用户名: 密码: 验证码:
农业有害微生物的绿色控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业有害微生物在农业生产的各个环节会对农作物和农产品造成污染,这不仅导致农作物减产、农产品品质下降,造成巨大经济损失,而且有些病原性微生物会产生毒素,甚至引发流行性疾病。同时,农业有害微生物还会污染环境,对人类造成长期的潜在危险,影响到社会稳定乃至国民经济的持续发展。目前,我国防治农业有害微生物的方法多样,但在实际应用中均存在有不同的缺陷,如杀灭不完全,尤其是对一些产芽孢的烈性致病细菌的控制非常困难;大多数化学方法处理难以避免存在环境污染问题等。
     论文提出利用绿色技术控制农业有害微生物,如可利用高级氧化技术,对农业生产原料、废弃物和排泄物等进行灭菌,也可对农业生产环境和农产品储藏室进行消毒。同时,可通过培育和推广作物抗病品种,在农作物收获前就控制病原菌,从而低成本高效益地预防、消除或减小农业有害微生物造成的危害。
     论文的研究内容主要包括以下两部分:
     第一部分,农业有害微生物的外源性羟基自由基控制研究
     高级氧化技术(AOT)可通过反应产生极具氧化性的羟基自由基,它几乎能和所有的生物大分子、有机物和无机物发生不同类型的化学反应,直至彻底转化为二氧化碳和水等无害物质。论文采用强电场电离放电法制备高浓度羟基自由基,以大肠杆菌、枯草芽孢杆菌和芽孢为模型,研究外源性羟基自由基对农业有害微生物的生物学效应及作用机理,具体内容如下:
     1、外源性羟基对G-细菌的杀灭效应及作用机制
     研究以大肠杆菌为模型,采用不同浓度的外源性羟基自由基处理大肠杆菌,发现羟基浓度超过0.4mg/L时即能导致其全部死亡,这表明羟基浓度对G-细菌有高效的杀灭作用。对生物大分子含量及完整性的分析表明,羟基能进入细胞内损伤DNA、RNA和蛋白质。对胞内电解质渗漏率和膜脂氧化程度的分析表明,羟基能直接对细胞膜造成重大损伤。扫描电镜和透射电镜观察发现,当用0.2mg/L羟基溶液处理时,细菌形态扭曲,细胞壁与细胞膜之间出现明显的空隙;当用1.0mg/L羟基溶液处理时,细菌保持杆状,但细胞壁上出现不规则褶皱。羟基处理还使胞内的拟核变得模糊,甚至消失。综合上述结果,外源性羟基自由基不仅能损伤细胞壁、细胞膜等外部结构,也能损伤胞内结构和胞内生物大分子,从而导致G-细菌死亡
     2、外源性羟基对G+细菌及芽孢的杀灭效应及作用机制。
     致死效应研究表明,羟基也能有效杀灭枯草芽孢杆菌及芽孢,但完全杀灭它们所需的浓度分别为0.8mg/L和1.0mg/L,远高于杀灭大肠杆菌所需的浓度(0.4mg/L),这可能是由于枯草芽孢杆菌及芽孢的外壁比大肠杆菌厚造成的。电镜结果显示,不同浓度的羟基处理枯草芽孢杆菌时,菌体基本保持杆状,但其表面会出现褶皱,用0.2mg/L羟基溶液处理时,仅少数菌体表面出现褶皱,当羟基浓度提高至1.0mg/L时,所有菌体表面出现大量规则的竖条形纹路,超薄切片观察显示,胞内的拟核变模糊。对芽孢的扫描电镜观察表明,0.4mg/L羟基溶液不会引起芽孢表面结构的变化,而当羟基浓度提高到1.0mf/L时,芽孢体积大为缩小不足正常芽孢的1/9,并在芽孢全周布满凸起物。透射电镜结果显示,受损芽孢的外部结构呈解体状态,而芽孢内部呈深色,表明其致密度很高。由此推测,G+细菌的细胞壁和芽孢的芽孢壁等都是外源性羟基自由基的攻击靶标。
     3、利用绿色荧光蛋白监测外源性羟基对大肠杆菌的杀灭效果。
     研究采用基因工程技术制备了重组绿色荧光蛋白(EGFP),并构建了能组成型表达EGFP的工程菌E.coli-EGFP。离体研究表明,羟基溶液能有效淬灭重组EGFP的绿色荧光,当羟基浓度为0.2mg/L时,绿色荧光强度可降至48.25%,当羟基浓度增加到0.4mg/L以上时,绿色荧光基本消失。菌体研究表明,当羟基浓度为0.3mg/L时,工程菌的荧光强度可减至33.22%,当羟基浓度超过0.8mg/L时,荧光信号基本消失。结合工程菌的死亡率数据发现,用0.2-1.0mg/羟基溶液处理工程菌时,相对荧光强度与工程菌死亡率存在相关性,符合曲线方程:y=0.0009x2-0.0276x+0.0525(R2=0.9923)。该结果表明,借助工程菌胞内EGFP的荧光强度,可监测羟基溶液杀灭大肠杆菌是否彻底。
     第二部分,农作物病原微生物的基因控制研究
     培育和推广抗病品种是防治作物病害最经济、安全和有效的途径,其关键在于发掘和利用新的抗性资源。小麦白粉病是小麦三大病害之一,严重威胁着小麦生产。小麦野生近缘物种簇毛麦所携带的抗白粉病基因Pm21是目前最优秀的小麦白粉病抗源,但对其遗传基础尚缺乏足够的认识。论文借助比较基因组学高效开发携带Pm21基因的6VS缺失片段FL0.45-0.58及附近的CISP标记,构建高密度比较基因组图谱,进而采用RGA克隆法获得Pm21候选基因。研究的主要内容如下:
     1、簇毛麦抗白粉病基因Pm21的精细定位
     论文对已报道的4个6VS标记进行缺失定位,将携带Pm21基因的缺失片段FL0.45-0.58定位于标记Xcinau188和CINAU91之间。对现有的12个6VS标记在二穗短柄草基因组中进行电子定位,构建低密度比较基因组图谱。选择二穗短柄草第3号染色体短臂(3BdS)上连续的200个基因作为目标区,经共线性分析后,针对其中的69个基因设计了94对CISP引物,筛选到22个6VS特异性CISP标记。缺失定位分析表明,4个CISP标记定位于缺失片段FL0.58-1.0,10个定位于FL0.45-0.58,8个定位于FL0-0.45,从而将携带Pm21基因的FL0.45-0.58精细定位于CISP
     标记6VS-CISP027与6VS-CISP145之间,并构建了高密度比较基因组图谱。2、采用RGA克隆法克隆Pm21候选基因
     研究以植物R基因保守的NBS结构域作为种子序列,对二穗短柄草全基因组中的R基因进行鉴定,发现全基因组中存在299个R基因,其中3BdS染色体上有30个R基因,其结构以CC-NBS-LRR和NBS-LRR为主。根据高密度比较基因组图谱,将二穗短柄草的R5-R8基因视为簇毛麦Pm21基因的同源物,针对其保守序列设计简并引物,采用RGA克隆法从簇毛麦中获得3个R基因片段。缺失定位分析表明,仅Hv-R1基因定位于缺失片段FL0.45-0.58。利用RT-PCR技术进行转录分析,发现Hv-R1基因能组成型表达,并受白粉菌诱导增强表达。利用TAIL-PCR技术获得完整的Hv-R1基因,全长为5309bp,编码区为2568bp,其中内含子为250bp。Hv-R1基因编码的蛋白质为855个氨基酸残基,与二穗短柄草R5-R7基因的编码蛋白具有很高的同源性(72%-77%)。蛋白质结构域分析表明,簇毛麦Hv-R1基因为典型的CC-NBS-LRR类R基因。启动子模序分析发现,Hv-R1基因上游除了CAAT-box和(?)ATA-box,还有W-box、MYB和MYC转录因子识别位点等多种抗病相关的启动子模序,它们可能对Hv-R1基因起重要的调控作用。研究不仅为Pm21候选基因的功能鉴定奠定了良好的基础,也为克隆孤儿作物中的目的基因提供了新的思路和方法。
     研究揭示了外源性羟基自由基杀灭大肠杆菌、枯草芽孢杆菌、芽孢的生物学效应及作用机理,并构建了能用于监测羟基杀菌效果的基因工程菌,为外源性羟基自由基控制农业有害微生物提供了重要依据。本研究还采用基于比较基因组学的RGA克隆法从簇毛麦中获得了Pm21候选基因,为其功能鉴定奠定了基础,也为利用该基因培育抗病品种、控制小麦抗白粉病提供了必要的依据。
China is a large agricultural country. Development of agriculture is the basis for economic growth. Agricultural harmful microorganisms can attack crops and contaminate agricultural products in various aspects of agricultural production. The harmful microorganisms will cause severe crop failures, quality decline of agricultural production and huge economic losses. They may also produce toxins and do harm to human and animals. Furthermore, Agricultural harmful microorganisms will contaminate the environment causing potential long-term risk to human health, even affecting sustained and stable development of economy.
     There are many physical or chemical methods for controlling of agricultural harmful microorganisms; however, there are different defects of the methods in application. Sometimes, physical methods could not entirely kill microbes, especially bacteria producing spores. Chemical methods usually could cause environmental pollution.
     In this study, we propose to apply environment-friendly technologies to control agricultural harmful microorganisms. We can utilize advanced oxidation technology (AOT) to sterilize the raw materials, wastes and excreta in agricultural production, or sterilize the progress rooms or storage room for agricultural products. We can also apply resistance gene for crop breeding, which contribute to controlling of plant pathogens and decreasing or avoiding environmental pollution and health risk causing by mass farm chemicals.
     This paper includes the two following sections:control of harmful microorganisms using exogenous hydroxyl radicals and control of plant pathogens by disease resistance genes.
     Section Ⅰ Control of Harmful Microorganisms Using Exogenous Hydroxyl Radicals
     Advanced oxidation technology can produce hydroxyl radicals by reactions. Hydroxyl radical, a strong oxidant, can oxidate all kinds of organics and degraded them in to water, carbon dioxide and other harmless substances. In this paper, hydroxyl radicals were generated by generated by strong ionization discharge. As the models, Escherichia coli (Gram-negative bacteria), Bacillus subtilis (Gram-positive bacteria) and its spores were used to reveal the biological effects and mechanisms of exogenous hydroxyl radicals on agricultural harmful microorganisms. The major works are as the follows:
     1. Biological effects and mechanisms of exogenous hydroxyl radicals on Gram-negative bacteria
     E. coli were treated by exogenous hydroxyl radical solutions with different concentrantion. The results showed that0.4mg/L hydroxyl radical solution could entirely kill bacteria. It indicated that hydroxyl radical could efficiently kill Gram-negative bacteria. The assays on biomolecules (including DNA, RNA and protein) revealed that hydroxyl radical could enter the cell and destroy these biomolecules. The assays of cellular electrolytes leakage and MDA contents indicated that hydroxyl radical could lead to membranes damage. Cellular structures were also observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that cells were deformed and a great space appeared between the bacterial cell wall and membrane in the sample treated by0.2mg/L hydroxyl radical solution. After treated by1.0mg/L hydroxyl radical solution, bacteria kept rod-shaped; however, irregular wrinkles appeared on the surface of cells. Furthermore, the nucleoid changed vague, even disappeared in cells treated by hydroxyl radicals. The above results revealed that, exogenous hydroxyl radicals kill Gram-negative bacteria by damaging intracellular biomolecules and extracellular structures including membrane and cell wall.
     2. Biological effects and mechanisms of exogenous hydroxyl radicals on Gram-positive bacteria
     The study on lethal effects showed that exogenous hydroxyl radicals could also efficiently kill B. subtilis and its spores; however, the lethal concentrations were0.8mg/L and1.0mg/L, respectively, which were more higher than that (0.4mg/L) on E. coli. Under the SEM, treated B. subtilis cells were still rod-shaped. Like E. coli, wrinkles appeared on the surface of cells treated by0.2mg/L hydroxyl radical solution. After treated by1.0mg/L hydroxyl radical solution, wrinkles were more clear and regular. Under the TEM, the nucleoid become vague after treated by hydroxyl radicals. The SEM results showed that0.4mg/L hydroxyl radical solution could not lead to obvious change on the surface of spores. After treated by1.0mg/L hydroxyl radical solution, violent change was observed on the spores. Spores become small, about one ninth of the controls, and had many granules on the surface. The TEM results revealed that the surface structure of damaged spore were in disintegration and the inside of spore was showed in deep color, which indicated that the inside of spore with high-density. We proposed that the cell wall of Gram-positive bacteria and spore wall were also the major target attacked by hydroxyl radicals.
     3. Tracing the lethal effect of hydroxyl radicals on E. coli by green fluorescence from EGFP.
     Using genetic engineering method, recombinant enhanced green fluorescent protein (EGFP) was prepared and the engineered bacteria E. coli-EGFP strain was constructed in this study. In vitro, hydroxyl radical solution could efficiently decrease the green fluorescence intensity of purified recombinant EGFP. When treated by0.2mg/L hydroxyl radical solution, the fluorescence intensity was48.25%. When the concentration of hydroxyl radical reached to0.4mg/L, the fluorescence signal disappeared. In vivo, the fluorescence intensity deceased to33.22%after treated by0.3mg/L hydroxyl radical solution. When the concentration of hydroxyl radical reached to0.8mg/L, the fluorescence signal disappeared. Combined with the lethal effect on engineered bacteria, relative fluorescence intensity was related to mortality of engineered bacteria when the concentration range of hydroxyl radical reached was0.2to1.0mg/L. The data met the curve equation:y=0.0009x2-0.0276x+0.0525(R2=0.9923). This result indicated that the lethal effect of hydroxyl radical solution on engineered bacteria could be evaluated by fluorescence signal of EGFP.
     Section Ⅱ Control of crop pathogens by disease resistance genes
     Breeding and application of resistant cultivars is the most economical, safe and effective way to control crop disease. The key of this way is to discover and use new resistance resources. Wheat powdery mildew, one of the most severe diseases, is a great threat to wheat production. Haynaldia villosa, a wild relative of wheat, carres Pm21gene conferring the highest resistance to wheat powdery mildew. However, there is little known about Pm21gene. This paper attempts to develop CISP markers around6VS bin FL0.45-0.58carring Pm21gene based on comparative genomics and construct a high-density comparative genomic map. According to the map, we try to clone the Pm21candidate gene using the RGA method. The major works are as the follows:
     1. Fine-localization of Pm21gene in H. villosa
     In this paper, four reported6VS-specific markers were utilized to perform chromosome localization analysis by using the deletion materials. It indicated that chromosome bin FL0.45-0.58carring Pm21gene was between the marker Xcinau188 and CINAU91. The126VS markers reported could be localized to Brachypodium distachyon chromosomes. And a low-density comparative genomics map was constructed. In the target region of the short arm of B. distachyon chromosome3(3BdS), two hundred genes was selected to analyzed the colinearity between B. distachyon and rice. Among them,69genes with good colinearity were used to designed94CISP primers, and226VS-specific markers were founded. Four CISP markers were further localized on the6VS bin FL0.58-1.0, ten on FL0.45-0.58and8on FLO-0.45. So the bin FL0.45-0.58carring Pm21gene was between the CISP marker6VS-CISP027and6VS-CISP145. A high-density comaparative genomics map were further constructed.
     2. Cloning of Pm21candidate gene using the RGA method.
     As seed sequences, the conserved NBS domains of plant resistance (R) genes were used to perform BLAST analysis. In B. distachyon genome,299R genes were found. Among them,30R genes were on the3BdS chromosome. According to the high-density comaparative genomics map, only R5-R8gene locus corresponded to the region of6VS FLO.45-0.58in H. villosa. The conserved sequences of R5-R7were used to design degenerate primers, and three RGA fragments were PCR-amplified from H. villosa. Among them, only Hv-R1was localized on the bin FL0.45-0.58. Transcriptional analysis showed that Hv-R1constitutively expressed and the expression level was enhanced after inoculation by Blumeria graminis f. sp. tritici (Bgt). The full length sequence was obtained by TAIL-PCR. The result showed that Hv-R1gene was5309bp in length wih a250-bp intron and the coding region was2568bp in length. The predicted protein,855aa in length, had high homology (72%-77%) with R5-R7genes of B. distachyon. Protein domain analysis revealed that Hv-R1was with the classic CC-NBS-LRR domains. Promoter motif analysis indicated that CAAT-box, TATA-box, W-box, MYB and MYC transcription factor motif existed in the upstream of Hv-R1gene. These motifs might play critical roles in the expression regulation of Hv-R1gene. This study will contribute to revealing the function of Hv-R1gene and providing a new strategy for cloning of target gene in orphan crops.
     These researches revealed the lethal effects and mechanisms of exogenous hydroxyl radicals on E. coli, B. subtilis and its spores, and constructed engineered bacteria with green fluorescence for fast tracing lethal effect of exogenous hydroxyl radicals. These results provided a basis for green controlling of agricultural harmful microorganism by using exogenous hydroxyl radicals. In this paper, a Pm21candidate gene, Hv-R1was obtained from H. villosa using a RGA cloning method combined with comparative genomics. This work contributed to discoving the function of the candidate R gene and made a basis for breeding applification of this gene in controlling wheat powdery mildew.
引文
1. Vighi M, Finizio A, Villa S. The evolution of the Environmental Quality concept:from the US EPA Red Book to the European Water Framework Directive. Environ Sci Pollut Res Int 2006;13:9-14
    2.叶鸿剑,王鑫,周银贞.乳中芽孢杆菌对乳制品的危害及其检测方法的研究.科技资讯2006:17:150
    3.胡贻椿,岳田利,袁亚宏等.果汁中脂环酸芽孢杆菌(Alicyclobacillus spp.)的危害及其控制.食品科学2008;29:364-368
    4. Martin DJ, Denyer SP, McDonnell G, Maillard JY. Resistance and cross-resistance to oxidising agents of bacterial isolates from endoscope washer disinfectors. J Hosp Infect 2008;69:377-383
    5. Mead PS, Slutsker L, Dietz V, et al. Food-related illness and death in the United States. Emerg Infect Dis 1999;5:607-625
    6. Rendon MA, Saldana Z, Erdem AL, et al. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci U S A 2007; 104:10637-10642
    7. Grad YH, Lipsitch M, Feldgarden M, et al. Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe,2011. Proc Natl Acad Sci U S A 2012;109:3065-3070
    8.何文艳,裘娟萍,赵春田.蜡状芽孢杆菌毒株的致病机理及检测方法.科技通报2012:28:86-90
    9.章国渝.霉菌毒素与肿瘤.生物学通报1999;34:16-18
    10.王海燕,孔建,中效诚等.病原微生物及其毒素对生态环境的污染与控制.河南农业科学2000;2:25-26
    11.郭新彪,刘君卓.常用消毒剂和消毒方法.北京:化学工业出版社;2003
    12. Lacab A, Zoe Mousiaa, Mario Diazb, Colin Webba, Severino S. Pandiellaa. Distribution of microbial contamination within cereal grains. Journal of Food Engineering 2006;72:332-338
    13.孙贤波,赵庆祥,曹国民.高级氧化法的特性及其应用.中国给水排水2002:18:33-35
    14.邓淑芳,白敏冬,白希尧等.羟基自由基特性及其化学反应.大连海事大学学报2004:30:62-64
    15.白希尧,张芝涛,白敏冬等.高气压强电离放电等离子体学科形成及应用展望.自然 杂志2000;22:156-160
    16. Ruiz GM, Rawlings TK, Dobbs FC, et al. Global spread of microorganisms by ships. Nature 2000;408:49-50
    17.周晓见,白敏冬,邓淑芳等.羟基药剂杀灭压载水单胞生物研究.交通环保2002;23:1-3
    18.周晓见,白敏冬,邓淑芳等.羟基杀灭赤潮裸甲藻研究.海洋环境科学2004;23:64-66
    19.白敏冬,张芝涛,吕吉斌等.海上围隔进行羟基杀灭赤潮生物的研究.海洋科学2006;30:54-63
    20.郑耀通.氯与金属离子协同杀灭水中微生物的效果观察.中国消毒学杂志2004;21:204-207
    21.冯遵成.臭氧对物体表面IBV冠状病毒的杀灭效果的研究.中国海洋大学学报2004;34:1045-1048
    22. Oliver R, Ganf G. The Ecology of Cyanobacteria. Netherlands:Kluwer Academic Publishers; 2000
    23. Sakamoto T, Delgaizo VB, Bryant DA. Growth on urea can trigger death and peroxidation of the cyanobacterium Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 1998;64:2361-2366
    24. Allakhverdiev SI, Murata N. Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of Photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 2004;1657:23-32
    25. Alam ZB, Otaki M, Furumai H, Ohgaki S. Direct and indirect inactivation of Microcystis aeruginosa by UV-radiation. Water Res 2001;35:1008-1014
    26.张芝涛,白希尧,沈欣军等.羟基自由基对微生物细胞的核酸、蛋白质、葡萄糖作用研究.海洋技术2003;2:22-25
    27. Bent AF, Kunkel BN, Dahlbeck D, et al. RPS2 of Arabidopsis thaliana:a leucine-rich repeat class of plant disease resistance genes. Science 1994;265:1856-1860
    28. Bent AF. Plant Disease Resistance Genes:Function Meets Structure. Plant Cell 1996;8:1757-1771
    29. Dodds PN, Lawrence GJ, Ellis JG. Six amino acid changes confined to the leucine-rich repeat beta-strand/beta-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell 2001;13:163-178
    30. Warren RF, Henk A, Mowery P, Holub E, Innes RW. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 1998;10:1439-1452
    31. Kobe B, Deisenhofer J. The leucine-rich repeat:a versatile binding motif. Trends Biochem Sci 1994;19:415-421
    32. Dinesh-Kumar SP, Tham WH, Baker BJ. Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Natl Acad Sci U S A 2000;97:14789-14794
    33. Feuillet C, Schachermayr G, Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 1997;11:45-52
    34. Scheer JM, Ryan CA, Jr. The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci U S A 2002;99:9585-9590
    35. Hardie DG PLANT PROTEIN SERINE/THREONINE KINASES:Classification and Functions. Annu Rev Plant Physiol Plant Mol Biol 1999;50:97-131
    36. Deslandes L, Olivier J, Theulieres F, et al. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci U S A 2002;99:2404-2409
    37. Brandwagt BF, Mesbah LA, Takken FL, et al. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc Natl Acad Sci U S A 2000;97:4961-4966
    38. Kawchuk LM, Hachey J, Lynch DR, et al. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A 2001;98:6511-6515
    39. Richly E, Kurth J, Leister D. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 2002;19:76-84
    40. Zhou T, Wang Y, Chen JQ, et al. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 2004;271:402-415
    41. Tanksley SD, Ganal MW, Martin GB. Chromosome landing:a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 1995;11:63-68
    42. Baker B, Schell J, Lorz H, Fedoroff N. Transposition of the maize controlling element "Activator" in tobacco. Proc Natl Acad Sci U S A 1986;83:4844-4848
    43. Cao A, Xing L, Wang X, et al. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci U S A 2011;108:7727-7732
    44. Yu YG, Buss GR, Maroof MA. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci U S A 1996;93:11751-11756
    45.王石平,刘克德,王江等.用同源序列的染色体定位寻找水稻抗病基因DNA片段. 植物学报1998;40:42-50
    46. Qi X, Cui F, Li Y, et al. Molecular tagging wheat powdery mildew resistance gene Pm21 by EST-SSR and STS markers. Mol Plant Breed 2010:doi:10.5376/mpb.2010,5301.0004.
    47. Feuillet C, Keller B. Comparative genomics in the grass family:molecular characterization of grass genome structure and evolution. Ann Bot 2002;89:3-10
    48. Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002;296:92-100
    49. Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002;296:79-92
    50. Mateos-Hernandez M, Singh RP, Hulbert SH, et al. Targeted mapping of ESTs linked to the adult plant resistance gene Lr46 in wheat using synteny with rice. Funct Integr Genomics 2006;6:122-131
    51. Sorrells ME, La Rota M, Bermudez-Kandianis CE, et al. Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 2003;13:1818-1827
    52. La Rota M, Sorrells ME. Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 2004;4:34-46
    53. Hasterok R, Marasek A, Donnison IS, et al. Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics 2006;173:349-362
    54. Vogel JP, Gu YQ, Twigg P, et al. EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor Appl Genet 2006;113:186-195
    55. Huo N, Gu YQ, Lazo GR, et al. Construction and characterization of two BAC libraries from Brachypodium distachyon, a new model for grass genomics. Genome 2006;49:1099-1108
    56. Huo N, Lazo GR, Vogel JP, et al. The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct Integr Genomics 2008;8:135-147
    57. Gu YQ, Ma Y, Huo N, et al. A BAC-based physical map of Brachypodium distachyon and its comparative analysis with rice and wheat. BMC Genomics 2009; 10:496
    58. Kumar S, Mohan A, Balyan HS, Gupta PK. Orthology between genomes of Brachypodium, wheat and rice. BMC Res Notes 2009;2:93
    59. Huo N, Vogel JP, Lazo GR, et al. Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat. Plant Mol Biol 2009;70:47-61
    60. Yu GT, Cai X, Harris MO, et al. Saturation and comparative mapping of the genomic region harboring Hessian fly resistance gene H26 in wheat. Theor Appl Genet 2009;118:1589-1599
    61. Zhang H, Guan H, Li J, et al. Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene M13D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet 2010;121:1613-1621
    62.刘子妃,朱婕,华为等.小麦抗白粉病基因Pm42的EST连锁图构建和比较基因组学分析.作物学报2011;37:1569-1576
    63. Draper J, Mur LA, Jenkins G, et al. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 2001;127:1539-1555
    64. Initiative TIB. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010;463:763-768
    65.何华纲,朱姗颖.分子生物学与基因工程实验教程.北京:中国轻工业出版社;2011
    66. Miczak A, Kaberdin VR, Wei CL, Lin-Chao S. Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc Natl Acad Sci U S A 1996;93:3865-3869
    67. Wang Y-L, Wang X-D, Zhao B, Wang Y-C. Enhancing antioxidative capacity of Lepidium meyenii calli by addition of methyl salicylate to culture medium. Acta Physiologiae Plantarum 2007;29:417-423
    68.柴丽娜,齐小明.冬小麦幼苗细胞膜透性的变化与品种抗旱性的关系及测定.北京农学院学报1999;14:60-63
    69. Nicholson W, Setlow P. Molecular biological methods for Bacillus. New York:John Wiley; 1990
    70.谢云涛,马国平,何玉凤等.BPR-硫脲催化光度法对羟基自由基的检测及清除作用.化学通报2006;6:458-461
    71.王颖臻,丁中涛,曹秋娥.偶氮胭脂红G共振光散射法测定羟自由基的研究及应用.分析试验室2007;26:68-71
    72.张照昱,邢俊德,张朝峰等.孔雀绿褪色光度法检测Fenton反应产生的羟自由基.太原理工大学学报2009;40:113-116
    73.朱兴松.甲基紫光度法测定Fenton体系中产生的羚自由基.哈尔滨商业大学学报2003;19:592-594
    74. Sambrook J, Russell D. Molecular cloning:a laboratory manual (3rd eds):Cold Spring Harbor Laboratory Press; 2001
    75. Skrlj N, Vidrih Z, Dolinar M. A universal approach for promoter strength evaluation supported by the web-based tool PromCal. Anal Biochem 2009;396:83-90
    76. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 1992;111:229-233
    77. Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 1997;73:2782-2790
    78. Scott KP, Mercer DK, Glover LA, Flint HJ. The green fluorescent protein as a visible marker for lactic acid bacteria in complex ecosystems. FEMS Microbiol Ecology 1998;26:219-230
    79. Roberto FF, Barnes JM, Bruhn DF. Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta 2002;58:181-188
    80. Ikenoa S, Oginoa C, Itoa T, Shimizu N. Detection of benzene derivatives by recombinant E. coli with Ps promoter and GFP as a reporter protein. Biochemical Engineering Journal 2003;5:193-197
    81. Qi LL, Wang SL, Chen PD, Liu DJ, Gill BS. Identification and physical mapping of three Haynaldia villosachromosome-6V deletion lines. Theor Appl Genet 1998;97:1042-1046
    82.陈升位,陈佩度,王秀娥.利用电离辐射处理整臂易位系成熟雌配子诱导外源染色体小片段易位.中国科学C辑2008;38:215-220
    83.庄丽芳,宋立晓,冯祎高.小麦EST-SSR标记的开发和染色体定位及其在追踪黑麦染色体中的应用.作物学报2008;34:926-933
    84. Mullan DJ, Platteter A, Teakle NL, et al. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 2005;48:811-822
    85. Song W, Xie C, Du J, et al. A "one-marker-for-two-genes" approach for efficient molecular discrimination of Pm12 and Pm21 conferring resistance to powdery mildew in wheat. Mol Breeding 2009;23:357-363
    86.陈升位,陈佩度.簇毛麦6VS染色体短臂特异性EST标记的开发及缺失定位.麦类作物学报2010;30:789-795
    87. Cao A, Wang X, Chen Y, Zou X, Chen P. A sequence-specific PCR marker linked with Pm21 distinguishes chromosomes 6AS,6BS,6DS of Triticum aestivum and 6VS of Haynaldia villosa. Plant Breeding 2006;125:201-205
    88. Chen Y, Wang H, Cao A, Wang C, Chen P. Cloning of a resistance gene analog from wheat and development of a co-dominant PCR marker for Pm21. Plant Biol 2006;48:715-721
    89.王春梅,别同德,陈全战等.簇毛麦6V染色体短臂特异分子标记的开发和应用.作 物学报2007;33:1595-1600
    90.别同德.利用花粉辐射诱导小麦-亲缘物种属间染色体易位.In:南京农业大学;2007
    91. Feltus FA, Singh HP, Lohithaswa HC, et al. A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops. Plant Physiol 2006;140:1183-1191
    92. Zeid M, Yu JK, Goldowitz I, et al. Cross-amplification of EST-derived markers among 16 grass species. Field Crop Res 2010;118:28-35
    93. Liu YG, Whittier RF. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 1995;25:674-681
    94. Liu YG, Mitsukawa N, Oosumi T, Whittier RF. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 1995;8:457-463
    95. Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 2007;43:649-650,652,654 passim

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700