用户名: 密码: 验证码:
基于T-S模型的非线性系统的模糊控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统控制相比,模糊控制具有两大不可比拟的优点:其一,它在许多应用中可以有效且便捷地实现人的控制策略和经验;其二,它不需要知道被控对象精确的数学模型就可实现较好的控制。日本学者Takagi T和Sugeno M在1985年提出的Takagi-Sugeno (T-S)模糊模型,给模糊控制理论研究及应用带来了深远的影响,使模糊系统稳定性分析上升到新的理论高度。
     本文分别基于T-S线性模型和T-S双线性模型,根据Lyapunov稳定性理论、鲁棒控制理论和H∞控制理论,结合线性矩阵不等式(LMI)技术,深入研究了模糊系统稳定性分析和稳定化控制问题。
     主要工作有以下几个方面:
     1.对带有时变时滞的T-S连续时滞模糊系统,考虑以前在推导过程中常被忽略的有用项而可能带来保守性这一问题,构造适当的模糊Lyapunov函数,得到了开环模糊系统时滞相关渐近稳定的充分条件。然后根据并行分布补偿算法,设计了状态反馈控制器,得到了闭环系统时滞相关渐近稳定的充分条件。
     2.对于带有不确定的T-S连续时滞模糊系统,基于模糊Lyapunov函数方法,引入带有时变时滞的模糊自由权值矩阵,给出了模糊系统时滞相关鲁棒H∞稳定的新的充分条件。自由权值矩阵的引入,去掉了时滞量导数小于1的约束条件。
     3.考虑公共Lyapunov函数方法的保守性,基于模糊Lyapunov函数方法和并行分布补偿算法,分别研究了时滞离散模糊系统的H∞稳定性和带有不确定的时滞离散模糊的鲁棒H∞稳定性。引入松弛变量,以线性矩阵不等式的形式分别给出了系统稳定的充分条件和控制器的设计方法。
     4.研究了一类用T-S双线性模型表示的非线性系统的稳定性分析和控制问题。首先,给出了带有不确定多输入模糊双线性系统鲁棒H∞稳定化的充分条件;然后,研究了一类输入和状态都带有时变时滞的模糊双线性系统的时滞相关稳定控制并给出了控制器的设计方法;最后,考虑了基于静态输出反馈控制的模糊系统的稳定控制问题,以LMI形式给出了系统稳定的充分条件。
     5.考虑离散模糊双线性系统的稳定控制问题。首先,基于公共Lyapunov函数,给出了多输入离散模糊系统渐近稳定的充分条件;然后,研究了输入和状态都带有时滞的离散模糊系统,采用LMI处理方法,提出了模糊控制器的存在条件及设计方法;最后,基于分段Lyapunov函数及切换模型,同时考虑同一个子空间内不同模糊子系统之间的相互作用,得到了系统渐近稳定的充分条件。
     6.在控制器存在加性摄动的情况下,分别研究了带有时滞的连续、离散模糊双线性系统的非脆弱保性能控制。根据并行分布补偿算法,分别设计了模糊非脆弱保性能控制器,使得闭环模糊系统是渐近稳定的,而且对于一个给定的二次型性能指标,保证闭环系统的性能指标不超过给定的性能指标的上界。
     7.研究了一类用T-S双线性模型表示的非线性关联大系统的分散鲁棒控制问题。根据Lyapunov稳定性理论和分散控制方法,得到了关联大系统分散鲁棒镇定的充分条件及模糊控制器的设计方法。
     最后,对全文进行了概括性总结,并指出了有待进一步研究和完善的问题。
Compared with classical control systems, fuzzy control systems have the following two unmatched advantages. First, it can be easy to realize effectively human control strategies and experience in many applications. Second, it can achieve better control performance in the absence of the accurate mathematic model for the controlled system. In 1985, Takagi T and Sugeno M proposed the Takagi-Sugeno (T-S) fuzzy model, which brings far-researching impact on fuzzy control theory and its application, and makes the stability analysis of fuzzy systems to a new theoretical height. Combining with the Lyapunov stability theory, robust control theory and H∞control theory, using the Linear Matrix Inequality (LMI), this thesis discussed the stability and stabilization problems of fuzzy systems based on T-S linear model and T-S bilinear model in detail, respectively.
     The main research works in this thesis can be described as follows:
     1. By constructing new appropriate fuzzy Lyapunov function and considering the useful terms (which are ignored in previous methods) when estimating the upper bound of the derivative of Lyapunov function, the delay-dependent stability criteria of open-loop fuzzy systems with time-varying delay are derived. Then, based on parallel distributed compensation (PDC) scheme, the delay-dependent stabilization conditions of the closed-loop systems are derived and the corresponding state feedback controller can be obtained, respectively.
     2. Based on fuzzy Lyapunov function and fuzzy free-weighting matrices with time-varying delay, some new sufficient conditions for robust H∞stabilization of uncertain continuous-time fuzzy system with time-varying delay are given. The fuzzy free-weighting matrices are introduced, the purpose of which is to relax the constraint of the derivatives of time-delay.
     3. In order to reduce the conservation of the common Lyapunov function,based on fuzzy Lyapunov function and PDC scheme, the H∞stability analysis of fuzzy delay discrete-time systems and robust H∞stability analysis of uncertain fuzzy delay discrete-time systems are studied, respectively. Introducing the relax matrix, the fuzzy controllers design is presented in the form of LMIs, respectively.
     4. Stability analysis and synthesis of continuous-time nonlinear systems based on the T-S bilinear model are investigated. By using Lyapunov function and PDC scheme, some sufficient conditions for multiple inputs fuzzy bilinear systems to be robust H∞stable are derived. Then, the delay-dependent stability of fuzzy systems with time-varying delay both in state and input is discussed and an LMI based controller design method is obtained. Finally, based on the static output-feedback controller, some sufficient conditions for the fuzzy bilinear systems to be stable are obtained in the form of LMIs.
     5. The stability of discrete-time fuzzy bilinear systems based on the T-S bilinear model is analyzed. By using Lyapunov function, some sufficient conditions for multiple inputs discrete-time fuzzy systems to be stable are derived. Then, the problem of stability analysis and synthesis of fuzzy systems with time-delay both in state and input are discussed. Sufficient conditions are derived for stabilization and are formulated in the form of LMIs. Finally, based on the piecewise Lyapunov function and switching fuzzy model, considered the interactions among the fuzzy subsystems in each subregion, the relaxed stabilization conditions are obtained for the fuzzy bilinear systems.
     6. In the presence of the additive controller gain perturbations, the non-fragile guaranteed cost control problems for the continuous-time and discrete-time fuzzy bilinear systems with time-delay in both state and input are considered, respectively. Based on the PDC approach, the non-fragile guaranteed cost state feedback controllers design is obtained, such that the closed-loop systems are asymptotically stable and the closed-loop performance is no more than a certain upper bound of a given quadratic cost function.
     7. The problem of decentralized robust control for a nonlinear interconnected system composed by T-S bilinear models with interconnections is considered. Based on the Lyapunov stability analysis theory and decentralized control theory, some sufficient robust stabilization conditions are derived for the whole closed-loop fuzzy interconnected systems.
     Finally,some concluding remarks are given, and the future research works are pointed out.
引文
[1] Zadeh L A. Fuzzy sets [J]. Information and Control, 1965, 8: 338-353.
    [2] Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes [J]. IEEE Tran. Systems, Man, and Cybernetics, 1973, 3(1):28-44.
    [3] Mamdani E H. Applications of fuzzy algorithms for simple dynamic plant [J]. Proc. IEE Control and Science, 1974, 121(12): 1585-1588.
    [4] Procyk T J and Mamdani E H. A linguistic self-organizing process controller [J]. Automatica, 1979, 15(1):15 -30.
    [5] Holmblad L P and Qstergaard J J. Control of a cement kiln by fuzzy logic [M]. Fuzzy Information and Decision Processes, New York: North-Holland, 1982, 389-399.
    [6] Sugeno M and Nishida M. Fuzzy control of model car [J]. Fuzzy Sets and Systems, 1985, 16 (2):103-113.
    [7] Yasunobu S and Miyamoto S. Automatic train operation system by predictive fuzzy control [M]. Industrial Application of Fuzzy Control. North-Holland, 1985, 1-18.
    [8]龙升照,汪培庄.Fuzzy控制规则的自调整问题[J].模糊数学, 1982, 2(3):105-112.
    [9]李洪兴.从模糊控制的数学本质看模糊逻辑的成功[J].模糊系统与数学,1995, 9(4): 1-14.
    [10]张乃尧.典型模糊控制器的结构分析[J].模糊系统与数学,1997, 11(2): 12-23.
    [11]王国俊.模糊推理的全蕴涵三I算法[J].中国科学(E辑), 1999, 129(1): 43-53.
    [12]佟绍成.非线性系统的自适应模糊控制[M].北京:科学出版社,2006, 10-218.
    [13]李友善,李军.模糊控制理论及其在过程控制中的应用[M].北京:国防工业出版社, 1993,203-252.
    [14]李士勇.模糊控制.神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社, 1998, 549-646.
    [15] Kickert W J M and Mamdani E H. Analysis of a fuzzy logic controller [J]. Fuzzy Sets and Systems, 1978, 1(1):29-44.
    [16] Braae M and Rutherford D A. Selection of parameters for a fuzzy logic controller [J]. Fuzzy Sets and Systems, 1979, 2(3):185-199.
    [17] Kania A A, Kiszka J B, Gorzalczany M B, et al. On stability of formal fuzziness systems [J].Information Science, 1980, 22(1):51-68.
    [18] Gupta M M, Kiszka J B and Trojan G M. Multivariable structure of fuzzy control systems [J]. IEEE Trans. Systems, Man, and Cybernetics, 1986, 16(5):638-656.
    [19] Hsu C S. A theory of cell-to-cell mappings dynamical systems [J]. ASME Journal of Applied Mechanics, 1980, 47:931-939.
    [20] Chen Y Y and Tsao T C. A description of the dynamical behavior of fuzzy systems [J]. IEEE Trans. Systems, Man, and Cybernetics, 1989, 19(4):745-755.
    [21] Filev D P and Yager R R. Three models of fuzzy logic controllers [J]. Cybernetics and Systems, 1993, 24(2):91-114.
    [22] Yager R R and Filev D P. Unified structure and parameter identification of fuzzy models IEEE Trans. Systems, Man, and Cybernetics, 1993, 23(4):1198-1205.
    [23] Ying H. Analytical structure of a two-input two-output fuzzy controller and its relation to PI and multilevel relay controllers [J]. Fuzzy Sets and Systems, 1994, 63(1):21-33.
    [24]王立新.自适应模糊系统与控制---设计与稳定性分析[ M].北京:国防工业出版社,1995, 3-33.
    [25] Wang L X, Mendel J M. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning [J]. IEEE Trans. Neural Networks, 1992, 3(5):807-814.
    [26] Wang L X. Modeling and control of hierarchical systems with fuzzy systems [J]. Automatica, 1997,33(6):1041-1053.
    [27] Kong S G and Kosko B. Adaptive fuzzy systems for backing up a truck-and-trailer [J]. IEEE Trans. Neural Networks, 1992, 3(2):211-223.
    [28] Wang L X. Stable adaptive fuzzy controller of nonlinear systems [J]. IEEE Trans. Fuzzy Systems, 1993, 1(2): 146-155.
    [29] Wang L X. Combining mathematical model and heuristics into controller: an adaptive fuzzy control approach [J]. Fuzzy Sets and Systems, 1997, 89(2):151-156.
    [30] Takagi T and Sugeno M. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Trans. Systems, Man, and Cybernetics, 1985, 15(1):116-132.
    [31] Cao S G, Rees N W and Feng G. Analysis and design of fuzzy control systems using dynamic fuzzy globe models [J]. Fuzzy Sets and Systems, 1995, 75(1):47-62.
    [32] Sugeno M and Kang G T. Structure identification of fuzzy model [J]. Fuzzy Sets and Systems, 1988, 28(1):15-33.
    [33] Sugeno M and Tanaka K. Successive identification of fuzzy model and its applications to prediction of complex system [J]. Fuzzy Sets and Systems, 1991, 42(3):315-344.
    [34] Nakamori Y and Ryoke M. Identification of fuzzy prediction models through hyperellipsoidal clustering [J]. IEEE Trans. Systems, Man, and Cybernetics, 1994, 24(8):1153-1173.
    [35] Cao S G and Rees N W. Identification of dynamic fuzzy models [J]. Fuzzy Sets and Systems, 1995, 74(3):307-320.
    [36] Tanaka K and Sugeno M. Stability analysis of fuzzy systems using Lyapunov’s direct method [C]. Proc. NAFIPS’90, Totonto, Ontario, Canada. 1990:133-136.
    [37] Tanaka K and Sugeno M. Stability analysis and design of fuzzy control systems [J]. Fuzzy Setsand Systems, 1992, 45(2):135-156.
    [38] Fang C H, Liu Y S, Kau S W, et al. A new LMI-based approach to relaxed quadratic stabilization of T-S control systems [J]. IEEE Trans. Fuzzy Systems, 2006, 14(3):386-397.
    [39] Lin C, Wang Q G and Lee T H. Stability and stabilization of a class of fuzzy time-delay descriptor systems [J]. IEEE Trans. Fuzzy Systems, 2006, 14(4):542-551.
    [40] Lian K Y, Tu H W and Liou J J. Stability conditions for LMI-based fuzzy control from viewpoint of membership functions [J]. IEEE Trans. Fuzzy Systems, 2006, 14(6): 874-884.
    [41] Xiu Z H and Ren G. Stability analysis and systematic design of Takagi-Sugeno fuzzy control systems [J]. Fuzzy Sets and Systems, 2005, 151(1):119-138.
    [42] Huang C P. Stability analysis of discrete singular fuzzy systems [J]. Fuzzy Sets and Systems, 2005, 151(1):155-165.
    [43] Tuan H D, Apkarian P, Narikiyo T, et al. New fuzzy control model and dynamic output feedback parallel distributed compensation [J]. IEEE Trans Fuzzy Systems, 2004, 12(1):13-21.
    [44] Lin C, Wang Q G and Lee T H. Stabilization of uncertain fuzzy time-delay systems via variable structure control approach [J]. IEEE Trans Fuzzy Systems, 2005, 13(6):787-798.
    [45] Gao H J and Chen T W. Stabilization of nonlinear systems under variable sampling: a fuzzy control approach [J]. IEEE Trans Fuzzy Systems, 2007, 15(5):972-983.
    [46] Ho D W C and Sun J. Stability of Takagi-Sugeno fuzzy delay systems with impulse [J]. IEEE Trans Fuzzy Systems, 2007, 15(5):784-790.
    [47] Li T H S and Tsai S H. T-S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems [J]. IEEE Trans. Fuzzy Systems, 2007, 15(3):494-505.
    [48] Tsai S H and Li T H S. Robust fuzzy control of a class fuzzy bilinear systems with time-delay [J]. Chaos, Solitons and Fractals (2007), DOI: 10.1016/j. chaos.2007.06.057.
    [49] Li T H S, Tsai S H, Lee J Z, et al. Robust H∞fuzzy control for a class of uncertain discrete fuzzy bilinear systems [J]. IEEE Trans. Systems, Man, and Cybernetics, 2008, 38(2): 510-526.
    [50] Dong J X, Wang Y and Yang G H. Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models [J]. IEEE Trans. Systems, Man, Cybernetics,-Part B, 2009, 39 (5):1245-1258.
    [51]俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社,2002,2-91.
    [52]解学书,钟宜生. H∞控制理论[M].北京:清华大学出版社,1994,28-34.
    [53]申铁龙. H∞控制理论及应用[M].北京:清华大学出版社,1996,1-17.
    [54] Wang H O, Tanaka K and Grifin M. Parallel distributed compensation of nonlinear systems by Takagi and Sugeno’s fuzzy model [C]. Proc. of the 4th IEEE Inter. Conf. on Fuzzy Systems, Yokohama, Japan, 1995, 2:531-538.
    [55] Tanaka K, Ikeda T and Wang H O. An approach to stabilization of uncertain fuzzy systems [C].Proc. of the 5th IEEE Inter. Conf. on Fuzzy Systems, Hyatt Regency, New Orleans,1996,1:72-22.
    [56] Lam H K and Leung F H F. LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi-Sugeno’s form [J]. IEEE Trans. Systems, Man Cybernetics, 2007, 37(5):1396-1406.
    [57] Lam H K. Stability analysis of T-S fuzzy control systems using parameter-dependent Lyapunov function [J]. IET Control Theory and Applications. Doi:10.1049/iet-cta.2008.0196.
    [58] Dong J X and Yang G H. H∞Controller synthesis via switched PDC scheme for discrete-time T-S fuzzy systems [J]. IEEE Trans. Fuzzy Systems, 2009, 17(3): 544-555.
    [59] Hirota K and Pcdrycz W. Analysm and syntheis of fuzzy systems by the use of probabilistic sets [J]. Fuzzy Sets and Systems, 1983, 10(1-3):1-13.
    [60] Pedrycz W. An identification algorithm in fuzzy relational systems [J].Fuzzy Sets and Systems, 1984, 13(2):153-167.
    [61] Sugeno M and Yasukawa T. A fuzzy-logic-based approach to qualitative modeling [J]. IEEE Trans. Fuzzy Systems, 1993, 1(1): 7-31.
    [62] Wang L and Langari R. Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques [J]. IEEE Trans. Fuzzy Systems, 1995, 3(4):454-458 .
    [63] Tanaka K, Sano M and Watanabe H. Modeling and control of carbon monoxide concentration using a neuro-fuzzy technique [J]. IEEE Trans. Fuzzy Systems, 1995, 3(3):271-279.
    [64] Zhao J, Wertz V and Gorez R. A fuzzy clustering method for the identification of fuzzy models for dynamic systems [C]. Proc. of the 9th Inter. Symposium on Intelligent Control, ISIC-94, Columbus,Ohio, USA, 1994:172-177.
    [65]范小英,陆培新.一个新型的模糊控制器[J].控制理论与应用. 1995, 12(5):597-602.
    [66]贾磊,孙优贤.用论域缩小逼近法消除模糊控制器的余差[J].信息与控制. 1995, 24(4):251-256.
    [67]吴介一.提高模糊控制器精度的研究[J].控制理论与应用. 1996, 13(2):264-267.
    [68]李平,孙优贤,周春晖.最优模糊控制器的设计[J].控制理论与应用.1995, 12(1):46-52.
    [69]孙元章,黎雄,卢强.发电机调速系统的模糊逻辑控制器[J].控制理论与应用. 1996,13(5):521-625.
    [70]张念祖,朱汝辉,范懋基.模糊控制在机器人定位控制中的应用[J].控制与决策.1995, 10(2):133-136.
    [71] Yasunobu S and Murai Y. Predictive fuzzy control and parking control [C]. Proc. of the American Control Conference, Seattle, WA, USA,1995, 3:2277-2281.
    [72] Hessburg T and Tomizuka M . Model reference adaptive fuzzy logic control for vehicleguidance [C]. Proc. of the American Control Conference, Seattle, WA, USA,1995, 3: 2287-2291.
    [73] Feng G. A Survey on Analysis and Design of Model-Based Fuzzy Control Systems [J]. IEEE Trans. Fuzzy Systems, 2006, 14(5): 676-697.
    [74] Pang C T and Guu S M. Sufficient conditions for the stability of linear Takagi-Sugeno free fuzzy systems [J]. IEEE Trans. Fuzzy Systems, 2003, 11(5): 695-700.
    [75] Liu X D and Zang Q L.Approaches to quadratic stability conditions and H∞control designs for T-S fuzzy systems [J]. IEEE Trans. Fuzzy Systems, 2003, 11(6):830-839.
    [76] Ding B C, Sun H X and Yang P.Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno's form [J]. Automatica, 2006, 42(3):503-508.
    [77] Lam H K and Leung F H F. Fuzzy controller with stability and performance rules for nonlinear systems [J]. Fuzzy Sets and Systems, 2007, 158(2):147-163.
    [78] Tanaka K, Hori T and Wang H O.A fuzzy Lyapunov approach to fuzzy control system design [C]. Proc. of the American Control Conference, Arlington, VA, 2001, 6:4790-4795.
    [79] Tanaka K, Hori T and Wang H O. A multiple Lyapunov function approach to stabilization of fuzzy control systems [J]. IEEE Trans. Fuzzy Systems, 2003, 11(4):582-589.
    [80] Chadli M,Maquin D and Ragot J.Relaxed stability conditions for Takagi-Sugeno fuzzy systems [C]. IEEE Inter. Conf. on Systems Man and Cybernetics, Nashville, TN,2000, 5:3514-3519.
    [81] Wu H N and Li H X. New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay [J]. IEEE Trans. Fuzzy Systems, 2007, 15(3):482-493.
    [82] Gao H J, Liu X and Lam J. Stability analysis and stabilization for discrete-time fuzzy systems with time-varying delay [J]. IEEE Trans. Systems, Man, and Cybernetics, 2009, 39(2): 306-316.
    [83] Zhou S S, Lam J and Zheng W X. Control design for fuzzy systems based on relaxed nonquadratic stability and H-infinity performance conditions [J]. IEEE Trans. Fuzzy Systems, 2007, 15(2): 188-198
    [84] Johansson M, Rantzer A and ?rzén K E. Piecewise quadratic stability of fuzzy systems [J]. IEEE Trans. Fuzzy Systems, 1999, 7(6):713-722.
    [85] Feng G. Stability analysis of discrete-time fuzzy dynamic systems based on piecewise Lyapunov functions [J]. IEEE Trans. Fuzzy Systems, 2004, 12(1):22-28.
    [86] Chen C L, Feng G. Delay-dependent piecewise control for time-delay T-S fuzzy systems with application to chaos control [C]. Proc. of the 14th IEEE Inter. Conf. on fuzzy systems, Reno, NV, 2005:1056-1061.
    [87] Wang W J, Chen Y J, Sun C H. Relaxed stabilization criteria for discrete-time T-S fuzzy controlsystems based on a switching fuzzy model and piecewise Lyapunov function [J]. IEEE Trans. Systems, Man, and Cybernetics, 2007, 37(3):551-559.
    [88] Yoneyama J. Robust stability and stabilization for uncertain Takagi-Sugeno fuzzy time-delay systems [J]. Fuzzy Sets and Systems, 2007, 158(2):115-134.
    [89] Tian E, Yue D and Zhang Y J. Delay-dependent robust H∞control for T-S fuzzy system with interval time-varying delay [J]. Fuzzy sets and Systems, 2009, 160(12):1708-1719.
    [90] Zhang H B, Shen Y and Feng G. Delay-dependent stability and H∞control for a class of fuzzy descriptor systems with time-delay [J]. Fuzzy Sets and Systems, 2009, 160(12):1689-1707.
    [91] Cao Y Y and Frank P M. Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach [J]. IEEE Trans. Fuzzy Systems, 2000, 8(2): 200-211.
    [92] Cao Y Y and Frank P M. Stabilty analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno Fuzzy models [J]. Fuzzy Sets and Systems, 2001, 124(2): 213-229.
    [93] Yoneyama J. Design of H∞-control for fuzzy time-delay systems [J]. Fuzzy Sets and Systems, 2005, 151(1):167-190.
    [94] Xu S Y and Lam J. Robust H∞control for uncertain discrete-time-delay fuzzy systems via output feedback controllers [J]. IEEE Trans. Fuzzy Systems, 2005, 13(1): 82-93.
    [95] Kam H K and Leung F H F. Stability analysis of discrete-time fuzzy-model-based control systems with time delay: time delay-independent approach [J]. Fuzzy sets and Systems, 2008, 159(8):990-1000.
    [96] Wu H N. Delay-dependent H∞fuzzy observer-based control for discrete-time nonlinear systems with state delay [J]. Fuzzy Sets and Systems, 2008,159 (20): 2696-2712.
    [97] Chen C L, Feng G and Guan X P. Delay-dependent stability analysis and controller synthesis for discrete-time T-S fuzzy systems with time delays [J]. IEEE Trans. Fuzzy Systems, 2005, 13(5): 630-643.
    [98] Chang Y C, Chen S S, Su S F, et al. Static output feedback stabilization for nonlinear interval time-delay systems via fuzzy control approach [J]. Fuzzy Sets and Systems, 2004, 148(3): 395-410.
    [99] Chen S S, Chang Y C, Su S F, et al. Robust static output-feedback stabilization for nonlinear discrete-time systems with time delay via fuzzy control approach [J]. IEEE Trans. Fuzzy Systems, 2005, 13(2): 263-272.
    [100] Lo J C and Lin M L. Robust H∞nonlinear control via fuzzy static output feedback [J]. IEEE Trans. Circuits and Systems, 2003, 50(11): 1494-1502.
    [101] Kau S W, Lee H J, Yang C M, et al. Robust H∞fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties [J]. Fuzzy Sets and Systems, 2007, 158(2):135-146.
    [102] Guan X P and Chen C L. Delay-dependent guaranteed cost control or T–S fuzzy systems with time delays [J]. IEEE Trans. Fuzzy Systems, 2004, 12(2): 236-249.
    [103] Li C Q, Wang H J and Liao X F. Delay-dependent robust stability of uncertain fuzzy systems with time-varying delays [J]. Proc. IEE Control Theory and Applications., 2004, 151(4):417-421
    [104] Chen B and Liu X P. Delay-dependent robust H∞control for T-S fuzzy systems with time delay [J]. IEEE Trans. Fuzzy Systems, 2005, 13(4):544-556
    [105] Chen M, Feng G, Ma H and Chen G. Delay-dependent H∞filter design for discrete-time fuzzy systems with time-varying delays [J]. IEEE Trans. Fuzzy Systems, 2009, 17(3): 604-616.
    [106] Zhang J, Xia Y and Tao R. New results on H∞filtering for fuzzy time-delay systems [J]. IEEE Trans. Fuzzy Systems, 2009, 17(1):128-137.
    [107] Li L, Liu X D and Chai T Y. New approach on H∞control of T-S fuzzy systems with interval time-varying delay [J]. Fuzzy Stes and Systems, 2009, 160(12): 1669-1688.
    [108] Li Y M, Xu S Y, Zhang B Y, et al. Robust stabilization and H∞control for uncertain fuzzy neutral systems with mixed time delays [J]. Fuzzy Stes and Systems, 2008, 159(20): 2730-2748.
    [109] Zhang B Y, Lam J, et al. Robust stabilization of uncertain T-S fuzzy time-delay systems with exponential estimates [J]. Fuzzy Stes and Systems, 2009, 160(12): 1720-1737.
    [110] Peng C, Tian Y C and Tian E. Improved delay-dependented robust stabilization conditions of uncertain T-S fuzzy systems with time-varying delay [J]. Fuzzy Stes and Systems, 2008, 159(20): 2713-2729.
    [111] Cao Y Y and Frank P M. Robust H∞disturbance attenuation a class of uncertain discrete-time fuzzy systems [J]. IEEE Trans. Fuzzy Systems, 2000, 8(4): 406-415.
    [112] Daniel W C Ho and Niu Y. Robust fuzzy design for nonlinear uncertain stochastic systems via sliding-mode control [J]. IEEE Trans. Fuzzy Systems, 2007, 15(3): 350-358.
    [113] Tseng C S and Chen B S. Robust observer-based fuzzy control design for nonlinear discrete-time systems with persistent bounded disturbances [J]. IEEE Trans. Fuzzy Systems, 2009, 17(3):711-723.
    [114] Gao H J, Zhao Y, Lam J, et al. H∞fuzzy filtering of nonlinear systems with intermittent measurements [J]. IEEE Trans. Fuzzy Systems, 2009, 17(2):291-300.
    [115] Kim S H and Park P. Observer-based relaxed H∞control for fuzzy systems using a multiple Lyapunov function [J]. IEEE Trans. Fuzzy Systems, 2009, 17(2):476-484.
    [116] Ho W H, Tasi J T and Chou J H. Robust quadratic-optimal control of TS-Fuzzy-Model-Based dynamic systems with both elemental parametric uncertainties and norm-bounded approximation error [J]. IEEE Trans. Fuzzy Systems, 2009, 17(3):518-531.
    [117] Tanaka K, Ohtake H and Wang H O. Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach [J]. IEEE Trans. Systems, Man, and Cybernetics, 2009, 39(2):561-567.
    [118] Yoneyama J. H∞filtering for fuzzy systems with immeasurable premise variables: an uncertain system approach [J]. Fuzzy Stes and Systems, 2009, 160(12): 1738-1748.
    [119] Zhang B Y and Xu S Y. Delayed-dependent robust H∞control for uncertain discrete-time fuzzy systems with time-varying delays [J]. IEEE Trans. Fuzzy Systems, 2009, 17(4):809-823.
    [120] Zhang B Y, Zhou S S and Li T. A new approach to robust and non-fragile H∞control for uncertain fuzzy systems [J]. Information Sciences, 2007, 177(22): 5118-5133.
    [121] Wang W J and Luoch L. Stability and stabilization of fuzzy large-scale systems [J]. IEEE Trans. Fuzzy Systems, 2004, 12(3): 309-315.
    [122] Wang W J and Lin W W. Decentralized PDC for large-scale T-S fuzzy systems [J]. IEEE Trans. Fuzzy Systems, 2005, 13(6): 779-786.
    [123] Zhang T P and Feng C B. Decentralized adaptive fuzzy control for large-scale nonlinear systems [J]. Fuzzy Sets and Systems, 1997, 92(1):61-70.
    [124] Wang R J. Nonlinear decentralized state feedback controller for uncertain fuzzy time-delay interconnected systems[J]. Fuzzy Sets and Systems, 2005, 151(1):191-204.
    [125] Lendek Z, Babuska R and De Schutter B. Stability analysis and observer design for decentralized T-S fuzzy systems [C]. IEEE Inter. Conf. on Fuzzy Systems, Hong Kong 2008:631-636.
    [126] Chen C W , Chiang W L and Hisao F F. Stability analysis of T-S fuzzy models for nonlinear multiple time-delay interconnected systems [J]. Mathematics and Computers in Simulation, 2004, 66(6):523-537.
    [127] Hsiao F H, Hwang J D, Chen C W, et al. Robust stabilization of nonlinear multiple time-delay large-scale systems via decentralized fuzzy control [J]. IEEE Trans. Fuzzy Systems, 2005, 13(1): 152-163.
    [128] Tseng C S and Chen B S. H∞decentralized fuzzy model reference tracking control design on nonlinear interconnected systems [J]. IEEE Trans. Fuzzy Systems, 2001, 9(6):795-809.
    [129] Yousef H, Hamdy M, El-Madbouly E, et al. Adaptive fuzzy decentralized control for interconnected MIMO nonlinear subsystems [J]. Automatica, 2009,45(2):456-462.
    [130] Yousef H, Hamdy M and El-Madbouly E. Robust adaptive fuzzy semi-decentralized control for a class of large-scale nonlinear systems using input-output linearization concept [J]. Int. J. Robust Nonlinear Control, 2009 . Published online in Wiley Inter Science (www.interscience.wiley.com). DOI: 10.1002/rnc.1416
    [131] Boyd S, Ghaoui L El, Feron E, et al. Linear matrix inequalities in system and control theory [M]. Philadelphia, PA: SIAM, 1994, 234-345.
    [132] Nesterov Y and Nemirovskii A. Interior-point polynomial algorithms in convex programming [M]. Philadelphia, PA : SIAM, 1994, 217-248.
    [133] Tong S C, Tang J T and Wang T. Fuzzy adaptive control for multivariable nonlinear systems [J]. Fuzzy Sets and Systems. 2000, 111(2): 153-167.
    [134] Golea N, Golea N and Benmahammed K. Fuzzy model reference adaptive control [J]. IEEE Trans. Fuzzy Systems, 2002, 10(4):436-444.
    [135] Chen B S, Lee C H and Chang Y C. H∞tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach [J]. IEEE Trans. Fuzzy Systems, 1996, 4(1):32-43.
    [136] Spooner J T and Passino K M. Stable multi-input and multu-output adaptive fuzzy/neural control [J]. IEEE Trans. Fuzzy Systems. 1999, 7(3):35-45.
    [137] Li H X and Tong S C. A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems [J]. IEEE Trans. Fuzzy Systems, 2003, 11(1):24-34.
    [138] Golea N, Golea N and Benmahammed K. Stable indirect fuzzy adaptive control [J]. Fuzzy Sets and Systems, 2003, 137(3):353-366.
    [139] Glower J S and Munighan J.Designing fuzzy controllers from a variable structure standpoint [J]. IEEE Trans. Fuzzy Systems, 1997, 5(1):138-144.
    [140] Aly G M and Tayeb M A.Fuzzy logic-based variable structure controllers [J]. Journal of Microcomputer Applications, 1995, 18(2):115-125.
    [141] Suyitno A, Fujikawa J, Kobayashi H and et al.Variable-structured robust controller by fuzzy logic for servomotors [J]. IEEE Trans. Industrial Electronics, 1993, 40(1):80-88.
    [142] Yi S Y and Chung M J.Systematic design and stability analysis of a fuzzy logic controller [J]. Fuzzy Sets and Systems, 1995, 72(3):271-298.
    [143] Zhang T P and Feng C B.Fuzzy variable structure control via output feedback [J]. International Journal of Systems Science, 1997, 28(3):309-319.
    [144] Li H X, Gatland H B and Green A W.Fuzzy variable structure control [J]. IEEE Tran. Systems,Man, and Cybernetics, 1997, 27(2):306-312.
    [145] Malki H A,Li H D and Chert G R. New design and stability analysis of fuzzy proportional-derivative control systems [J]. IEEE Trans. Fuzzy Systems, 1994, 2(4):245-254.
    [146] Misir D , Malki H A and Chert G R . Design and analysis of a fuzzy proportional-integral-derivative controller [J].Fuzzy Sets and Systems. 1996, 79(3):297-314.
    [147] Ding Y S,Ying H and Shao S H.Structure and stability analysis of a Takagi-Sugeno fuzzy PI controller with application to tissue hyperthermia therapy [J]. Soft Computing, 1999, 2(4):183-190.
    [148] Ding Y S,Ying H and Shao S H. Typical Takagi-Sugeno fuzzy PI and PD fuzzy controllers: analytical structure and stability analysis [J]. Information Sciences, 2003, 151:245-262.
    [149] Abdelnour G, Cheung J Y,Chang C H, et al.Application of describing functions in the transient response analysis of a three-term fuzzy controller [J]. IEEE Trans. Systems, Man, and Cybernetics, 1993, 23(2):607-610.
    [150] Liu X W. Passivity analysis of uncertain discrete-time fuzzy systems with delays [C].The 4th Inter. Conf. of Fuzzy Systems and Knowledge Discovery,2007, Haikou,2007,2:26-29.
    [151] Ray K S,Ghosh A M and Majumder D D.L2-stabilty and relaxed design concept for SISO linear system associated with fizzy logic controller [J]. IEEE Tran. Systems, Man, and Cybernetics, 1984, 14(6): 923-939.
    [152] Ray K S and Majumder D D.Application of circle criteria for stability analysis of linear SISO and MIMO systems associated with fuzzy logic controller [J]. IEEE Tran. Systems, Man, and Cybernetics,1984, 14(2):345-349.
    [153] Mohler R R. An overview of bilinear system theory and applications [J]. IEEE Trans. Systems, Man, and Cybernetics, 1980, SMC-10:683-688.
    [154] Mohler R R. Nonlinear systems: Vol. 2 application to bilinear control [M]. Englewood Cliffs, NJ: Prentice-Hall, 1991.
    [155] Mohler R R. Bilinear control processes [M]. New York: Academic, 1973.
    [156] Elliott D L. Bilinear systems in encyclopedia of electrical engineering [M]. New York: Wiley, 1999.
    [157] Li X and Souza C E de. Delayed-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach [J]. IEEE Trans. Automatic Control, 1997, 42(8):1144-1148.
    [158] Y He, Wu M,She J H, et al. Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties [J]. IEEE Trans. Automatic Control, 2004,49(5):828-832
    [159] Ghaoui L EI, Oustry F and Rami M A. A cone complementarity linearization algorithm for static output-feedback and related problems [J]. IEEE Trans. Automatic Control, 1997, 42(8):1171-1176.
    [160] Keel L H and Bhattacharyya S P. Robust, fragile, or optimal? [J]. IEEE Trans. Automatic Control, 1997, 42(8):1098-1105.
    [161] Yang G H and Wang J L. Non-fragile H∞control for linear systems with multiplicative controller gain variations [J]. Automatica, 2001, 37 (5):727-737.
    [162] Yang G H and Che W W. Non-fragile H∞filter design for linear continuous-time systems [J]. Automatica, 2008, 44(11): 2849-2856.
    [163] Shu Z, J and Xiong J. Non-fragile exponential stability assignment of discrete-time linear systems with missing data in actuators [J]. IEEE Trans. Automatic Control, 2009, 54 (3):625-630.
    [164] Yue D and Lam J. Non-fragile guaranteed cost control for uncertain descriptor systems with time-varying state and input delays [J]. Optimal Control Applications and Methods, 2005, 26(2): 85-105.
    [165] Wang J L, Shu Z X, Chen L, et al. Non-fragile fuzzy guaranteed cost control of uncertain nonlinear discrete-time systems [C]. Proc. of the 26th Chinese Control Conference, 2007, Zhangjiajie, HuNan, 2007:361-365.
    [166] Zhai G, Ikeda M and Fujisaki Y, Decentralized H∞controller design: A matrix inequality approach using a homotopy method [J]. Automatica, 2001, 37(4): 565-573.
    [167] Hu Z. Decentralized stabilization of large scale interconnected-systems with delays [J]. IEEE Trans. Automatic Control, 1994, 39(1):180-182.
    [168] Chou C H and Cheng C C. A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems [J]. IEEE Trans. Automatic Control, 2003, 48(7):1213-1217.
    [169] Jiang Z P, Repperger D W and Hill D J. Decentralized nonlinear output-feedback stabilization with disturbance attenuation [J]. IEEE Trans. Automatic Control, 2001, 46(10):1623-1629.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700