用户名: 密码: 验证码:
时滞系统的最优减振控制及在汽车悬挂系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先综述了国内外关于时滞系统、非线性系统以及减振控制的研究方法、现状及成果;然后研究了线性时滞系统、非线性时滞系统的最优减振控制问题,给出了最优减振控制律及其存在唯一性条件和次优控制律,讨论了其物理可实现问题;并将所得到的结果利用汽车悬挂模型进行仿真实验。全文主要研究内容概括如下:
     1、提出一种模型转换的方法,将时滞系统转换为形式上无时滞的系统,简化了求解最优控制的问题;然后通过求解矩阵方程,得到带有控制记忆项的最优控制律,补偿了时滞对系统产生的影响。
     2、运用前馈控制的原理,对于已知动态特性、但未知初始条件的外部持续扰动,通过前馈-反馈控制器中所设计的前馈补偿项,消除或减弱扰动对系统的影响;通过设计状态降维观测器确保前馈控制的物理可实现性以及解决系统状态不完全可测的问题。
     3、将模型转换与逐次逼近的方法拓展到设计非线性时滞系统最优减振控制律中,得到的最优控制律由精确反馈项、前馈控制项、时滞记忆项和伴随向量序列极限形式的补偿项组成,其中,反馈和前馈增益矩阵是通过求解Riccati和Sylvester矩阵方程得到,伴随向量补偿项是通过逐次逼近的迭代求解过程而获得。同时给出了次优控制律,它是通过截取伴随向量序列的有限次迭代值而得到。
     4、将所设计的最优减振控制律用于汽车悬挂系统减振控制的仿真实验中。分别利用四分之一车、半车以及整车悬挂系统的动力学方程,建立了状态空问表示;建立了路面激励的外系统模型。通过对实际模型参数的数值仿真,验证所设计的减振控制律能够使各项性能指标达到最佳状态,确保了设计方法的有效性。
In this paper, firstly, the relative studies and results on the problem of optimal vibration control (OVC) for time-delay systems, nonlinear systems, and vibration control up to now are given in detail. Then the design of OVC law for time-delay systems and nonlinear time-delay systems are considered. The extence and uniqueness of the OVC law are studied and a suboptimal control law is given. The physical realization problem is discussed. The results are applied into simulations on suspension models to prove their effectiveness. The main contents are presented as follows.
     1. The approach named model transformation for time-delay systems is introduced. The time-delay systems are transformed into equivalent nondelayed systems in form. The optimal control law is derived by solving Riccati and Sylvester equations. And the effects produced by the delays are compensated by the control memory term.
     2. The theory of feedforward control is applied. For the disturbances with known dynamics and unknown initial conditions, the feedforward and feedback control law is designed, in which the feedforward control term compensates for the effects produce by disturbances. A reduced-order state observer is constructed to make the feedforward control physically realizable and solve the problem of unmeasured states.
     3. For the nonlinear time-delay systems, the model transformation and successive approximation approach (SAA) are extended to design the OVC law. The OVC law obtained consists of accurate linear feedback, feedforward terms, memory terms for time-delays, and a nonlinear compensation term which is the limit of the adjoint vector sequence. The former can be obtained by solving a Riccati equation and a Sylvester equation, and the latter can be got by solving the linear nonhomogeneous sequences using SAA. Using a finite-step iteration of the adjoint vector among optimal solution sequence, a suboptimal control law can be obtained.
     4. The designed control laws are applied to the numerical simulations on vibration control for suspension models. The state-space representations for a quarter-car model, a half-car model, and a full-car model are given based on their dynamical equations. The exosystems describing road vibrations are established. And the simulations results demonstrate the performances of car achive expected objectives and verify the effectiveness of desiged optimal control laws.
引文
[1]H. Ma, G.-Y. Tang, Y.-D. Zhao. Feedforward and feedback optimal control for offshore structures subjected to irregular wave forces. Ocean Engineering,2006,33 (8-9): 1105-1117.
    [2]W. Wang, G.-Y. Tang. Feedback and feedforward optimal control for offshore jacket platforms. China Ocean Engineering,2004,18 (4):515-526.
    [3]Y.S. Yang. Robust adaptive fuzzy control and its application to ship roll stabilization. International Journal of Information Science,2002,25 (2):1-18.
    [4]R.L. Wells, J.K. Schueller, J.Tlusty. Feedforward and feedback control of a flexible robotic arm. IEEE Control Systems Magazine,1990, pp.9-15.
    [5]L.L. Chung, C.C. Lin, K.H. Lu. Time-delay control of structures. Earthquake Engineering and Structural,1995,24:687-701.
    [6]J.A. Orccotoma, J. Paris, M. Perrier. Paper machine controllability:Effect of disturbances on basis weight and first-pass retention. Journal of Process Control,2001,11 (4):401-408.
    [7]J. Jose,R.J. Taylor, R. A. De Callafon, F.E. Talke. Characterization of lateral tape motion and disturbances in the servo position error signal of a linear tape drive. Tribology International,2005,38 (6-7):625-632.
    [8]A.W. Olbrot. Stabilizability, detectability, and spectrum assignment for linear autonomous systems with general time delays. IEEE Transations on Automatic Control,1978, AC-23 (5): 887-890.
    [9]Z. Artstein. Linear systems with delayed controls:a reduction. IEEE Transations on Automatic Control,1982, AC-27 (4):869-879.
    [10]Y.A. Fiagbedzi, A.E. Pearson. Feedback stabilization of linear autonomous time lag systems. IEEE Transations on Automatic Control,1986, AC-31 (9):847-855.
    [11]郑锋,程勉,高为炳.点时滞系统的反馈镇定.应用数学学报,1996,19(2):165-174.
    [12]Y.S. Moon, Park PooGyeon, W.H. Kwon. Robust stabilization of uncertain input-delayed systems using reduction method. Automatica,2001,37:307-312.
    [13]J.P. Riccard. Time-delay systems:an overview of some recent advances and open problems. Automatica,2003,39:1667-1694.
    [14]D. Yue. Robust stabilization of uncertain systems with unknown input delay. Automatica, 2004,40:331-336.
    [15]C. Abdallah, P. Dorato, J. Benitez-Read, R. Byrne. Delayed positive feedback can stabilize oscillatory systems. American Control Conference,1993, pp.3106-3107.
    [16]G.-Y. Tang. Stabilization for simple systems via delayed proportional controller. Procession of World Congress on Intelligent Control and Automation,2006, pp.349-353.
    [17]G.-Y. Tang, D.-X. Gao. Approximation design of optimal controllers for nonlinear systems with sinusoidal disturbances. Nonlinear Analysis:Theory, Methods and Applications,2007, 66 (2):403-414.
    [18]G.-Y. Tang, Y.-D. Zhao. Optimal control for nonlinear time-delay systems with persistent disturbances. Journal of Optimization Theory and Applications,2007,132 (2):307-320.
    [19]G.-Y. Tang, S.-M. Zhang. Optimal rejection with zero steady-state error to sinusoidal disturbances for time-delay. Asian Journal of Control,2006,8 (2):117-123.
    [20]G.-Y. Tang, H.-Y. Sun, Y.M. Liu. Optimal control for discrete time-delay systems with persistent disturbances. Asian Journal of Control,2006,8 (2):135-140.
    [21]G. Zames. Feedback and optimal sensitivity, mode reference transformations, multiplicative seminorms and approximate inverse. IEEE Transactions on Automatic Control,1981,26 (2): 585-601.
    [22]J.C. Dolye, K. Golver, P.P. Khargonekar, B.A. Francis. State-space solutions to standards H2 and H∞ control problems. IEEE Transactions on Automatic Control,1989,34 (8): 831-847.
    [23]J. Dolye, K. Zhou, K. Glover, B. Bodenheimer. Mixed H2 and H∞ performance objectivesⅡ:optimal control. IEEE Transactions on Automatic Control,1994,39: 1575-1587.
    [24]G. Stein, M. Athans. The LQG/LTR procedure for multivariable feedback control design. IEEE Transactions on Automatic Control,1987,32:105-114.
    [25]A. Isidori, A. Aslolfi. Disturbance attenuation and H∞ control via measurement feedback. IEEE Transactions on Automatic Control,1992,37 (9):1283-1293.
    [26]K. J. A strom, B. Wittenmark. On self-tuning regulators. Automatica,1973,9:185-199.
    [27]T. Soderstrom. Feedforward, correlated disturbances and iderntification. Automatica, 1999,35:1565-1571.
    [28]T.H. Kandil, H.K. Khalil, J. Vincent, T.L. Grimm, W. Hartung, J. Popielarski, R.C. York, S. Seshagiri. Adaptive feedforward cancellation of sinusoidal disturbances in superconducting RF cabvities. Nuclear Instruments and Methods in Physics Research A,2005,550:514-520.
    [29]B.W. Lai, C.S. Sims. Disturbance rejection and tracking using output feedfoward control. IEEE Transactions on Automatic Control,1990,35 (6):749-752.
    [30]G.-Y. Tang. Feedforward and feedback optimal control for linear systems with sinusoidal disturbances. High Technology Letters,2001,7 (4):16-19.
    [31]唐功友,刘鹏,谢楠.具有持续扰动的时滞系统前馈-反馈最优控制.控制与决策,2005,20(5):505-510.
    [32]唐功友,张宝琳.受扰非线性离散系统的前馈-反馈最优控制.控制理论与应用,2006,23(1):25-30.
    [33]L.M. Patnaik, N. Viswanadham, I.G. Sarma. Computer control algorithms for a tubular ammonia reactor. IEEE Transactions on Automatic Control,1980,25 (4):642-651.
    [34]C.M. Schar, C.H. Onder, H.P. Geering. Control of an SCR catalytic converter system for a mobile heavy-duty application. IEEE Transactions on Automatic Control,2006,14 (4): 641-653.
    [35]E. Schrijvert, J.V. Dijkt, H. Nijmeijer. Equivalence of disturbance observer structures for linear systems. Proceeding of the 39th IEEE Conference on Decision and Control,2000, 4518-4519.
    [36]A. Gibson, I. Kolmanovsky, D. Hrovat. Application of disturbance observers to automotive engine idle speed control for fuel economy improvement. Proceedings of the 2006 American Control Conference,2006,1197-1202.
    [37]J.H. She, Y. Ohyama, M. Nakano. A new approach to the estimation and rejection of disturbances in servo systems. IEEE Transactions on Automatic Control,2005,13 (3): 378-385.
    [38]唐功友,马慧,张宝琳.受扰线性离散系统的前馈-反馈最优控制.控制与决策,2005,20(3):266-270.
    [39]J. Lei, G.-Y. Tang. Disturbance attenuation for nonlinear systems with control delay via high-gain observer-based control approach. Dynamics Continuous Discrete and Impulsive Systems-Series-A-Mathematical Analysis,2006,13 (1S):245-248.
    [40]B.A. Francis, W.M. Wonham. The internal model principle of control theory. Automatica, 1976,12:457-465.
    [41]R. Marino, P. Tomei. Output regulation for linear systems via adaptive internal model. IEEE Transactions on Automatic Control,2003,48 (12):2199-2202.
    [42]R. Richard, W. George. Internal model based tracking and disturbance rejection for stable well-posed systems. Automatica,2003,39 (9):1555-1569.
    [43]S.-M. Zhang, G.-Y. Tang. Optimal tracking control with zero steady-state error for linear systems with sinusoidal disturbances. Impulsive Dynamical Systems and Applications,2006, 13 (3, Suppl.):1471-1478.
    [44]C.I. Byrnes, A. Isidori. Limit sets, zero dynamics, and internal model in the problem of nonlinear output regulation. IEEE Transactions on Automatic Control,2003,48 (10): 1712-1723.
    [45]C.I. Byrnes, A. Isidori. Nonliear internal model for output regulation. IEEE Transactions on Automatic Control,2004,49 (12):2244-2247.
    [46]F.D. Priscoli, L. Marconi, A. Isidori. Adaptive observers as nonlinear internal model. Systems and Control Letters,2006,55 (8):640-649.
    [47]J. Huang, Z. Chen. A general framework for tackling the output regulation problem. IEEE Transactions on Automatic Control,2004,49 (12):2203-2218.
    [48]P. Arcara, S. Bittanti, M. Lovera. Periodic control of helicopter rotors for attenuation of vibrations in forward flight. IEEE Transactions on Automatic Control,2000,8 (6):883-894.
    [49]M. Bodson. Performance of an adaptive algorithm for sinusoidal disturbance rejection in high noise. Automatica,2001,37 (7):1133-1140.
    [50]R. Marine, G.L. Santosuosso, P. Tomei. Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency. Automatica,2003,39 (10):1755-1761.
    [51]C.L. Lin, Y.H. Hsiao. Adaptive feedforward control for disturbance torque rejection in seeker stabilizing loop. IEEE Transactions on Automatic Control,2001,9 (1):108-121.
    [52]J. Richalet. Model predictive heurictic control:applications to industrial process. Automatica,1978,14(5):413-428.
    [53]R.K. Mahra. Model algorithmic control (MAC), basic theoretical properties. Automatica, 1982,18 (4):401-404.
    [54]D.W. Clarke, C. Mohtadi, P.S. Tuffs. Generaliced predictive control-Ⅰ:the basic algorithm. Automatica,1987,23 (2):137-148.
    [55]D.W. Clarke, C. Mohtadi, P.S. Tuffs. Generaliced predictive control-Ⅱ:extension and interpretations. Automatica,1987,23 (2):149-160.
    [56]L.O. Kothares, M. Morari. Contractive model predictive control for constrained nonlinear systems. IEEE Transactions on Automatic Control,2000,45 (6):1053-1071.
    [57]L. Chisci, J.A. Rossiter, G. Zappa. Systems with persistent disturbances:Predictive control with restricted constraints. Automatica,2001,37 (7):1019-1028.
    [58]S. Hara, Y. Yamanoto, T. Omata, M. Nakano. Repetitive control system:a new type servo system for periodic exogenous signals. IEEE Transactions on Automatic Control,1988,33 (7):659-668.
    [59]L. Guo, M. Corporation. A new disturbance rejection scheme for hard disk drive control. Proceedings of the 1998 American Control Conference, June, pp.1553-1557.
    [60]T.J. Manayathara, T.C. Tsao, J. Bentsman. Rejection of unknown periodic load disturbances in continuous steel casting process using learning repetitive control approach. IEEE Transactions on Automatic Control,1996,4 (3):259-265.
    [61]H. Fujimoto, Y. Hori. Vibration suppression and optimal repetitive disturbance rejection control in semi-Nyquist frequency region using multirate sampling control. Proceeding of the 39th IEEE Conference on Decisiong and Control, Dec.,3745-3750.
    [62]邵诚,高福荣,杨毅.最优迭代学习控制的鲁棒稳定性及其在注塑机控制中的应用.自动化学报,2003,29(1):72-79.
    [63]S. Mascolo. Smith's principle for congestion control in high-speed data networks. IEEE Transactions on Automatic Control,2000,45 (2):358-364.
    [64]唐功友.时滞系统的降维状态预测观测器及预测控制器设计.控制理论与应用,2004,21(2):295-298.
    [65]M. R. Matausek and A. D. Micic. On the modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control,1996,41 (8):1199-1203.
    [66]M. R. Matausek and A. D. Micic. A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control,1999,44 (8): 1603-1606.
    [67]M.R. Stojic, M.S. Matijevic, L.S. Draganovic. A robust Smith predictor modified by internal models for integrating process with dead time. IEEE Transactions on Automatic Control,2001,46 (8):1293-1298.
    [68]E.B. Dahlin. Designing and tuning digital controllers. Instruments and Control Systems, 1968,2 (6):77-83.
    [69]E.G. Vogel, T.F. Edgar. An adaptive pole placement controller for chemical processes and variable dead time. Computers and Chemical Engineering,1988,12 (1):15-26.
    [70]宗晓萍,冯贺平.基于神经网络的时滞预测控制.控制理论与应用,2005,24(12):6-8.
    [71]Y. Liu, S.S. Hu. Robust H∞ control for multiple time-delay uncertain nonlinear system based on fuzzy model and neural network. ACTA Automatica Sinica,2003,29 (6):859-866.
    [72]J. Vieira, A. Mota. Smith predictor based neural fuzzy controller applied in a water gas heater that presents a large time-delay and load disturbances. Proceedings of IEEE Conference Control Applications,2003,362-367.
    [73]L.L. Chung, A.M. Reinhorn, T.T. Soong. Experiments on active control of seismic structures. Journa of Engineering Mechanics,1989,115:1609-1627.
    [74]Q.J. Kai, S. Kuand. Time delay compensation in active closed-loop structural control. Mechanics Research Communications,1995,22(2):129-135.
    [75]S. McGreevy, T.T. Soong, A.M. Reinhorn. An experimental study of time delay compensation in active structural control. Proceeding of the 6th International Model Analysis Conference Society for Experimental Mechanics,1988,733-739.
    [76]嵇春艳,李华军.随机波浪作用下海洋平台主动控制的时滞补偿研究.海洋工程,2004,22(4):95-101.
    [77]D. Yue, Q.-L. Han, J. Lam. Network-based robust H∞ control of systems with uncertainty. Automatica,2005,41:999-1007.
    [78]G Tadmor. Robust control in the gap:a state-space solution in the presence of a single input delay. IEEE Transactions on Automatic Control,1997,42 (9):1330-1335.
    [79]Y.Y. Cao, L. James. Robust control of uncertain Markovian Jump systems with time-delay. IEEE Transactions on Automatic Control,2000,45 (1):77-83.
    [80]唐功友,孙慧影.离散时滞系统的近似最优扰动抑制.控制与决策,21(4):440-448.
    [81]张宝琳,唐功友,郑师,孙亮.含正弦扰动的离散时滞系统的次优减振控制.控制与决策,2006,21(1):19-33.
    [82]G.-Y. Tang. Suboptimal control for nonlinear systems:a successibe approximation approach. Systems and Control Letters,2005,54 (5):429-434.
    [83]唐功友,高洪伟,董瑞.带阶跃扰动的线性时滞系统的最优无静差控制.控制与决策,2006,21(11).
    [84]H.-W. Gao, G.-Y. Tang, C.Li. Optimal disturbance rejection with zero steady-state error for time-delay. IEEE International Conference on Control and Automation,2006,1:511-515.
    [85]J. Lei, G.-Y. Tang. Disturbance rejection for time-delay systems via internal model. IEEE International Conference on Control and Automation,2007,2268-2273.
    [86]E. Elisante, GP. Rangaiah, S. Palanki. Robust controller synthesis for multivariable nonlinear systems with unmeasured disturbances. Chemical Engineering Science,2004,59 (5):977-986.
    [87]W. Su, L. Xie, C.E. de Souza. Global robust disturbance attenuation and almost disturbance decoupling for uncertain cascaded nonlinear systems. Automatica,1999,35 (4):697-707.
    [88]R.W.H. Sargent. Optimal control. Journal of Computational and Applied Mathematics, 2000,124 (1-2):361-371.
    [89]S.P. Banks, K.J. Mhana. Optimal control and stabilization for nonlinear systems. IMA Journal of Mathematical Control and Information,1992,9 (2):179-196.
    [90]V. Manousiouthakis, D.J. Chmielewski. On constrained infinite-time nonlinear optimal control. Chemical Engineering Science,2002,57 (1):105-114.
    [91]H. Ito, R.A. Freeman. Uniting local and global controllers for uncertain nonlinear systems: beyond global inverse optimality. Systems and Control Letters,2002,45 (1):59-79.
    [92]M.D.S. Aliyu. A transformation approach for solving the Hamilton-Jacobi-Bellman equation in H2 deterministic and stochastic optimal control of affine nonlinear systems. Automatica,2003,39 (7):1243-1249.
    [93]B. Chanane. Optimal control of nonlinear systems:a recursive approach. Computers & Mathematics with Applications,1998,35 (3):29-33.
    [94]R.W. Beard, G.N. Saridis, J.T. Wen. Galerkin approximation of the generalized Hamilton-Jacobi-Bellman equation. Automatica,1997,33 (12):2159-2177.
    [95]T. Cimen, S. P. Banks. Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria. Systems & Control Letters,2004,53 (5):327-346.
    [96]T. Cimen, S. P. Banks. Nonlinear optimal tracking control with application to super-tankers for autopilot design. Automatica,2004,40 (11):1845-1863.
    [97]K. Balachandran. Existence of optimal control for nonlinear multiple delay system. International Journal of Control,1989,49 (3):769-775.
    [98]V.B. Kolmanvskii, L.E. Shaikhet. Control of systems with aftereffect. Transaction of Mathematical Monographs, American Mathematical Society, Providence, RI,1996,157.
    [99]D. Hrovat. Survey of advanced suspension developments and related optimal control applications. Automatica,1997,33 (10):1781-1817.
    [100]D.A. Wilson, R.S. Sharp, S.A. Hassan. The application of linear optimal control theory to the design of active automotive suspensions. Vehicle System Dynamics,1986,15 (2): 105-118.
    [101]E.M. Elbeheiry, D.C. Karnopp. Optimal control of vehicle random vibration with constrained suspension deflection. Journal of Sound and Vibration,1996,189 (5):547-564.
    [102]E.K. Bender. Optimum linear preview control with application to vehicle suspension. Journal of Basic Engineering Series,1968,100:213-221.
    [103]M. Tomizuka. Optimum linear preview control with application to vehicle suspension-revisited. ASME Journal of Dynamic Systems, Measurement and Control,1976, 98 (3):309-315.
    [104]J. Marzbanrad, G. Ahmadi, H. Zohoor, Y. Hojjat. Stochastic optimal preview control of a vehicle suspension. Journal of Sound and Vibration,2004,275 (3-5):973-990.
    [105]H. Du, N. Zhang. H∞ control of active vehicle suspensions with actuator time delay. Journal of Sound and Vibration,2007,301(1-2):236-252.
    [106]L. Zuo, S.A. Nayfeh. Structured H2 optimization of vehicle suspensions based on multi-wheel models. Vehicle Systems Dynamics,2003,40 (5):351-371.
    [107]C. Papageorgiou, M.C. Smith. Positive real synthesis using matrix inequalities for mechanical networks:application to vehicle suspension. IEEE Transactions on Control Systems Technology,2006,14 (3):423-435.
    [108]X. Zhang, H. Su, H.-H. Chen. Cluster-based multi-channel communications protocols in vehicle ad hoc networks. IEEE Wireless Communications,2006,13 (5):44-51.
    [109]M.D. Dikaiakos, A. Florides, T. Nadeem, L. Iftode. Location-aware services over vehicular ad-hoc networks using car-to-car communication. IEEE Journal on Selected Areas in Communications,2007,25 (8):1590-1602.
    [110]R. Miucic, S.M. Mahmud. Wireless reprogramming of vehicle electronic control units. Proceedings of 5th IEEE Consumer Communications and Networking Conference,2008,5 (1):754-755.
    [111]C. Kim, P.I. Ro. A sliding mode controller for vehicle active suspension systems with non-linearities. Journal of Automobile Engineering, Proceedings Part D,1998,212 (D2): 79-92.
    [112]S. Narayanan, G.V. Raju. Active control of non-stationary response of vehicles with nonlinear suspensions. Vehicle System Dynamics,1992,21 (1):73-88.
    [113]S. Narayanan, S. Senthil. Stochastic optimal active control of a 2-DOF quarter car model with nonlinear passive suspension elements. Journal of Sound and Vibration,1998,211 (3): 495-506.
    [114]T.D. Gillespie. Fundamentals of vehicle dynamics. Beijing:Tsinghua University Press, in Chinese,2006.
    [115]G. Litak, M. Borowiec, I.F. Michael, K. Szabelski. Chaotic vibration of a quarter-car model excited by the road surface profile. Communications in Nonlinear Science and Numerical Simulation,2008,13 (7):1373-1383.
    [116]H.D. Tuan, E. Ono, P. Apkarian, S. Hosoe. Nonlinear H∞ control for an integrated suspension system via parameterized linear matrix inequality characterizations. IEEE Transactions on Control System Technology,2001,9 (1):175-185.
    [117]N. Karlsson, M. Dahleh, D. Hrovat. Nonlinear H∞ control of active suspensions. Proceedings of American Control Conference, Arlington, USA,2001,5:3329-3334.
    [118]Y.C. Chen, A.C. Huang. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings. Journal of Sound and Vibration,2005,282 (3-5): 1119-1135.
    [119]A.C. Huang, Y.C. Chen. Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties. IEEE Transactions on Control Systems Technology,2004,12 (5): 770-775.
    [120]A. Alleyne, K. Hedrick. Nonlinear adaptive control of active suspensions. IEEE Transactions on Control Systems Technology,1995,3 (1):94-101.
    [121]G. Litak, M. Borowiec, I.F. Michael, K. Szabelski. Chaotic vibration of a quarter-car model excited by the road surface profile. Communications in Nonlinear Science and Numerical Simulation,2008,13 (7):1373-1383.
    [122]A.Z. Manitius, A.W. Olbrot. Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control,1979, AC-24 (4):541-552.
    [123]J. Lei, G.-Y. Tang. Optimal vibration control for active suspension sampled-data systems with actuator and sensor delays. Proceedings of 10th International Conference on Control, Automation, Robotics and Vision,2008,988-993.
    [124]J. Lei, G.-Y. Tang. Optimal vibration control for active suspension systems with actuator and sensor delays. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics,2008,2828-2833.
    [125]Y.A. Fiagbedzi, A.E. Pearson. Feedback stabilization of linear autonomous time lag systems. IEEE Transactions on Automatic Control,1986, AC-31(9):847-855.
    [126]S. Mondie, W. Michiels. Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Transactions on Automatic Control,2003,48(12):2207-2212.
    [127]H.M. Sendaula. Optimal control of linear systems with time-varying lags. IEEE Transactions on Automatic Control,1972,17(5):741-742.
    [128]GL. Slater, W.R. Wells. On the reduction of optimal time-delay systems to ordinary ones. IEEE Transactions on Automatic Control,1972,17(1):154-155.
    [129]P. Lancaster, L. Lerer. Tismenetsky M. Factored forms for solutions of AX-XB=C and X-AXB=C in companion matrices. Linear Algebra and Its Applications,1984,62: 19-49.
    [130]Y.C. Lin, H.K. Khalil. Two-scale design of active suspension control using acceleration feedback. Proceedings of Conference on Control Applications,1992,884-889.
    [131]L. Mianzo, H.L. Peng. H∞ preview control for a durability simulator. American Automation Control Council. Proceedings of American Control Conference. Albuquerque, New Mexico:IEEE Press,1997,699-703.
    [132]N. Jalili, E. Esmailzadeh, "Optimum active vehicle suspensions with actuator time delay," Journal of Dynamic Systems, Measurement, and Control, vol.123, pp.1447-1455,2001.
    [133]J.H. Park, Y.S. Kim. Decentralized variable structure control for active suspensions based on a full-car model. Proceedings of IEEE International Conference on Control Applications, 1998,383-387.
    [134]K.M. Sujit. The matrix equation AXB+CXD=E. SIAM Journal on Applied Mathematics, 1977,32:823-825.
    [135]解学书.最优控制律论与应用.北京:清华大学出版社,1987.
    [136]J. Marzbanrad, G. Ahmadi, H. Zohoor, Y. Hojjat. Stochastic optimal preview control of a vehicle suspension. Journal of Sound and Vibration,2004,275:973-990.
    [137]A.G. Thompson, B.R. Davis. Computation of the rms state variables and control forces in half-car model with preview active suspension using spectral decomposition methods. Journal of Sound and Vibration,2005,285:571-583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700