用户名: 密码: 验证码:
基于纳米材料和功能核酸的光学传感新方法用于酶活性检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,生物传感器因其灵敏度高、选择性好、分析时间短、检测成本低等特点,极大地推动了医学临床诊断和药物筛选的发展。光学检测技术具有操作简便、无需分离、可以实现原位和实时活体测定等优点,在建立生物传感器方面正被越来越多的研究者所关注。此外,功能核酸和纳米材料的发展为构建用于各种分析对象的生物传感技术提供了全新的设计思路和平台。本论文基于当前一些重要酶活性检测及其相关药物筛选中的研究热点,重点探讨如何提高检测灵敏度、降低检测成本等问题。将纳米材料、功能核酸的优势相结合,发展了一些光学检测新技术用于碱性磷酸酯酶、多聚核苷激酶、腺苷脱氨酶、碱基切除修复酶等酶活性及其抑制剂的测定。和传统方法相比,本论文所建立的检测方法灵敏度高、操作简便、分析成本低廉。同时还初步验证了这些方法的实用性。具体内容如下:
     碱性磷酸酯酶(ALP)的测定在相关疾病的临床诊断中具有重要作用。在第2章中,基于焦磷酸(PPi)对荧光铜纳米粒子合成的抑制能力,以PPi为底物,建立了一种可在生理条件下检测ALP的无标记信号增强型方法。PPi可以和Cu2+之间形成很强的络合物,该络合作用将妨碍CuNPs的合成,造成荧光信号的降低。利用ALP对PPi的水解,使得PPi与Cu2+之间的络合不能发生。在dsDNA模板的存在下,通过抗坏血酸对Cu2+的还原,CuNPs可以被有效地合成,从而荧光恢复,并且其恢复能力和ALP浓度直接相关。该方法不需要任何标记或者复杂的设计,操作简便,分析成本低。并且该方法具有较高的灵敏度,其检测下限达到0.1nM。此外,信号增强模式也为ALP的测定提供了较好的选择性。同时,还利用所建立的方法研究了磷酸根对ALP酶活性的抑制情况。在复杂环境中,该检测方法同样表现出了良好的分析性能。血清样品中的回收率实验结果令人满意。
     多聚核苷激酶(PNK)对DNA的磷酸化修饰过程在DNA损伤修复、复制和重组中起着非常重要的作用。第3章中,利用双链DNA模板法制备的荧光铜纳米粒子(CuNPs)为信号指示剂,开发了一种无标记荧光方法用于PNK酶活性的测定。实验中,利用一段双链DNA同时作为PNK的底物和CuNPs合成的模板。当PNK作用之后,双链DNA模板将被磷酸化,导致双链DNA立即被λ核酸外切酶降解。由于缺少了CuNPs合成所需的双链DNA模板,该降解过程将抑制CuNPs的形成,造成荧光信号的下降。该测定方法不需要对底物DNA进行任何化学修饰或者复杂的序列设计,从而使整个实验操作简便,成本低廉。并且该方法选择性好,灵敏度高,其检测下限为0.49U/mL。同时该检测方法在复杂体系中也具有较好的分析性能。
     腺苷脱氨酶(ADA)活性的测定及其抑制剂的筛选在临床诊断中具有重要意义。第4章中,以腺苷脱氨酶为模型分析物,将氧化石墨烯对不同构象核酸吸附能力的差异和核酸适配体对目标识别的高特异性相结合,并利用SYBR green I作为荧光指示剂,构建了一种基于氧化石墨烯-适配体平台的无标记高信背比荧光生物检测方法。两条劈开的适配体片段共同对腺苷的识别形成复合结构,荧光染料将嵌入适配体/腺苷复合物的双链区域。并且复合结构的形成也妨碍适配体片段在石墨烯表面的吸附,从而溶液具有较强的荧光信号。而腺苷脱氨酶对腺苷去氨基后,生成的次黄苷不能被适配体识别,适配体和荧光染料将吸附在石墨烯表面,导致荧光淬灭。该方法无需对适配体探针进行化学修饰,易于合成制备,降低了分析成本。同时,氧化石墨烯的超强荧光淬灭能力也为该方法提供了较高的灵敏度,其检测下限为0.025U/mL。该方法为基于适配体的其他生物分子的检测提供了一个参考手段。第5章中,基于酶调控纳米金团聚策略,提出了一种无标记可视化分析方法用于腺苷脱氨酶及其抑制剂的便捷灵敏测定。该方法主要依赖于腺嘌呤碱基环外氨基与纳米金之间的强烈作用,从而置换出纳米金表面弱结合的柠檬酸根离子,降低了纳米金稳定性,最终造成纳米金的团聚。而腺苷脱氨酶对腺苷的脱氨基反应将抑制这个腺苷依赖的纳米金团聚现象。该方法无需其他辅助酶、核酸适配体或者化学修饰,使得整个测定过程简便、低成本,分析速度快,并实现了腺苷脱氨酶均相可视化检测。该方法动态范围宽,灵敏度高,其线性检测范围为0-15U/L,检测下限为0.8827U/L。此外,该方法还实现了腺苷脱氨酶抑制剂的可视化筛选测定。
     碱基切除修复是DNA损伤修复过程中的重要途径之一,其修复酶活性和多种疾病相关。在第6章中,以尿嘧啶-DNA糖基化酶(UDG)为模型分析物,基于目标激活自催化DNA酶信号放大策略,建立了两种新型荧光分析方法用于碱基切除修复酶活性的测定。其基本思路是利用UDG的作用激活DNA酶,在辅助因子的存在下催化循环切割信标结构的底物探针,对目标的测定信号进行放大。首先,基于UDG作用将降低其底物的熔链温度这一特性,利用一条双链DNA底物来构建目标激活自催化DNA酶策略。UDG的作用将使得DNA酶从双链底物中释放出去,从而激活DNA酶对信标底物的催化循环切割。该方法具有较宽的动态范围和较高的灵敏度,其线性检测范围为0-1.0U/mL,检测下限为0.023U/mL。并且,该方法也被成功用于UDG的抑制剂测定。其次,将滚环放大(RCA)反应引入检测体系构建RCA辅助的自催化DNA酶策略。该方法以环状探针为UDG底物,通过核酸内切酶IV对UDG作用后产生的脱碱基位点进行切割。切割生成的核酸片段将作为引物引发RCA反应,产生大量的重复的DNA酶序列。每个新生成的DNA酶均可以对其信标底物进行循环切割。通过双重信号放大,该方法检测灵敏度显著提高,其检测下限达到0.002U/mL。
Recently, biosensors have greatly promoted the development of clinical diagnosisand drug screening, because of their high sensitivity, good selectivity, short analysistime and low-cost. Optical detection technology has attracted a great attention in theconstruction of biosensors, due to many advantages such as easy operation, noseparation and the detection can be implemented in situ, real-time and in vivo.Moreover, the development of functional nucleic acids and nanomaterials providemore novel strategies and platforms for the design of biosensing technology. Thisdoctoral thesis concerns on the research hotspot in the enzyme activity detection anddrug screening, focusing on how to improve the sensitivity, reduce the cost and so on.Combination of the advantages of nanomaterials and functional nucleic acids, severaloptical detection methods have been developed for the detection of alkalinephosphatase, polynucleotide kinase,adenosine deaminase, base excision repair enzymeand their inhibitors. Compared with the traditional methods, the proposed detectionmethods are sensitive, convenient and cost-effective. The practicability of thesedeveloped methods was also verified. The detailed contents are described as follows.
     Alkaline phosphatase (ALP) plays an important role in the clinical diagnosis ofrelated diseases. In chapter2, based on the inhibition of the synthesis of dsDNA-templated fluorescent copper nanoparticles (CuNPs) by pyrophosphate (PPi), a novellabel free turn-on fluorescent strategy for detecting ALP under physiologicalconditions has been developed using PPi substrate. This method relies on the stronginteraction between PPi and Cu2+, which would hamper the effective formation offluorescent CuNPs, leading to low fluorescence intensity. The ALP-catalyzed PPihydrolysis would disable the complexation between Cu2+and PPi, facilitating theformation of fluorescent CuNPs through the reduction by ascorbate in the presence ofdsDNA templates. Thus the fluorescence intensity was recovered and the fluorescenceenhancement was related to the concentration of ALP. This method is cost-effectiveand convenient without any labels or complicated operations. The present strategyexhibits a high sensitivity with a detection limit of0.1nM. The turn-on mode alsoprovides a high selectivity for ALP assay. Additionally, the inhibition effect ofphosphate on ALP activity was also studied. It also exhibited a good assayperformance in complex samples and satisfactory recoveries in diluted serum samples were obtained.
     Phosphorylation of DNA by polynucleotide kinase (PNK) is important in DNAdamage repair, replication and recombination. The evaluation of PNK activity hasreceived an increasing attention due to the significance of PNK. In chapter3, wepresented a label free fluorescent method for PNK activity assay using double strandDNA (dsDNA)-templated copper nanoparticles (CuNPs) as a fluorescent indicator. AdsDNA probe was introduced to act as both enzyme’s substrate and template forCuNPs formation. Upon the PNK reaction, the dsDNA template was phosphorylatedand then digested by λ exonuclease immediately, prohibiting the formation offluorescent CuNPs due to the lack of dsDNA template. This homogeneous PNKactivity assay does not require any other additional modifications of DNA substrate orcomplex design, making the proposed strategy simple, cost-effective and highthroughput. The proposed strategy is selective and sensitive with a detection limit of0.49U/mL. It also worked well in complex biological samples.
     The evaluation of adenosine deaminase (ADA) activity and its inhibitors takes animportant part in clinical diagnostics and drug screening. In chapter4, combination ofthe high specificity of aptamer and different adsorption ability of graphene oxide fornucleic acids with different conformation, using SYBR green I as an indicator andadenosine deaminase (ADA) as a model analyte, a label free fluorescent biologicaldetection method was designed based on the graphene oxide–aptamer platform. Twoparts of split aptamer can specifically recognize adenosine together, SYBR green Icould then stained in the duplex region of the aptamer/adenosine complex. Theformation of aptamer/adenosine complex made the aptamer to be released form thesurface of graphene oxide, resulting in a high fluorescence signal. After thedeamination of adenosine by ADA, the aptamer could not recognize the productinosine, and the aptamer and fluorescence dye were adsorbed on the surface ofgraphene oxide, leading to the fluorescence quenching. This method did not requirechemical modification on aptamer probes, making the analysis costless. Additionally, ahigher sensitivity was also obtained due to the strong fluorescence quenching ability. Italso provided a usefull technology for the detection other biomolecules usingaptamer-based methods. In chapter5, a novel label free colorimetric assay has beendeveloped for convenient and sensitive detection of ADA activity and its inhibitorbased on the enzyme-regulated aggregation of unmodified gold nanoparticles (AuNPs).This strategy relied on the strong interaction between exocyclic amino group ofadenosine and AuNPs which could diminish the stability of citrate-capped AuNPs by the displacement of citrate ions from the AuNPs surface, resulting in the aggregation.The deamination of adenosine by ADA prohibited the adenosine-dependentaggregation. This enzyme-regulated-aggregation strategy allowed a visual andhomogeneous assay of ADA activity without any other coupling enzymes, aptamers oradditional modifications, making the proposed strategy simple, cost-effective and highthroughput. The present strategy is highly selective and sensitive for ADA assay with adetection limit of0.8227U/L. Moreover, the evaluation of inhibition for ADA activityusing this colorimetric method was also successfully demonstrated.
     The base excision repair (BER) pathway plays a key role in resisting DNA lesions,and the activity of BER enzyme is connected to several diseases. In chapter6, usinguracil-DNA glycosylase (UDG) as a model analyte, two novel fluorescent methodswere developed for the detection of the BER enzyme based on the autocatalyticDNAzyme amplification strategy. UDG reaction could activate the DNAzyme whichcatalyzed the cycling cleavage of a molecular beacon (MB) structured probe in thepresence of cofactor, resulting in signal amplification in the detection of UDG activity.First, based on the decrease of melting temperature of substrate upon UDG reaction, adouble-stranded substrate was used to demonstrate this target-activated autocatalyticDNAzyme amplification strategy. DNAzyme was released from the double-strandedsubstrate after the treatment by UDG. The released DNAzyme could then catalyze thecycling cleavage of MB substrate. The present method exhibits a wide dynamic rangeand a high sensitivity, with a linear detection range from0to1.0U/mL and a detectionlimit of0.023U/mL. Additionally, this method could also be applied to evaluate theinhibition of UDG. Second, a rolling circle amplification (RCA) process wasincorporated into the DNAzyme strategy. This RCA-assisted CAMB strategy relied onthe digest of abasic site generated by UDG treatment using endonuclease IV. Thiscleavage produced a new primer probe with3′hydroxyl end that could initiate a linearRCA reaction. The RCA product had a tandem repeated sequence of DNAzyme, andeach DNAzyme sequence could cyclically cleave the MB probe and generated anincreased fluorescence signal. A remarkable enhancement of sensitivity (limit ofdetection=0.002U/mL) is obtained due to the coupled signal amplification cascade.
引文
[1]许春向.生物传感器及其应用.北京:科学出版社,1993,1-12
    [2]蒋中华,马立人.化学传感器和生物传感器的研究进展.军事医学科学院院刊,1995,19(4):306-309
    [3]乔晓艳,贾莲凤.新型生物传感器在生物医学工程中的应用.传感器技术,2002,21(10):62–64
    [4]王锋,樊先平,王民权.光学生物传感器的研究进展.材料导报,2004,18(7):1-4
    [5] Fan X, White I M, Shopova S I, et al. Sensitive optical biosensors for unlabeledtargets: A review. Analytica Chimica Acta,2008,620(1-2):8-26
    [6] Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chemical Reviews,2009,109(5):1948-1998
    [7] Biju V, Itoh T, Anas A, et al. Semiconductor quantum dots and metalnanoparticles: syntheses, optical properties, and biological applications.Analytical and Bioanalytical Chemistry,2008,391(7):2469-2495
    [8] Zeng S, Yong K, Roy I, et al. A review on functionalized gold nanoparticles forbiosensing applications. Plasmonics,2001,6(3):491-506
    [9] Li M, Sato Y, Nishizawa S, et al.2-aminopurine-modifiedabasic-site-containing duplex DNA for highly selective detection oftheophylline. Journal of the American Chemical Society,2009,131(7):2448-2449
    [10] Cheng Y, Zhang X, Li Z, et al. Highly sensitive determination of microRNAusing target-primed and branched rolling-circle amplification. AngewandteChemie International Edition,2009,48(18):3268-3272
    [11]张志毅,周涛,巩伟丽等.荧光共振能量转移技术在生命科学中的应用及研究进展.电子显微学报,2007,26(6):620-624
    [12] Wang D, Zhu X, Zhao D, et al. Single-step turn-on homogeneous fluorescentimmunosensor for rapid, sensitive, and selective detection of proteins.Chemistry–An Asian Journal,2012,7(7):1546-1549
    [13] Ranasinghe R T, Brown T. Fluorescence based strategies for genetic analysis.Chemical Communications,2005,41(44):5487-5502
    [14] Kaman W E, Hulst A G, van Alphen P T W, et al. Peptide-based fluorescenceresonance energy transfer protease substrates for the detection and diagnosis ofbacillus species. Analytical Chemistry,2011,83(7):2511-2517
    [15] Whitney M, Savariar E N, Friedman B, et al. Ratiometric activatablecell-penetrating peptides provide rapid in vivo readout of thrombin activation.Angewandte Chemie International Edition,2013,52(1):325-330
    [16] Gregan B, Schaefer M, Rosenthal W, et al. Fluorescence resonance energytransfer analysis reveals the existence of endothelin-A and endothelin-Breceptor homodimers. Journal of Cardiovascular Pharmacology,2004,44:S30-S33
    [17] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce uponhybridization. Nature Biotechnology,1996,14(3):303-308
    [18] Marras S A E, Tyagi S, Kramer F R. Real-time assays with molecular beaconsand other fluorescent nucleic acid hybridization probes. Clinica Chimica Acta,2006,363(1-2):48-60
    [19] Leone G, van Schijndel H, van Gemen B, et al. Molecular beacon probescombined with amplification by NASBA enable homogeneous, real-timedetection of RNA. Nucleic Acids Research,1998,26(9):2150-2155
    [20] Kolpashchikov D M. A binary DNA probe for highly specific nucleic acidrecognition. Journal of the American Chemical Society,2006,128(32):10625-10628
    [21] Xiao Y, Plakos K J I, Lou X, et al. Fluorescence detection of single-nucleotidepolymorphisms with a single, self-complementary, triple-stem DNA probe.Angewandte Chemie International Edition,2009,48(24):4354-4358
    [22] Stojanovic M N, Prada P, Landry D W. Aptamer-based folding fluorescentsensor for cocaine. Journal of the American Chemical Society,2001,123(21):4928-4931
    [23]沈键,林德球,徐杰.生命科学,时间分辨荧光免疫分析技术研究现状及进展.生命科学,2004,16(1):55-59
    [24] Yuan J, Matsumoto K. A new tetradentate β-diketonate-europium chelate thatcan be covalently bound to proteins for time-resolved fluoroimmunoassay.Analytical Chemistry,1998,70(3):596-601
    [25] Huang D, Niu C, Zeng G, et al. Time-resolved fluorescence biosensor foradenosine detection based on home-made europium complexes. Biosensors andBioelectronics,2011,29(1):178-183
    [26] Smith D S, Eremin S A. Fluorescence polarization immunoassays and relatedmethods for simple, high-throughput screening of small molecules. Analyticaland Bioanalytical Chemistry,2008,391(5):1499-1507
    [27] Tian J, Zhou L, Zhao Y, et al. Multiplexed detection of tumor markers withmulticolor quantum dots based on fluorescence polarization immunoassay.Talanta,2012,92(1):72-77
    [28] Tachi T, Kaji N, Tokeshi M, et al. Microchip-based homogeneousimmunoassay using fluorescence polarization spectroscopy. Lab on Chip,2009,9(7):966-971
    [29] Chen X, Levine L, Kwok P-Y. Fluorescence polarization in homogeneousnucleic acid analysis. Genome Research,1999,9(5):492-498
    [30] Simeonov A, Nikiforov T T. Single nucleotide polymorphism genotyping usingshort, fluorescently labeled locked nucleic acid (LNA) probes and fluorescencepolarization detection. Nucleic Acids Research,2002,30(17): e91
    [31] Sanchez F G, Navas A, Alonso F. et al. Polarization fluoroimmunoassay of theherbicide dichlorprop. Journal of Agricultural and Food Chemistry,1993,41(11):2215-2219
    [32] Cruz-Aguado J A, Penner G. Fluorescence polarization based displacementassay for the determination of small molecules with aptamers. AnalyticalChemistry,2008,80(22):8853-8855
    [33] Ye B, Yin B. Highly sensitive detection of mercury(II) ions by fluorescencepolarization enhanced by gold nanoparticles. Angewandte Chemie InternationalEdition,2008,47(44):8386-8389
    [34] Zhang M, Guan Y, Ye B. Ultrasensitive fluorescence polarization DNAdetection by target assisted exonuclease III-catalyzed signal amplification.Chemical Communications2011,47(12):3478-3480
    [35] Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival:Modifications to the tetrazolium dye procedure giving improved sensitivity andreliability. Journal of Immunological Methods,1986,89(22):271-277
    [36] Zocher F, Enzelberger M M, Bornscheuer U T, et al. A colorimetric assaysuitable for screening epoxide hydrolase activity. Analytica Chimica Acta,1999,391(3):345-351
    [37] Suksai C, Tuntulani T. Chromogenic anion sensors. Chemical Society Reviews,2003,32(4):192-202
    [38] Pena-Pereira F, Lavilla I, Bendicho C. Colorimetric assay for determination oftrimethylamine-nitrogen (TMA-N) in fish by combining headspace-single-dropmicroextraction and microvolume UV–vis spectrophotomet. Food Chemistry,2010,119(1):402-407
    [39] Herzong V, Fahimi H D. A new sensitive colorimetric assay for peroxidaseusing3,3′-diaminobenzidine as hydrogen donor. Analytical Biochemistry,1973,55(2):554-562
    [40] Liu M, Jia C, Jin Q, et al. Novel colorimetric enzyme immunoassay for thedetection of carcinoembryonic antigen. Talanta,2010,81(4-5):1625-1629
    [41] Song Y, Wang X, Zhao C, et al. Label-free colorimetric detection of singlenucleotide polymorphism by using single-walled carbon nanotube intrinsicperoxidase-like activity. Chemistry-A European Journal,2010,16(12):3617-3621
    [42] Qu F, Li T, Yang M. Colorimetric platform for visual detection of cancerbiomarker based on intrinsic peroxidase activity of graphene oxide. Biosensorsand Bioelectronics,2011,26(9):3927-3931
    [43] Zhang Y, Tian J, Liu S, et al. Novel application of CoFe layered doublehydroxide nanoplates for colorimetric detection of H2O2and glucose. Analyst,2012,137(6):1325-1328
    [44] Park K S, Kim M I, Cho D, et al. Label-free colorimetric detection of nucleicacids based on target-induced shielding against the peroxidase-mimickingactivity of magnetic nanoparticles. Small,2011,7(11):1521-1525
    [45] Deng M, Zhang D, Zhou Y, et al. Highly effective colorimetric and visualdetection of nucleic acids using an asymmetrically split peroxidase dnazyme.Journal of the American Chemical Society,2008,130(39):13095-13102
    [46] Lee K, Povlich L K, Kim J. Recent advances in fluorescent and colorimetricconjugated polymer-based biosensors. Analyst,2010,135(9):2179-2189
    [47] Jiang Y, Zhao H, Lin Y, et al. Colorimetric detection of glucose in rat brainusing gold nanoparticles. Angewandte Chemie International Edition,2010,49(28):4800-4804
    [48] Xia F, Zuo X, Yang R, et al. Colorimetric detection of DNA, small molecules,proteins, and ions using unmodified gold nanoparticles and conjugatedpolyelectrolytes. Proceedings of the National Academy of Sciences of theUnited States of America,2010,107(24):10837-10841
    [49] Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticlesinduced by non-cross-linking DNA hybridization. Journal of the AmericanChemical Society,2003,125(27):8102-8103
    [50] Tang Y, Feng F, He F, et al. Direct visualization of enzymatic cleavage andoxidative damage by hydroxyl radicals of single-stranded DNA with a cationicpolythiophene derivative. Journal of the American Chemical Society,2006,128(46):14972-14976
    [51] Song S, Qin Y, He Y, et al. Functional nanoprobes for ultrasensitive detectionof biomolecules. Chemical Society Reviews,2010,39(11):4234-4243
    [52] Trojanowicz M. Analytical applications of carbon nanotubes: a review. TrACTrends in Analytical Chemistry,2006,25(5):480-489
    [53] Knopp D, Tang D, Niessner R. Review: Bioanalytical applications ofbiomolecule-functionalized nanometer-sized doped silica particles. AnalyticaChimica Acta,2009,647(1):14-30
    [54] Vikesland P J, Wigginton K R. Nanomaterial enabled biosensors for pathogenmonitoring-A review. Environmental Science&Technology,2010,44(10):3356-3669
    [55] Faulk W P, Taylor G M. An immunocolloid method for the election microscope.Immunochemistry,1971,8(11):1081-1083
    [56] Saha K, Agasti S S, Kim C, et al. Gold nanoparticles in chemical and biologicalsensing. Chemical Reviews,2012,112(5):2739-2779
    [57] Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recentadvances and perspectives. Chemical Society Reviews,2012,41(6):2256-2282
    [58] Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scatteringproperties of gold nanoparticles of different size, shape, and composition:applications in biological imaging and biomedicine. The Journal of PhysicalChemistry B,2006,110(14):7238-7248
    [59] Lisa M, Chouhan R S, Vinayaka A C, et al. Gold nanoparticles based dipstickimmunoassay for the rapid detection of dichlorodiphenyltrichloroethane: Anorganochlorine pesticide. Biosensors and Bioelectronics,2009,25(1):224-227
    [60] Glynou K, Loannou P C, Christopoulos T K, et al. Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor forDNA analysis by hybridization. Analytical Chemistry,2003,75(16):4155-4160
    [61] Liu G, Mao X, Phillips J A, et al. Aptamer-nanoparticle strip biosensor forsensitive detection of cancer cells. Analytical Chemistry,2009,81(24):10013-1018
    [62] Xiao Y, Pavlov V, Levine S, et al. Catalytic growth of Au nanoparticles byNAD(P)H cofactors: Optical sensors for NAD(P)+-dependent biocatalyzedtransformations. Angewandte Chemie International Edition,2004,43(34):4519-4522
    [63] Pavlov V, Xaio Y, Shlyahovsjy B, et al. Aptamer-functionalized Aunanoparticles for the amplified optical detection of thrombin. Journal of theAmerican Chemical Society,2004,126(38):11768-11769
    [64] Zayats M, Baron R, Popov I, et al. Biocatalytic growth of au nanoparticles:from mechanistic aspects to biosensors design. Nano Letters,2005,5(1):21-25
    [65] Baron R, Zayats M, Willner I. Dopamine-, L-DOPA-, adrenaline-, andnoradrenaline-induced growth of Au nanoparticles: assays for the detection ofneurotransmitters and of tyrosinase activity. Analytical Chemistry,2005,77(6):1566-1571
    [66] Zhao W, Brook M A, Li Y. Design of gold nanoparticle-based colorimetricbiosensing assays. ChemBioChem,2008,9(15):2363-2371
    [67] Song Y, Wei W, Qu X. Colorimetric biosensing using smart materials.Advanced Materials,2011,23(37):4215-4236
    [68] Leuvering J H W, Thal P J H M, Waart M van der, et al. A sol particleagglutination assay for human chorionic gonadotrophin. Journal ofImmunological Methods,1981,45(2):183-194
    [69] Mirkin C, Letsinger R, Mucic R, et al. A DNA-based method for rationallyassembling nanoparticles into macroscope materials. Nature,1996,382(6592):607-609
    [70] Elghanian R, Storhof J, Mucic R, et al. Selective colorimetric detection ofpolynucleotides based on the distance-dependent optical properties of goldnanoparticles. Science,1997,277(5329):1078-1081
    [71] Storhoff J J, Elghanian R, Mucic R C, et al. One-pot colorimetricdifferentiation of polynucleotides with single base imperfections using goldnanoparticle probes. Journal of the American Chemical Society,1998,120(9):1959-1964
    [72] Li J, Chu X, Liu Y, et al. A colorimetric method for point mutation detectionusing high-fidelity DNA ligase. Nucleic Acids Research,2005,33(19): e168
    [73] Li J, Deng T, Chu X, et al. Rolling circle amplification combined with goldnanoparticle aggregates for highly sensitive identification of single-nucleotidepolymorphisms. Analytical Chemistry,2010,82(7):2811-2816
    [74] Song G, Chen C, Ren J, et al. A simple, universal colorimetric assay forendonuclease/methyltransferase activity and inhibition based on anenzyme-responsive nanoparticle system. ACS Nano,2009,3(5):1183-1189
    [75] Wang Z, Lévy R, Fernig D G, et al. Kinase-catalyzed modification of goldnanoparticles: a new approach to colorimetric kinase activity screening. Journalof the American Chemical Society,2006,128(7):2214-2215
    [76] Zhen Z, Tang L, Long H, et al. Enzymatic immuno-assembly of goldnanoparticles for visualized activity screening of histone-modifying enzymes.Analytical Chemistry,2012,84(8):3614-3620
    [77] Zhang M, Liu Y, Ye B. Rapid and sensitive colorimetric visualization ofphthalates using UTP-modified gold nanoparticles cross-linked by copper(II).Chemical Communications,2011,47(43):11849-11851
    [78] Bera R K, Anoop A, Raj C R. Enzyme-free colorimetric assay of serum uricacid. Chemical Communications,2011,47(41):11498-11500
    [79] Li H, Rothberg L. Colorimetric detection of DNA sequences based onelectrostatic interactions with unmodified gold nanoparticles. Proceedings ofthe National Academy of Sciences of the United States of America,2004,101(39):14036-14039
    [80] Xin A, Dong Q, Xiong C, et al. Colorimetric recognition of DNA intercalatorswith unmodified gold nanoparticles. Chemical Communications,2009,45(13):1658-1660
    [81] Shen Q, Nie Z, Guo M, et al. Simple and rapid colorimetric sensing ofenzymatic cleavage and oxidative damage of single-stranded DNA withunmodified gold nanoparticles as indicator. Chemical Communications,2009,45(8):929-931
    [82] Jiang T, Liu R, Huang X, et al. Colorimetric screening of bacterial enzymeactivity and inhibition based on the aggregation of gold nanoparticles.Chemical Communications,2009,45(15):1972-1974
    [83] Zhang M, Liu Y, Ye B. Colorimetric assay for sulfate using positively-chargedgold nanoparticles and its application for real-time monitoring of redox process.Analyst,136(21):4558-4562
    [84] Du J, Shao Q, Yin S, et al. Colorimetric chemodosimeter based ondiazonium–gold-nanoparticle complexes for sulfite ion detection in solution.Small,2012,8(22):3412-3416
    [85] Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence quenching ofdye molecules near gold nanoparticles: radiative and nonradiative effects.Physical Review Letters,2002,89(20):203002-203002
    [86] Maxwell D J, Taylor J R, Nie S. Self-assembled nanoparticle probes forrecognition and detection of biomolecules. Journal of the American ChemicalSociety,2002,124(32):9606-9612
    [87] Song S, Liang Z, Zhang J, et al. Gold-nanoparticle-based multicolornanobeacons for sequence-specific DNA analysis. Angewandte ChemieInternational Edition,2009,48(46):8670-8674
    [88] Seferos D S, Giljohann D A, Hill H D, et al. Nano-flares: probes fortransfection and mRNA detection in living cells. Journal of the AmericanChemical Society,2007,129(50):15477-15479
    [89] Zheng D, Seferos D S, Giljohann D A, et al. Aptamer nano-flares for moleculardetection in living cells. Nano Letters,2009,9(9):3258-3261
    [90] Oh E, Hong M, Lee D, et al. Inhibition assay of biomolecules based onfluorescence resonance energy transfer (FRET) between quantum dots and goldnanoparticles. Journal of the American Chemical Society,2005,127(10):327-3271
    [91] Kim Y, Oh Y, Oh E, et al. Energy transfer-based multiplexed assay of proteasesby using gold nanoparticle and quantum dot conjugates on a surface. AnalyticalChemistry,2008,80(12):4634-4641
    [92] Wang L, Yan R, Huo Z, et al. Fluorescence resonant energy transfer biosensorbased on upconversion-luminescent nanoparticles. Angewandte ChemieInternational Edition,2005,44(37):6054-6057
    [93] Lyon L A, Musick M D, Natan M J. Colloidal Au-enhanced surface plasmonresonance immunosensing. Analytical Chemistry,1998,70(24):5177-5183
    [94] He L, Musick M D, Nicewarner S R, et al. Colloidal Au-enhanced surfaceplasmon resonance for ultrasensitive detection of DNA hybridization. Journalof the American Chemical Society,2000,122(38):9071-9077
    [95] Sepúlveda B, Angelomé P C, Lechuga L M, et al. LSPR-based nanobiosensors.Nano Today,2009,4(3):244-251
    [96] Xia Y, Gao P, Qiu X, et al. Aptasensor based on triplex switch for SERSdetection of cytochrome c. Analyst,2012,137(24):5705-5709
    [97] Wang G, Lipert R J, Jain M, et al. Detection of the potential pancreatic cancermarker MUC4in serum using surface-enhanced Raman scattering. AnalyticalChemistry,2011,83(7):2554-2561
    [98] Yi Z, Li X, Liu F, et al. Design of label-free, homogeneous biosensing platformbased on plasmonic coupling and surface-enhanced Raman scattering usingunmodified gold nanoparticles. Biosensors and Bioelectronics,43(1):308-314
    [99] Wang Y, Zhang C, Tang L, et al. Enzymatic control of plasmonic coupling andsurface enhanced Raman scattering transduction for sensitive detection of DNAdemethylation. Analytical Chemistry,2012,84(20):8602-8606
    [100] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect inatomically thin carbon films. Science,2004,306(5696):666-669
    [101] Morales-Narváez E, Merko i A. Graphene oxide as an optical biosensingplatform. Advanced Materials,2012,24(25):3298-3308
    [102] Lu C, Yang H, Zhu C, et al. A graphene platform for sensing biomolecules.Angewandte Chemie International Edition,2009,48(26):4785-4787
    [103] He S, Song B, Li D, et al. A graphene nanoprobe for rapid, sensitive, andmulticolor fluorescent DNA analysis. Advanced Functional Materials,2010,20(3):453-459
    [104] Dong H, Gao W, Yan F, et al. Fluorescence resonance energy transfer betweenquantum dots and graphene oxide for sensing biomolecules. AnalyticalChemistry,2010,82(13):5511-5517
    [105] Li F, Feng Y, Zhao C, et al. A sensitive graphene oxide–DNA based sensingplatform for fluorescence “turn-on” detection of bleomycin. ChemicalCommunications,2012,48(1):127-129
    [106] Chang H, Tang L, Wang Y, et al. Graphene fluorescence resonance energytransfer aptasensor for the thrombin detection. Analytical Chemistry,2010,82(6):2341-2346
    [107] Wang Y, Li Z, Hu D, et al. Aptamer/graphene oxide nanocomplex for in situmolecular probing in living cells. Journal of the American Chemical Society,2010,132(27):9274-9276
    [108] Gu X, Yang G, Zhang G, et al. A new fluorescence turn-on assay for trypsinand inhibitor screening based on graphene oxide. ACS Applied Materials&Interfaces,2011,3(4):1175-1179
    [109] Wang H, Zhang Q, Chu X, et al. Graphene oxide–peptide conjugate as anintracellular protease sensor for caspase-3activation imaging in live cells.Angewandte Chemie International Edition,2011,50(31):7065-7069
    [110] Liu M, Zhao H, Quan X, et al. Distance-independent quenching of quantumdots by nanoscale-graphene in self-assembled sandwich immunoassay.Chemical Communications,2010,46(42):7909-7911
    [111] Zhao H, Chang Y, Liu M, et al. A universal immunosensing strategy based onregulation of the interaction between graphene and graphene quantum dots.Chemical Communications,2013,49(3):234-236
    [112] Zhang C, Yuan Y, Zhang S, et al. Biosensing platform based on fluorescenceresonance energy transfer from upconverting nanocrystals to graphene oxide.Angewandte Chemie International Edition,2011,50(30):6851-6854
    [113] Wang L, Pu K, Li J, et al. A graphene–conjugated oligomer hybrid probe forlight-up sensing of lectin and Escherichia coli. Advanced Materials,2011,23(38):4386-4391
    [114] Jung J H, Cheon D S, Liu F, et al. A graphene oxide based immuno-biosensorfor pathogen detection. Angewandte Chemie International Edition,2010,49(33):5708-5711
    [115] Liu F, Choi J Y, Seo T S. Graphene oxide arrays for detecting specific DNAhybridization by fluorescence resonance energy transfer. Biosensors andBioelectronics,2010,25(10):2361-2365
    [116] Chen J-L, Yang X-P, Meng K, et al. Graphene oxide based photoinducedcharge transfer label-free near-infrared fluorescent biosensor for dopamine.Analytical Chemistry,2011,83(22):8787-8793
    [117] Fu X, Chen L, Li J, et al. Label-free colorimetric sensor for ultrasensitivedetection of heparin based on color quenching of gold nanorods by grapheneoxide. Biosensors and Bioelectronics,2012,34(1):227-231
    [118] Song Y, Qu K, Zhao C, et al. Graphene oxide: intrinsic peroxidase catalyticactivity and its application to glucose detection. Advanced Materials,2010,22(19):2206-2210
    [119] Qu F, Li T, Yang M. Colorimetric platform for visual detection of cancerbiomarker based on intrinsic peroxidase activity of graphene oxide. Biosensorsand Bioelectronics,2011,26(9):3927-3931
    [120] Shang L, Dong S, Nienhaus G U. Ultra-small fluorescent metal nanoclusters:synthesis and biological applications. Nano Today,2011,6(4):401-418
    [121] Shiang Y, Huang C, Chang H. Gold nanodot-based luminescent sensor for thedetection of hydrogen peroxide and glucose. Chemical Communications,2009,45(23):3437-3439
    [122] Li P, Lin J, Chen C, et al. Using gold nanoclusters as selective luminescentprobes for phosphate-containing metabolites. Analytical Chemistry,2012,84(13):5484-5488
    [123] Xie J, Zheng Y, Ying J Y. Protein-directed synthesis of highly fluorescent goldnanoclusters. Journal of the American Chemical Society,2009,131(3):888-889
    [124] Hu L, Han S, Parveen S, et al. Highly sensitive fluorescent detection of trypsinbased on BSA-stabilized gold nanoclusters. Biosensors and Bioelectronics,2012,32(1):297-299
    [125] Tao Y, Lin Y, Ren J, et al. A dual fluorometric and colorimetric sensor fordopamine based on BSA-stabilized Au nanoclusters. Biosensors andBioelectronics,2013,42(1):41-46
    [126] Cui M, Liu J, Wang X, et al. Selective determination of cysteine usingBSA-stabilized gold nanoclusters with red emission. Analyst,2012,137(22):5346-5351
    [127] Han B, Wang E. DNA-templated fluorescent silver nanoclusters. Analyticaland Bioanalytical Chemistry,2012,402(1):129-138
    [128] Petty J T, Zheng J, Hud N V, et al. DNA-templated Ag nanocluster formation.Journal of the American Chemical Society,2004,126(16):5207-5212
    [129] Ritchie C M, Johnsen K R, Kiser J R, et al. Ag nanocluster formation using acytosine oligonucleotide template. The Journal of Physical Chemistry C,2007,111(1):175-181
    [130] Richards C I, Choi S, Hsiang J, et al. Oligonucleotide-stabilized Ag nanoclusterfluorophores. Journal of the American Chemical Society,2008,130(15):5038-5039
    [131] Han B, Wang E. Oligonucleotide-stabilized fluorescent silver nanoclusters forsensitive detection of biothiols in biological fluids. Biosensors andBioelectronics,2011,26(5):2585-2589
    [132] Sharma J, Yeh H, Yoo H, et al. Silver nanocluster aptamers: in situ generationof intrinsically fluorescent recognition ligands for protein detection. ChemicalCommunications,2011,47(8):2294-2296
    [133] Liu Y Q, Zhang M, Yin B C, et al. Attomolar ultrasensitive microRNAdetection by DNA-scaffolded silver-nanocluster probe based on isothermalamplification. Analytical Chemistry,2012,84(12):5165-5169
    [134] Guo W, Yuan J, Dong Q, et al. Highly sequence-dependent formation offluorescent silver nanoclusters in hybridized DNA duplexes for singlenucleotide mutation identification. Journal of the American Chemical Society,2010,132(3):932-934
    [135] Huang Z, Pu F, Wang C, et al. Site-specific DNA-programmed growth offluorescent and functional silver nanoclusters. Chemistry-A European Journal,2011,17(13):3774-3780
    [136] Yeh H, Sharma J, Han J J, et al. A DNA-silver nanocluster probe thatfluoresces upon hybridization. Nano Letters,2010,10(8):3106-3110
    [137] Li J, Zhong X, Zhang H, et al. Binding-induced fluorescence turn-on assayusing aptamer-functionalized silver nanocluster DNA probes. AnalyticalChemistry,2012,84(12):5170-5174
    [138] Zhang M, Guo S, Li Y, et al. A label-free fluorescent molecular beacon basedon DNA-templated silver nanoclusters for detection of adenosine andadenosine deaminase. Chemical Communications,2012,48(44):5488-5490
    [139] Tanaka S, Miyazaki J, Tiwari D K, et al. Fluorescent platinum nanoclusters:synthesis, purification, characterization, and application to bioimaging.Angewandte Chemie International Edition,2011,50(2):431-435
    [140] Hu L, Yuan Y, Zhang L, et al. Copper nanoclusters as peroxidase mimetics andtheir applications to H2O2and glucose detection. Analytica Chimica Acta,2013,762(1):83-86
    [141] Rotaru A, Dutta S, Jentzsch E, et al. Selective dsDNA-templated formation ofcopper nanoparticles in solution. Angewandte Chemie International Edition,2010,49(33):5665-5667
    [142] Kuang H, Zhao Y, Ma W, et al. Recent developments in analytical applicationsof quantum dots. TrAC Trends in Analytical Chemistry,2011,30(10):1620-1636
    [143] Bonacchi S, Genovese D, Juris R, et al. Luminescent silica nanoparticles:extending the frontiers of brightness. Angewandte Chemie InternationalEdition,2011,50(18):4056-4066
    [144] Yang R, Jin J, Chen Y, et al. Carbon nanotube-quenched fluorescentoligonucleotides: probes that fluoresce upon hybridization. Journal of theAmerican Chemical Society,2008,130(26):8351-8358
    [145] Liu Z, Tabakman S M, Chen Z, et al. Preparation of carbon nanotubebioconjugates for biomedical applications. Nature Protocols,2009,4(9):1372-1381
    [146] Medintz I L, Clapp A R, Brunel F M, et al. Proteolytic activity monitored byfluorescence resonance energy transfer through quantum-dot–peptideconjugates. Nature Materials,2006,5(7):581-589
    [147] Zhao X, Tapec-Dytioco R, Tan W. Ultrasensitive DNA detection using highlyfluorescent bioconjugated nanoparticles. Journal of the American ChemicalSociety,2003,125(38):11474-11475
    [148] Chen Z, Tabakman S M, Goodwin A P, et al. Protein microarrays with carbonnanotubes as multicolor Raman labels. Nature Biotechnology,2008,26(11):1285-1292
    [149] Song Y, Wang X, Zhao C, et al. Label-free colorimetric detection of singlenucleotide polymorphism by using single-walled carbon nanotube intrinsicperoxidase-like activity. Chemistry-A European Journal,2010,16(12):3617-3621
    [150] Wilson D S, Szostak J W. In vitro selection of functional nucleic acids. AnnualReview of Biochemistry,1999,68(1):611-647
    [151] Famulok M, Mayer G, Blin M. Nucleic acid aptamers from selection in vitro toapplications in vivo. Accounts of Chemical Research,2000,33(9):591-599
    [152] Ono A, Togashi H. Highly selective oligonucleotide-based sensor formercury(II) in aqueous solutions. Angewandte Chemie International Edition,2004,43(33):4300-4302
    [153] Ono A, Cao S, Togashi H, et al.2008. Specific interactions between silver(I)ions and cytosine-cytosine pairs in DNA duplexes. Chemical Communications,2008,(39):4825-4827
    [154] Sen D, Geyer C R. DNA enzymes. Current Opinion in Chemical Biology,1998,2(6):680-687
    [155] Joyce G F. Directed evolution of nucleic acid enzymes. Annual Review ofBiochemistry,2004,73(1):791-836
    [156] Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chemical Reviews,2009,109(5):1948-1998
    [157] Santoro S W, Joyce G F. A general purpose RNA-cleaving DNA enzyme.Proceedings of the National Academy of Sciences of the United States ofAmerica,1997,94(9):4262-4266
    [158] Carmi N, Balkhi S R, Breaker R R. Cleaving DNA with DNA. Proceedings ofthe National Academy of Sciences of the United States of America,1998,95(5):2233-2237
    [159] Sreedhara A, Li Y, Breaker R R. Ligating DNA with DNA. Journal of theAmerican Chemical Society,2004,126(11):3454-3460
    [160] Li Y, Breaker R R. In vitro selection of kinase and ligase deoxyribozymes.Methods,2001,23(2):179-190
    [161] Willner I, Shlyahovsky B, Zayats M, et al. DNAzymes for sensing,nanobiotechnology and logic gate applications. Chemical Society Reviews,2008,37(6):1153-1165
    [162] Xiao Y, Rowe A A, Plaxco K W. Electrochemical detection of parts-per-billionlead via an electrode-bound DNAzyme assembly. Journal of the AmericanChemical Society,2007,129(2):262-263
    [163] Roth A, Breaker R R. An amino acid as a cofactor for a catalyticpolynucleotide. Proceedings of the National Academy of Sciences of theUnited States of America,1998,95(11):6027-6031
    [164] Liu J, Lu Y. Improving fluorescent DNAzyme biosensors by combining inter-and intramolecular quenchers. Analytical Chemistry,2003,75(23):6666-6672
    [165] Liu J, Lu Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ionsin aqueous solution with high sensitivity and selectivity. Journal of theAmerican Chemical Society,2007,19(32):9838-9839
    [166] Lee J H, Wang Z, Liu J, et al. Highly sensitive and selective colorimetricsensors for uranyl (UO22+): development and comparison of labeled andlabel-free DNAzyme-gold nanoparticle systems. Journal of the AmericanChemical Society,2008,130(43):14217-14226
    [167] Wang Y, Irudayaraj J. A SERS DNAzyme biosensor for lead ion detection.Chemical Communications,2011,47(15):4394-4396
    [168] Sando S, Sasaki T, Kanatani K, et al. Amplified nucleic acid sensing usingprogrammed self-cleaving DNAzyme. Journal of the American ChemicalSociety,2003,125(51):15720-15721
    [169] Zhang X B, Wang Z D, Xing H, et al. Catalytic and molecular beacons foramplified detection of metal ions and organic molecules with high sensitivity.Analytical Chemistry,2010,82(12):5005-5011
    [170] Wang F, Elbaz J, Teller C, et al. Amplified detection of DNA through anautocatalytic and catabolic DNAzyme-mediated process. Angewandte ChemieInternational Edition,2011,50(1):295-299
    [171] Tian T, Xiao H, Long Y, et al. Sensitive analysis of DNA methyltransferasebased on a hairpin-shaped DNAzyme. Chemical Communications,2012,48(80):10031-10033
    [172] Travascio P, Li Y, Sen D. DNA-enhanced peroxidase activity of a DNAaptamer-hemin complex. Chemistry&Biology,1998,5(9):505-517
    [173] Kosman J, Juskowiak B. Peroxidase-mimicking DNAzymes for biosensingapplications: A review. Analytica Chimica Acta,2011,707(1-2):7-17
    [174] Pavlov V, Xiao Y, Gill R, et al. Amplified chemiluminescence surfacedetection of DNA and telomerase activity using catalytic nucleic acid labels.Analytical Chemistry,2004,76(7):2151-2156
    [175] Weizmann Y, Beissenhirtz M K, Cheglakov Z, et al. A virus spotlighted by anautonomous DNA machine. Angewandte Chemie International Edition,2006,45(44):7384-7388
    [176] Tang L, Liu Y, Ali M M, et al. Colorimetric and ultrasensitive bioassay basedon a dual-amplification system using aptamer and DNAzyme. AnalyticalChemistry,2012,84(11):4711-4717
    [177] Li T, Wang E, Dong S. G-Quadruplex-based DNAzyme as a sensing platformfor ultrasensitive colorimetric potassium detection. Chemical Communications,2009,45(5):580-582
    [178] Song S, Wang L, Li J, et al. Aptamer-based biosensors. TrAC Trends inAnalytical Chemistry,2008,27(2):108-117
    [179] Strehlitz B, Nikolaus N, Stoltenburg R. Protein detection with aptamerbiosensors. Sensors,2008,8(7):4296-4307
    [180] Zhou J, Batting M R, Wang Y. Aptamer-based molecular recognition forbiosensor development. Analytical and Bioanalytical Chemistry,2010,398(6):2471-2480
    [181] Wang R E, Zhang Y, Cai J, et al. Aptamer-based fluorescent biosensors.Current Medicinal Chemistry,2011,18(27):4175-4184
    [182] O’Sullivan C K. Aptasensors–the future of biosensing. Analytical andBioanalytical Chemistry,2002,372(1):44-48
    [183] Sassolas A, Blum L, Leca-Bouvier B D. Optical detection systems usingimmobilized aptamers. Biosensors and Bioelectronics,2011,26(9):3725-3736
    [184] Ferreira C S, Papamichael K, Guilbault G, et al. DNA aptamers against theMUC1tumour marker: design of aptamer–antibody sandwich ELISA for theearly diagnosis of epithelial tumours. Analytical and Bioanalytical Chemistry,2008,390(4):1039-1050
    [185] Li Y, Lee H J, Corn R M. Detection of protein biomarkers using RNA aptamermicroarrays and enzymatically amplified surface plasmon resonance imaging.Analytical Chemistry,2007,79(3):1082-1088
    [186] Gill R, Polsky R, Willner I. Pt nanoparticles functionalized with nucleic acidact as catalytic labels for the chemiluminescent detection of DNA and proteins.Small,2006,2(8-9):1037-1041
    [187] Zhang Z, Wang Z, Wang X, et al. Magnetic nanoparticle-linked colorimetricaptasensor for the detection of thrombin. Sensors and Actuators B: Chemical,2010,147(2):428-433
    [188] Kim S, Ahn K, Park J, et al. Fluorescent ferritin nanoparticles and applicationto the aptamer sensor. Analytical Chemistry,2011,83(15):5834-5843
    [189] Wang X, Zhao Q. A fluorescent sandwich assay for thrombin using aptamermodified magnetic beads and quantum dots. Microchimica Acta,2012,178(3-4):349-355
    [190] Li Y, Zhang C, Li B, et al. Ultrasensitive densitometry detection of cytokineswith nanoparticle-modified aptamers. Clinical Chemistry,2007,53(6):1061-1066
    [191] Wang Y, Wei H, Li B, et al. SERS opens a new way in aptasensor for proteinrecognition with high sensitivity and selectivity. Chemical Communications,2007,43(48):5220-5222
    [192] Nutiu R, Li Y. Aptamers with fluorescence-signaling properties. Methods,2005,37(1):16-25
    [193] Hamaguchi, N, Ellington A, Stanton M. Aptamer beacons for the directdetection of proteins. Analytical Biochemistry,2001,294(2):126-131
    [194] Nutiu R, Li Y. Structure-switching signaling aptamers. Journal of the AmericanChemical Society,2003,125(16):4771-4778
    [195] Zhang C, Johnson L W. Single quantum-dot-based aptameric nanosensor orcocaine. Analytical Chemistry,2009,81(8):3051-3055
    [196] Lu C, Li J, Lin M, et al. Amplified aptamer-based assay through catalyticrecycling of the analyte. Angewandte Chemie International Edition,2010,49(45):8454-8457
    [197] He F, Tang Y, Wang S, et al. Fluorescent amplifying recognition for DNAG-quadruplex folding with a cationic conjugated polymer: a platform forhomogeneous potassium detection. Journal of the American Chemical Society,2005,127(35):12343-12346
    [198] Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregatesfor colorimetric sensing of analytes. Nature Protocols,2006,1(1):246-252
    [199] Zhao W, Chiuman W, Lam J C F, et al. DNA aptamer folding on goldnanoparticles: from colloid chemistry to biosensors. Journal of the AmericanChemical Society,2008,130(11):3610-3618
    [200] Chen J, Jiang J, Gao X, et al. A new aptameric biosensor for cocaine based onsurface-enhanced Raman scattering spectroscopy. Chemistry-A EuropeanJournal,2008,14(27):8374-8382
    [201] Freeman R, Liu X, Willner I. Chemiluminescent and chemiluminescenceresonance energy transfer (CRET) detection of DNA, metal ions, andaptamer–substrate complexes using hemin/G-quadruplexes and CdSe/ZnSquantum dots. Journal of the American Chemical Society,2011,133(30):11597-11604
    [202] Wang L, Liu X, Hu X, et al. Unmodified gold nanoparticles as a colorimetricprobe for potassium DNA aptamers. Chemical Communications,2006,42(36):3780-3782
    [203] Zhang J, Wang L, Pan D, et al. Visual cocaine detection with goldnanoparticles and rationally engineered aptamer structures. Small,2008,4(8):1196-1200
    [204] Qi L, Li B. A sensitive, label-free, aptamer-based biosensor using a goldnanoparticle-initiated chemiluminescence system. Chemistry-A EuropeanJournal,2011,17(5):1642-1648
    [205] Teller C, Shimron S, Willner I. Aptamer-DNAzyme hairpins for amplifiedbiosensing. Analytical Chemistry,2008,81(21):9114-9119
    [206] Babendure J R, Adams S R, Tsien R Y. Aptamers switch on fluorescence oftriphenylmethane dyes. Journal of the American Chemical Society,2003;125(48):14716-14717
    [207] Xu W, Lu Y. Label-free fluorescent aptamer sensor based on regulation ofmalachite green fluorescence. Analytical Chemistry,2010,82(2):574-578
    [208] Huang C, Chang H. Aptamer-based fluorescence sensor for rapid detection ofpotassium ions in urine. Chemical Communications,2008,44(12):1461-1463
    [209] Coleman J E. Structure and mechanism of alkaline phosphatase. AnnualReview of Biophysics and Biomolecular Structure,1992,21(1):441-483
    [210] Fernley H N. Mammalian alkaline phosphatases. The Enzymes,1971,4(1):417-447
    [211] Couttenye M M, D’Haese P C, Van Hoof V O, et al. Low serum levels ofalkaline phosphatase of bone origin: a good marker of adynamic bone diseasein haemodialysis patients. Nephrology Dialysis Transplantation,1996,11(6):1065-1072
    [212] Colombatto P, Randone A, Civitico G, et al. Hepatitis G virus RNA in theserum of patients with elevated gamma glutamyl transpeptidase and alkalinephosphatase: a specific liver disease. Journal of Viral Hepatitis,1996,3(6):301-306
    [213] Lorente J A, Valenzuela H, Morote J, et al. Serum bone alkaline phosphataselevels enhance the clinical utility of prostate specific antigen in the staging ofnewly diagnosed prostate cancer patients. European Journal of NuclearMedicine,1999,26(6):625-632
    [214] Millán J L. Alkaline phosphatases: Structure, substrate specificity andfunctional relatedness to other members of a large superfamily of enzymes.Purinergic Signal,2006,2(2):335–341
    [215] Say J C, Ciuffi K, Furriel R P M, et al. Alkaline phosphatase from rat osseousplates: purification and biochemical characterization of a soluble form.Biochimica et Biophysica Acta (BBA)-General Subjects,1991,1074(2):256-262
    [216] Wilson P D, Smith G P, Peters T J. Pyridoxal5’-phosphate: a possiblephysiological substrate for alkaline phosphatase in human neutrophils. TheHistochemical Journal,1983,15(3):257-264
    [217] Adler L. Properties of alkaline phosphatase of the halotolerant yeastDebaryomyces hansenii. Biochimica et Biophysica Acta (BBA)–Enzymology,1978,522(1):113-121
    [218] Addison W N, Azari F, Sorensen E S, et al. Pyrophosphate inhibitsmineralization of osteoblast cultures by binding to mineral, up-regulatingosteopontin, and inhibiting alkaline phosphatase activity. Journal of BiologicalChemistry,2007,282(21):15872-15883
    [219] Hessle L, Johnson K A, Anderson H C, et al. Tissue-nonspecific alkalinephosphatase and plasma cell membrane glycoprotein-1are central antagonisticregulators of bone mineralization. Proceedings of the National Academy ofSciences of the United States of America,2002,99(14):9445-9449
    [220] Lomashvili K A, Cobbs S, Hennigar R A, et al. Phosphate-induced vascularcalcification: Role of pyrophosphate and osteopontin. Journal of the AmericanSociety of Nephrology,2004,15(6):1392-1401
    [221] O’Neill W C. Pyrophosphate, alkaline phosphatase, and vascular calcification.Circulation Research,2006,99(2): e2
    [222] Heinonen J K, Lahti R J. A new and convenient colorimetric determination ofinorganic orthophosphate and its application to the assay of inorganicpyrophosphatase. Analytical Biochemistry,1981,113(2):313-317
    [223] Fernley H N, Bisaz S. Studies on alkaline phosphatase. Phosphorylation of calfintestinal alkaline phosphatase by32P-labelled pyrophosphate. BiochemicalJournal,1968,107(2):279-283
    [224] Zhao X, Liu Y, Schanze K S. A conjugated polyelectrolyte-based fluorescencesensor for pyrophosphate. Chemical Communications,2007,43(28):2914-2916
    [225] Liu Y, Schanze K S. Conjugated polyelectrolyte-based real-time fluorescenceassay for alkaline phosphatase with pyrophosphate as substrate. AnalyticalChemistry,2008,80(22):8605-8612
    [226] Zhou Z, Du Y, Dong S. Double-strand DNA-templated formation of coppernanoparticles as fluorescent probe for label-free aptamer sensor. AnalyticalChemistry,2011,83(13):5122-5127
    [227] Chen J, Liu J, Fang Z, et al. Random dsDNA-templated formation of coppernanoparticles as novel fluorescence probes for label-free lead ions detection.Chemical Communications,2012,48(7):1057-1059
    [228] Hu R, Liu Y, Kong R, et al. Double-strand DNA-templated formation of coppernanoparticles as fluorescent probe for label free nuclease enzyme detection.Biosensors and Bioelectronics,42(1):31-35
    [229] Rogers L B, Reynolds C A. Interaction of pyrophosphate ion with certainmultivalent cations in aqueous solutions. Journal of the American ChemicalSociety,1949,71(6),2081-2085
    [230] Fernley H N, Walker P G. Studies on alkaline phosphatase: Inhibition byphosphate derivatives and the substrate specificity. Biochemical Journal,1967,104(3):1011-1018.
    [231] Morton R K. The substrate specificity and inhibition of alkaline phosphatasesof cow's milk and calf intestinal mucosa. Biochemical Journal,1955,61(2):232-240
    [232] Hoeijmakers J H J. Genome maintenance mechanisms for preventing cancer.Nature,411(6836):366-374
    [233] Lindahl T, Wood R D. Quality control by DNA repair. Science,1999,286(5446):1897-1905
    [234] Allinson S L. DNA end-processing enzyme polynucleotide kinase as a potentialtarget in the treatment of cancer. Future Oncology,2010,6(6):1031-1042
    [235] Caldecott K W. Single-strand break repair and genetic disease. Nature ReviewsGenetics,2008,9(8):619-631
    [236] Izumi T, Hazra T K, Boldogh I, et al. Requirement for human AP endonuclease1for repair of3′-blocking damage at DNA single-strand breaks induced byreactive oxygen species. Carcinogenesis,2000,21(7):1329-1334
    [237] Nitiss K C, Malik M, He X, et al. Tyrosyl-DNA phosphodiesterase (Tdp1)participates in the repair of Top2-mediated DNA damage. Proceedings of theNational Academy of Sciences of the United States of America,103(24):8953-8958.
    [238] Takahashi T, Tada M, Lagrashi S, et al. Aprataxin, causative gene product forEAOH/AOA1, repairs DNA single-strand breaks with damaged3′-phosphateand3′-phosphoglycolate ends. Nucleic Acids Research,2007,35(11):3793-3809
    [239] Chappell C, Hanakahi L A, Karimi-Busheri F, et al. Involvement of humanpolynucleotide kinase in double-strand break repair by non-homologous endjoining. The EMBO Journal,2002,21(11):2827-2832
    [240] Schellenberg M J, Williams R S. DNA end processing by polynucleotidekinase/phosphatase. Proceedings of the National Academy of Sciences of theUnited States of America,2011,108(52):20855-20856
    [241] Sobol R W, Prasad R, Evenski A, et al. The lyase activity of the DNA repairprotein-polymerase protects from DNA-damage-induced cytotoxicity. Nature,2000,405(6788):807-810
    [242] Horton J K, Watson M, Stefanick D F, et al. XRCC1and DNA polymerase β incellular protection against cytotoxic DNA single-strand breaks. Cell Research,2008,18(1):48-63
    [243] Frauendorf C, Hausch F, R hl I, et al. Internal32P-labeling ofL-deoxyoligonucleotides. Nucleic Acids Research,2003,31(7): e34
    [244] Phillips D H, Arlt V M. The32P-postlabeling assay for DNA adducts. NatureProtocols,2007,2(11):2772-2781
    [245] Karimi-Busheri F, Lee J, Weinfeld M. Repair of DNA strand gaps and nickscontaining3′-phosphate and5′-hydroxyl termini by purified mammalianenzymes. Nucleic Acids Research,1998,26(19):4395-4400
    [246] Wang L K, Shuman S. Domain structure and mutational analysis of T4polynucleotide kinase. The Journal of Biological Chemistry,2001,276(29):26868-26874
    [247] Tang Z, Wang K, Tang W, et al. Real-time investigation of nucleic acidsphosphorylation process using molecular beacons. Nucleic Acids Research,2005,33(11): e97
    [248] Song C, Zhao M. Real-time monitoring of the activity and kinetics of T4polynucleotide kinase by a singly labeled DNA-hairpin smart probe coupledwith λ exonuclease cleavage. Analytical Chemistry,2009,81(4):1383-1388
    [249] Wu W, Hu H, Li F, et al. A graphene oxide-based nano-beacon for DNAphosphorylation analysis. Chemical Communications,2011,47(4):1201-1203
    [250] Ma C, Yeung E S. Highly sensitive detection of DNA phosphorylation bycounting single nanoparticles. Analytical and Bioanalytical Chemistry,2010,397(6):2279-2284
    [251] Richardson C C. Phosphorylation of nucleic acid by an enzyme from T4bacteriophage-infected Escherichia coli. Proceedings of the National Academyof Sciences of the United States of America,1965,54(1):158-165
    [252] Mitsis P G, Kwang J G. Characterization of the interaction of lambdaexonuclease with the ends of DNA. Nucleic Acids Research,1999,27(15):3057-3063
    [253] Tanaka M, Lai J, Herr W. Promoter-selective activation domains in Oct-1and Oct-2direct differential activation of an snRNA and mRNA promoter. Cell,1992,68(4):755-767
    [254] Karimi-Busheri F, Daly G, Robins P, et al. Molecular characterization of ahuman DNA kinase. The Journal of Biological Chemistry,1999,274(34):24187-24194
    [255] Dobson C J, Allinson S L. The phosphatase activity of mammalianpolynucleotide kinase takes precedence over its kinase activity in repair ofsingle strand breaks. Nucleic Acids Research,2006,34(8):2230-2237
    [256] Lin L, Liu Y, Zhao X, et al. Sensitive and rapid screening of T4polynucleotidekinase activity and inhibition based on coupled exonuclease reaction andgraphene oxide platform. Analytical Chemistry,2011.83(22):8396-8402
    [257] Wulfkuhle J D, Liotta L A, Petricoin E F. Proteomic applications for the earlydetection of cancer. Nature Reviews Cancer,2003,3(4):267-275
    [258] Venkatesan N, Seo Y J, Kim B H. Quencher-free molecular beacons: a newstrategy in fluorescence based nucleic acid analysis. Chemical Society Reviews,2008,37(4):648-663
    [259] Swathi R S, Sebastian K L. Excitation energy transfer from a fluorophore tosingle-walled carbon nanotubes. The Journal of Chemical Physics,2010,132(10):104502-104502
    [260] Li H, Zhang Y, Wang L, et al. Nucleic acid detection using carbonnanoparticles as a fluorescent sensing platform. Chemical Communications,2011,47(3):961-963
    [261] He Y, Lin Y, Tang H, et al. A graphene oxide-based fluorescent aptasensor forthe turn-on detection of epithelial tumor marker mucin1. Nanoscale,2012,4(6):2054-2059
    [262] Sheng L, Ren J, Miao Y, et al. PVP-coated graphene oxide for selectivedetermination of ochratoxin A via quenching fluorescence of free aptamer.Biosensors and Bioelectronics,2011,26(8):3494-3499
    [263] Van der Weyden M B, Kelley W N. Human adenosine deaminase: Distributionand properties. The Journal of Biological Chemistry,1976,251(18):5448-5456
    [264] Blackburn M R, Thompson L F. Adenosine deaminase deficiency:unanticipated benefits from the study of a rare immunodeficiency. The Journalof Immunology,2012,188(3):933-935
    [265] Koehler L H, Benz E J. Serum adenosine deaminase: methodology and clinicalapplications. Clinical Chemistry,1962,8(2):133-140
    [266] Gumar B K, Bharat V, Bandyopadhyay D. Role of adenosine deaminaseestimation in differentiation of tuberculous and non-tuberculous exudativepleural effusions. Journal of Clinical Medicine Research,2010,2(2):79-84
    [267] Elowe N H, Nutiu R, Allali-Hassani A, et al. Small-molecule screening madesimple for a difficult target with a signaling nucleic acid aptamer that reportson deaminase activity. Angewandte Chemie International Edition,2006,45(34):5648-5652
    [268] Zhang K, Xie M, Zhou B, et al. A new strategy based on aptasensor totime-resolved fluorescence assay for adenosine deaminase activity. Biosensorsand Bioelectronics,2013,41(1):123-128
    [269] Stojanovic M N, de Prada P, Landry D W. Fluorescent sensors based onaptamer self-assembly. Journal of the American Chemical Society,2000,122(46):11547-11548
    [270] Zhang K, Zhou X, Wang J, et al. Strategy to fabricate an electrochemicalaptasensor: application to the assay of adenosine deaminase activity. AnalyticalChemistry,2010,82(8):3207-3211
    [271] Hershfield M S, Genotype is an important determinant of phenotype inadenosine deaminase deficiency. Current Opinion in Immunology,2003,15(5):571-577
    [272] Klockars M, Pettersson T, Selroos O, et al. Activity of serum adenosinedeaminase in sarcoidosis. Clinical Chemistry,1985,31(1):155-155
    [273] Hoffbrand A V, Janossy G. Enzyme and membrane markers in leukaemia:recent developments. Journal of Clinical Pathology,1981,34(3):254-262
    [274] Orfanos A P, Naylor E W, Guthrie. Micromethod for estimating adenosinedeaminase activity in dried blood spots on filter paper. Clinical Chemistry,1978,24(4):591-594
    [275] Oosthuizen H M, Ungerer J P, Bissbort S H. Kinetic determination of serumadenosine deaminase. Clinical Chemistry,1993,39(10):2182-2185
    [276] Zhao W, Chiuman W, Lam J C, et al. Simple and rapid colorimetric enzymesensing assays using non-crosslinking gold nanoparticle aggregation. ChemicalCommunications,2007,43(36):3729-3731
    [277] Cao R, Li B, Zhang Y, et al. Naked-eye sensitive detection of nuclease activityusing positively-charged gold nanoparticles as colorimetric probes. ChemicalCommunications,2011,47(45):12301-12303
    [278] Grabar K C, Freeman R G, Hommer M B, et al. Preparation andcharacterization of Au colloid monolayers. Analytical Chemistry,1995,67(4):735-743
    [279] Jin R, Wu G, Li Z, et al. What controls the melting properties of DNA-linkedgold nanoparticle assemblies. Journal of the American Chemical Society,2003,125(6):1643-1654
    [280] Liu G, Luais E, Gooding J J. The fabrication of stable goldnanoparticle-modified interfaces for electrochemistry. Langmuir,2011,27(7):4176-4183
    [281] Gourishankar A, Shukla S, Ganesh K N, et al. Isothermal titration calorimetrystudies on the binding of DNA bases and PNA base monomers to goldnanoparticles. Journal of the American Chemical Society,126(41):13186-13187
    [282] Brewer S H, Glomm W R, Johnson M C, et al. Probing BSA binding tocitrate-coated gold nanoparticles and surfaces. Langmuir,2005,21(20):9303-9307
    [283] Alunni S, Orrù M, Ottavi L. A study on the inhibition of adenosine deaminase.Journal of Enzyme Inhibition and Medicinal Chemistry,2008,23(2):182-189
    [284] David S S, Williams S D. Chemistry of glycosylases and endonucleasesinvolved in base-excision repair. Chemical Reviews,1998,98(3):1221-1261
    [285] Batty D P, Wood R D. Damage recognition in nucleotide excision repair ofDNA. Gene,2000,241(2):193-204
    [286] Kunkel T A, Erie D A. DNA mismatch repair. Annual Review of Biochemistry,2005,74(1):681-670
    [287] Xu G, Herzig M, Rotrekl V, et al. Base excision repair, aging and health span.Mechanisms of Ageing and Development,2008,129(7-8):366-382
    [288] Paz-Elizur T, Krupsky M, Blumenstein S, et al. DNA repair activity foroxidative damage and risk of lung cancer. Journal of the National CancerInstitute,2003,95(17):1312-1319
    [289] O’Grady G M. Detection and quantitation of uracil DNA glycosylase activity.Methods in Molecular Biology,2000,152(1):33-38
    [290] Karran P, Lindahl T. Enzymatic excision of free hypoxanthine frompolydeoxynucleotides and DNA containing deoxyinosine monophosphateresidues. The Journal of Biological Chemistry,1978,253(17):5877-5879
    [291] Xia L, O’Connor T R. DNA glycosylase activity assay based on streptavidinparamagnetic bead substrate capture. Analytical Biochemistry,2001,298(2):322-326
    [292] Ono T, Wang S, Koo C-K, et al. Direct fluorescence monitoring of DNA baseexcision repair. Angewandte Chemie International Edition,2012,51(7):1689-1692
    [293] Wang F, Elbaz J, Orbach R, et al. Amplified analysis of DNA by theautonomous assembly of polymers consisting of DNAzyme wires. Journal ofthe American Chemical Society,2011,133(43):17149-17151
    [294] Sawa R, Mcauley-Hecht K, Brown T, et al. The structural basis of specificbase-excision repair by uracil–DNA glycosylase. Nature,1995,373(6514):487-493
    [295] Breaker R R, Joyce G F. A DNA enzyme with Mg2+-dependent RNAphosphoesterase activity. Chemistry&Biology,1995,2(10):655-660
    [296] Zhao W, Ali M M, Brook M, et al. Rolling circle amplification: applications innanotechnology and biodetection with functional nucleic acids. AngewandteChemie International Edition,2008,47(34):6330-6337
    [297] Ali M, Li Y. Colorimetric sensing by using allosteric-DNAzyme-coupledrolling circle amplification and a peptide nucleic acid–organic dye probe.Angewandte Chemie International Edition,2009,48(19):3512-3515
    [298] Zhao Y, Qi L, Chen F, et al. Ultrasensitive and selective detection ofnicotinamide adenine dinucleotide by target-triggered ligation–rolling circleamplification. Chemical Communications,2012,48(27):3354-3356
    [299] Liu B, Yang X, Wang K, et al. Real-time monitoring of uracil removal byuracil–DNA glycosylase using fluorescent resonance energy transfer probes.Analytical Biochemistry,2007,366(2):237-243
    [300] Bennett S E, Mosbaugh D W. Characterization of the Escherichia coliuracil-DNA glycosylase/inhibitor protein complex. The Journal of BiologicalChemistry,1992,267(4):22512-22521
    [301] Xiao X, Zhang C, Su X, et al. A universal mismatch-directed signalamplification platform for ultra-selective and sensitive DNA detection undermild isothermal conditions. Chemical Science,2012,3(7):2257-2261

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700