications, 2001, 48 (11): 1337-1344.
    [20] Tanaka K and Sano M. A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck trailer. IEEE Trans. Fuzzy Systems, 1994, 2 (2): 119-134.
    [21] Ravindranathan M and Leitch R. Model switching in intelligent control systems. Artificial Intelligence in Engineering, 1999, 13 (2): 175-187.
    [22] Koutsoukos X D, Antsaklis P J. Hybrid systems: review and recent Progress. Software-Enabled Control: Information Technologies for Dynamical Systems, Wiley-IEEE Press, 2003.
    [23] Shtessel Y B, Raznopolov O A, Ozerov L A. Control of multiple modular dc-to-dc power converts in conventional and dynamic sliding surfaces. IEEE Trans. Circuits and Systems, 1998, 45 (10): 1091-1100.
    [24] Szentirmai G, Temes Gabor C. Switched-capacitor building blocks. IEEE Trans. Circuits and Systems, 1980, 27 (6): 492-501.
    [25] Gollu A, Varaiya P P. Hybrid Dynamic Systems. Proceedings of the 28th Conference on Decision and Control, Florida, USA, 1989: 2708-2712.
    [26] Bemporad A, Morari M. Control of systems integrating logic, dynamics, and constraints . Automatica, 1999, 35: 407-427.
    [27] Branicky M S, Bokar V S, Mitter S K.A unified framework for hybrid control: model and optimal control theory. IEEE trans. Automatic Control, 1998, 43 (l): 31-45.
    [28]任艳频.切换系统的建模、分析与仿真研究.清华大学博士学位论文, 1999.
    [29]谢广明.线性切换系统的分析与控制.清华大学博士学位论文, 2001.
    [30] Xie G, Zheng D, Wang L. Controllability of linear switched systems. IEEE Trans. Automatic Control, 2002, 47 (8): 1401-1405.
    [31] Sun Z, Zheng D. On reachability and stabilization of switched linear systems, IEEE Trans. Automatic Control, 2001, 46 (2): 291-295.
    [32] Daafouz J, Riedinger P, Lung C.Stability analysis and control synthesis for switched systems: a switched Lyapunov functiona approach. IEEE Trans. Automatic Control, 2002, 47 (11): 1883- 1887.
    [33] Sun Z. A robust stabilizing law for switched linear systems. International Journal of Control, 2004, 77 (4): 389-398.
    [34] Xu X, Antsaklis P J. Stabilization of second LTI switched systems, International Journal of Control, 2000, 73 (4): 1261-1279.
    [35] Riedinger P, Kratz F, Lung C, Zanne C. Linear quadratic optimization for hybrid systems. Proceeding of the 38th conference on Decision and control, 1999: 3059-3064.
    [36] Xu X, Antsaklis P J. Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans. Automatic Control, 2004, 49 (l): 2-16.
    [37] Sun Z. Stabilization and optimization of switched linear systerns. Automatica, 2006, 42: 783- 788.
    [38] Wang Y J, Xie G M, Wang L. Controllability of switched time-delay systems under constrained switching. J. Math. Anal.Appl, 2003, 286: 397-421.
    [39] Xie G M, Wang L. Stability and stabilization of switched linear systems with state delay:continuous-time case The16th Mathematical Theory of Networks and Systems Conference,Catholic University of Leuven, 2004.
    [40]廖晓昕.稳定性的理论、方法和应用.华中科技大学出版社, 2002.
    [41]陈贵词.大系统的分散鲁棒控制研究.武汉科技大学硕士学位论文, 2004.
    [42] Liberzon D, Morse A S. Basic problems in stability and design of switched systems. IEEE Control Systems Magazine, 1999,19 (5): 59-70.
    [43] Decarlo R A, Branicky M S, Pettersson S and Lennartson B. Perspectives and Results on the Stability and Stabilizability of Hybrid systems. Proceedings of the IEEE, 2000, 88: 1069-1082.
    [44] Liberzon D. Switching in Systems and Control. Birkhauser, Boston, 2003.
    [45] Dayawansa W P, Mattin C F. A Lyapunov theorem for a class of dynamical systems whichundergo switching. IEEE Trans. Automatic Control, 2004, 44 (4): 751-760.
    [46] Peleties P, DeCarlo R. Asymptotic stability of m-switched systems using Lyapunov-like functions. American Control Conference, 1991:1679-1684.
    [47] Branicky M S. Multiple Lyapunov functions and other analysis tools for switehed and hybrid systems. IEEE Trans. Automatic control, 1998, 43 (4): 475-482.
    [48] Hespanha J P, Morse A S. Stability of switched systems with average dwell-time. Proceedings of the 38th Conference on Decision &control, Phoenix, Arizona, USA, 1999:2655-2660.
    [49] Zhai G, Hu B, Yasuda K, et al. stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach. International journal of systems science, 2001, 32 (8): 1055-1061.
    [50] Zhai G, Hu B, Yasuda K, et al. Piecewise Lyapunov functions for switched systems with average dwell time. Proc. Asian Control Conference, 2000: 2655-2660.
    [51] Spinelli W, Bolzern P, Colaneri P, Computation of lower bounds for the optimal quadratic cost of linear switched systems. In Proc. of the 2006 Amer. Contr. Conf., 2006: 5444-5449.
    [52] Rantzer A, Johansson M. Piecewise Linear Quadratic Optimal Control. IEEE Trans. Automat. Contr., 2000, 45 (4): 629-637.
    [53] Zhang H B, Li C G, Zhang J, Liao X F and Yu J B. Controlling chaotic Chua's circuit based on piecewise quadratic Lyapunov functions method. Chaos, Solitons & Fractals, 2004, 22 (5): 1053- 1061.
    [54] Du D S, Zhou S S, Zhang B Y. Generalized H2 output feedback controller design for uncertain discrete-time switched systems via switched Lyapunov functions. Nonlinear Anal., 2006, 65: 2135 -2146.
    [55] Wicks M A, Peleties P, Decarlo R. Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems. European Journal of Control, 1998, 4:140-147.
    [56] Kim S, Campbell S A and Liu X Z. Stability of a class linear switching systems with time delay. IEEE Trans. Circ syst-I, 2006, 53: 384-393.
    [57] Zhang Y P, Liu Z X, Zhu H, Zhong S M. Stability analysis and control synthesis for a class of switched neutral systems. Applied Mathematics and Computation, 2007, 190: 1258-1266.
    [58] Liberzon D, Hespanha J P and Morse A S. Stability of switched systems: a Lie-algebraic condition. Systems and Control Letters, 1999, 37:117-122.
    [59] Liberzon D and Tempo R. Common Lyapunov Functions and Gradient Algorithms. IEEE Trans. Automat Control, 2004, 49 (6):990-994.
    [60] Narendra K S and Balakrishnan J. A Common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Trans. Automatic Control, 1994, 39 (12): 2469-2471.
    [61]李莉莉,赵军.一类非线性离散切换系统基于观测器的指数镇定.控制理论与应用, 2009, 26 (7): 786-790.
    [62] Wicks M A, Peleties P, Decarlo R. Construction of piecewise Lyapunov functions for stabilizing switched systems. Proceedings of the 33rd Conference on Decision and Control, 1994: 3492-3497.
    [63] Feron E. Quadratic stabilizability of switched systems via state and output feedback. SIAM J. Control and Optimization. Submitted (Technical Report CICS-P-468, MIT,1996).
    [64]付主木,费树岷.一类切换线性奇异系统的控制.控制理论与应用, 2008, 25(4):693-698.
    [65]王连圭,李森.一类时滞切换系统的稳定性分析与控制.吉首大学学报(自然科学版), 2008, 29 (5): 49-52.
    [66] Michaletzky G and Gerencsér L. BIBO Stability of Linear Switching Systems. IEEE Trans. Automatic Control, 2002, 47 (11): 1895-1898.
    [67] Liberzon D. ISS and integral ISS disturbance attenuation with bounded control. Proceedings of the 38th IEEE Conference on Decision and control, AZ: Phoenix, 1999: 2501-2506.
    [68] Zhao J, Nie H. Sufficient Conditions for Input-to-State Stability of Switched Systems. ACTA AUTOMATICA SINICA, 2003, 29 (2): 252-257.
    [69] Hassibi A, P.Boyd S, How J P. A class of Lyapunov functionals for analyzing hybrid systems. Proceedings of American Control Conference, 1999, 4: 2455-2460.
    [70] Bisiacco M, Fornasini E, Marchesini G. On Some Connections between BIBO and Internal Stability of Two-Dimensional Filters. IEEE Trans. Circuits and Systems CAS-1985, 32 (9): 948-953.
    [71] Roytman L M, Swamy M N S, Eichman G, BIBO stability in the presence of nonessential singularities of the second kind in 2-D digital filters. IEEE Trans. Circuits and Systems CAS-1987, 34: 60-72.
    [72] Bauer P, Jury E I. BIBO-Stability of Multidimensional (mD) Shift-Invariant Discrete Systems. IEEE Trans. Automatic Control, 1991, 36 (9): 1057-1061.
    [73] Aravena J L. 2-D BIBO stability using 1-D wave model. IEEE Trans. Circuits and Systems-I: fundamental theory and application, 1992, 39 (7): 570-576.
    [74] Swamy M N S, Roytman L M and Marinovic N. A Necessary condition for the BIBO Stability of 2-D Filters. IEEE Trans. Circuits and Systems-II: Analog and Digital Signal Processing,1992, 37: 475-476.
    [75] Roytman L M and Potievsky V F. BIBO Stability in 3-D Digital Filters. IEEE Trans. Circuits and Systems-I: fundamental theory and application, 2003, 50: 1574-1576.
    [76] Rajan P K, Reddy H C. On the Necessary Conditions for the BIBO Stability of n-D Filters. IEEE Trans. Circuits and Systems, CAS-1986, 33 (11): 1143.
    [77]王为群. 2-D奇异系统的稳定性、能稳能检测性分析与设计.南京理工大学博士学位论文, 2003
    [78]孙建中,杨成梧,邹云.二维非零既约传递函数BIBO稳定的一种充要判据.南京理工大学学报, 1994, 2: 24-27.
    [79]焦李成,邱关源.非线性网络和系统BIBO稳定性的MD理论和方法.系统工程与电子技术, 1992, (9): 41-46.
    [80]罗抟翼.信号、系统与自动控制原理.机械工业出版, 2000.
    [81] Lin J G, Varaiya P P. Bounded-Input Bounded-Output Stability of Nonlinear Time-Varying Discrete Control Systems. IEEE Trans. Automatic Control AC-1967, 12 (4): 423-427.
    [82] Wu H, Mizukami K. Robust stabilization of uncertain linear dynamical systems. Int. J. Systems Sci.,1993, 24 (2): 265-276.
    [83] Kotsios S. A note on BIBO stability of bilinear systems. Journal of the Franklin Institute, 1995, 332 (6): 755- 760.
    [84] Bose T and. Chen M Q. BIBO Stability of the Discrete Bilinear System. Digital Signal Processing, 1995, 5: 160-166.
    [85] Kotsios S, Feely O. A BIBO Stability Theorem for a Two-dimensional Feedback Discrete System with Discontinuities. Journal of the Franklin Institute, 1998, 335B: 533-537.
    [86] Xu D Y, Zhong S M and Li M. BIBO Stabilization of Large-Scale Systems. Control Theory and Applications, 1995, 12: 758-763.
    [87]徐道义,钟守铭.多变量反馈系统的BIBO稳定化.电子科技大学学报, 1995, 24 (1): 90- 96.
    [88] Hale J. Theory of Functional Differential Equations. New York: Springer-Verlag, 1977.
    [89]郑祖庥.泛函微分方程理论.安徽教育出版社, 1994.
    [90]傅予力,廖晓昕.中立型控制系统的BIBO控制器设计.华中理工大学学报, 2000, 28 (4): 72-73.
    [91]俞国军,高金凤,俞立.具有输入饱和因子的广义系统BIBO稳定性控制.浙江工业大学学报, 2002, 30 (5): 420-424.
    [92]孙继涛,邓飞其,刘永清,张银萍.具多时滞的不确定多变量反馈系统的鲁棒稳定化.控制理论与应用, 2002, 19 (1): 103-104.
    [93]钟守铭,黄廷祝.具有多时滞的不确定多变量反馈系统的鲁棒稳定化.自动化学报, 1998, 24 (6): 837- 839.
    [94] Lu H C, Chen B S. Stabilization of multivariable feedback systems with multiple time delays. Int. J. Systems Science, 1988, 19 (6): 953-966.
    [95]曹科才,钟守铭,刘碧森.时滞系统的鲁棒稳定性与BIBO稳定,电子科技大学学报, 2003, 32 (6): 787-789.
    [96]钟守铭.具有不确定系数的T-S模糊控制系统的BIBO鲁棒镇定.湖南工业大学学报, 2007, 21 (4): 36-40.
    [97]金尚泰,侯忠生.一类非线性大滞后系统的改进无模型自适应控制.控制理论与应用, 2008, 25 (4): 623-626.
    [98]王卫红.无模型自适应控制理论几类问题的研究.北京交通大学博士学位论文, 2008.
    [99]赵国峰,宋杨,郭健,胡维礼.基于时间次优补偿的齿隙非线性系统的切换控制.兵工学报, 2006, 27 (2): 325-329.
    [100] Huang Y Q, Zeng W, Zhong S M. BIBO Stability of Continuous Time Systems. Journal of Electronic Science and Technology of China, 2005, 3 (2): 178-181.
    [101]罗正选,张霄力.时滞切换系统的时滞依赖稳定.控制理论与应用, 2009, 26 (1): 89-91.
    [102] Kolmanovskii V, Myshkis A. Introduction to the theory and applications of functional differential equations. Dordrecht, Boston, London: Kluwer academic publishers, 1999
    [103]王照林,刘守圭,管晔辉,黄士涛.大系统方法与卫星姿态动力学.空间科学学报, 1983 3 (2): 81-102.
    [104]高为炳.线性非定常大系统的稳定性问题.控制理论与应用, 1986, 3 (1): 16-24.
    [105]高为炳.非线性大系统在有限域中的鲁棒稳定性.北京航空航天大学学报, 1984, (4): 1-9.
    [106]唐功友,刘永清.加权向量范数型李雅普诺夫函数在大系统稳定性中的应用.青岛科技大学学报(自然科学版) , 1989 (4):1-8.
    [107] Zames G. On the input-output stability of time-varying nonlinear feedback systems, pt I IEEE Trans. Automatic Control AC1966-11: 228-238; pt.II. ibid,1966: 465-476.
    [108] Hiroaki Mukaidani. An LMI approach to decentralized guaranteed cost control for a class of uncertain nonlinear large-scale delay systems. Journal of Mathematical Analysis and Applications, 2004, 300 (1): 17-29.
    [109] Park J H. On design of dynamic output feedback controller for GCS of large-scale systemswith delays in interconnections:LMI optimization approach. Applied Mathematics and Computation, 2005,161 (22): 423-432.
    [110] Park J H. Design of robust decentralized dynamic controller for uncertain large-scale interconnected systems with time-delays. IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, 2001, E84-A (7):1747-1754.
    [111] Yan X G. Decentralized control of nonlinear large-scale systems using dynamic output feedback. Journal of Optimization Theory and Applications, 2000, 104 (2): 459-475.
    [112]方炜,姜长生,朱亮.一类不确定时延非线性大系统的分散控制.中国科学院研究生院学报, 2007, 24 (1): 124-130.
    [113]张志飞,张红强. Lurie型组合系统的分散输出反馈镇定.湘潭大学自然科学学报, 2008, 30 (1): 8-13.
    [114]黎明.一类多重时滞大系统的稳定性.曲靖师范学院学报, 1994,13(2): 4-11.
    [115]黎明.具有多重时滞反馈系统的稳定化.四川师范大学学报(自然科学版) , 1994, 17(5): 41-46.
    [116] Boyd B, Ghaoui L E, Feron E, Balakrishnan V. Linear matrix inequalities in systems and control theory, Philadelphia: SIAM,1994.
    [117] Li X, C E de Souza, Delay dependent robust stability and stabilization of uncertain time delay systems: A linear matrix inequality approach, IEEE Trans. Automatic Control, 1997, 42 (8): 1144-1148.
    [118] Tseng C S, Hwang C K. Fuzzy observer-based fuzzy control design for nonlinear systems with persistent bounded disturbances. Fuzzy Sets and Systems, 2007, 158: 164-179.
    [119] Zhou T J, Liu Y R and Liu Y H. Existence and global exponential stability of periodic solution for discrete-time BAM neural networks. Appl. Math. Comput., 2006, 182 (2): 1341-1354.
    [120] Sun Y J. Duality between observation and output feedback for linear systems with multiple time delays. Chaos, Solitons & Fractals, 2007, 33 (3) : 879-884.
    [121] Park J H and Cho H J. A delay-dependent asymptotic stability criterion of cellular neural networks with time-varying discrete and distributed delays. Chaos, Solitons & Fractals, 2007, 33 (2): 436-442.
    [122] Song Y L and Peng Y H. Stability and bifurcation analysis on a Logistic model with discrete and distributed delays. Appl. Math. Comput., 2006, 181 (2): 1745-1757.
    [123] Xu R and Chaplain M A J. Persistence and attractivity in an N-species ratio-dependent predator–prey system with distributed time delays. Appl. Math. Comput., 2002, 131 (1): 59-80.
    [124] Chen F D. On a nonlinear nonautonomous predator–prey model with diffusion and distributed delay. J. Comput. Appl. Math., 2005, 18 (1): 33-49.
    [125]刘允刚,施颂椒,王先来.时变离散系统的一种自适应算法及鲁棒性分析.上海交通大学学报, 1999, 33 (11): 1434-1438.
    [126]邱亚林,具有时滞的线性时变区间系统的鲁棒稳定及鲁棒稳定化.数学研究, 2000, 33(4): 432-438.
    [127]关治洪,刘永清.一类测度型脉冲时滞系统解的表示及BIBO问题. 1994中国控制与决策学术年会论文集, 139-144.
    [128] Gu K. An integral inequality in the stability problem of time-delay systems. Proceedings of 39th IEEE CDC Sydney, Australia, 2000: 2805-2810.
    [129] Zhou S S, Lam J. Robust stabilization of delayed singular systems with linear fractional parametric uncertainties. Circuits Systems Signal Processing, 2003, 22: 579-588.
    [130] Gabr M M, Subba R T. On the identification of bilinear systems from operating records. Int. J. Contr., 1984, 40: 121-128.
    [131] Sontag E D. Smooth Stabilization Implies Coprime Factorization. IEEE Trans. Automatic Control, 1989, 34 (4): 435-443.
    [132] Kotsios S and Kalouptsidis N. BIBO stability criteria for a certain class of discrete nonlinear systems. Int. J. Contr., 1993, 58: 707-730.
    [133] Geromel J C, Colaneri P. Stability and stabilization of continuous-time switched systems. SIAM Journal on Control Optimization, 2006, 45: 1915-1930.
    [134] Colaneri P, Geromel J C, Astolfi A. Stabilization of continuous-time switched nonlinear systems. Systems & Control Letters, 2008, 57: 95-103.
    [135] Johansson M, Rantzer A. Computation of Piecewise Quadratic Lyapunov Functions for Hybrid Systems. IEEE Trans. Automat. Contr., 1998, 43 (4): 555-559.
    [136] Wang C H, Zhang L X, Gao H J, et al. Delay-dependent stability and stabilization of a class of linear switched time-varying delay systems. Proceeding of the 4th international conference on machine learning and cybernetics, Guangzhou, 2005: 917-922.
    [137] Zhang Y P, Liu X Z, Zhu H, Zhong S M. Analysis and synthesis of a class of cell partitions switched neutral control systems. Proceeding on 3rd International Conference on Impulsive Dynamics Systems and Applications, 2006:1580-1584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700