用户名: 密码: 验证码:
基于DEM的地形尺度相似性度量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分析尺度因其与DEM数据分析、解释与应用等内容相关联而在数字地形分析的尺度体系中具有重要地位。如何采用多尺度分析方法刻画地形具有自相似、多层次、多尺度等基本特征,并对其进行量化与分析一直是地学研究的重点与难点。由于受到数据和方法的限制,现有的地形尺度特征研究方法还不能有效地刻画地形的相似性特征。本论文从频率域的视角出发,以陕西省1:50,000比例尺DEM为基本数据源,借鉴计算机视觉、景观生态学、图像处理等相关理论与方法,提出了基于傅立叶频谱分析、连续小波变换(Continuous Wavelet Transformation,CWT)的地形尺度相似性度量方法,分析了陕西省地形尺度相似性的空间分布规律,验证了论文的计算结果。论文的主要研究内容和成果如下:
     (1)基于傅立叶频谱的地形尺度相似性研究
     -维地形剖面线直观地刻画了地形的起伏特征,论文基于地形剖面数据,采用傅立叶频谱法,分析了陕西省的地形尺度相似性特征。结果表明:地形剖面的傅立叶功率谱与频率存在双对数线性相关关系,地形尺度相似性程度在陕北黄土高原区域较高,在宝鸡-汉中安康一带、秦岭一带次之,而在陕北黄土风沙区、关中盆地较低,该趋势与地表的形态特征具有较高的一致性。
     (2)基于连续小波的地形尺度相似性研究
     连续小波变换能够以尺度连续的方式刻画地形相似性特征。论文针对地形的空间各向异性,设计了面向一维小波分析的剖面线处理方法,构建了基于连续小波的地形尺度相似性度量模型,对比分析了不同小波基函数对于地形尺度相似性度量的影响。实验结果显示,二维连续小波在地形尺度相似性度量方面明显优于一维连续小波;依据分析结果,二维连续母小波可以分为两类,第一类为mexican2d, esmex2d, wheel2d, dergauss2d, gaussz2d, dog2d, sdog2d, sqdog2d, endstop2,第二类为,es2cauchy2d, endstop1,第一类二维母小波对地形尺度相似性度量能力优于第二类;二维连续小波变换模局部极值点不仅能够刻画地形尺度相似性,而且能反映局部地形变化的空间尺度。
     (3)陕西省地形尺度相似性空间分异研究
     在对比分析基于傅立叶频谱分析、连续小波分析结果数据的基础上,研究了地形尺度相似性在整个陕西省的空间分布规律,研究结果显示:陕西省地形尺度相似性呈现有序的空间分异特征,基于傅立叶频谱分析和连续小波分析方法得到的陕西省地形尺度相似性具有较高的一致性,均表现为在北部丘陵沟壑区和陕西省东南部的低山区较高,汉中盆地、安康一带次之,在北部的风沙过渡区、关中盆地一带较低,这种特征与地表形态的空间分异具有较高的相关性。傅立叶频谱分析在度量地形平坦区域、陕北的黄土高原区域的尺度相似性较好,而二维连续小波在度量地表破碎的黄土丘陵区具有优势。
     基于频率域的地形特征分析方法,从一个新的视角揭示了地形的自相似、多尺度特征,得到的地形尺度相似性度量值具有良好的空间连续性,有助于进一步深入认识地表形态的本质特征;其结果可为地表形态的量化提供参考,为地貌类型的划分提供依据。本文所构建的面向地形尺度相似性的频率域分析方法进一步丰富和完善了数字地形分析的方法体系。
Analysis scale is one of the five foundmental scale issues in DEM data analysis, data interpretation and application. The methods for characterizing and analyzing such basic characteristics like self-similarity, hierarchy and multi-scale properties possed by the landform morphology become difficult and important issues. The now existing researches of multi-scale terrain analysis are either limited by the data sources or by the methods used for landform morphology analysis, thus these researches can not fulfil requirements of characterizing landform morphology scale similarity. In the thesis, a series of DEMs in the whole Shannxi province are selected as the source data. The DEMs cover the whole Shannxi province with671DEMs of25m-resolution. These DEMs guarantee the complexity, diversity, integrity and availability of the landform data. A series of Fourier frequency domain based methods are employed to analyze the terrain data sets. The methods include fouries spectrum analysis, continuous wavelet analysis and spatial point pattern analysis. These methods are investigated to analyze the similarity characteristics and their spatial distributions of the loess landforms, the spatial point patterns and their spatial distribution in the whole area over different scales. The paper adopts the similarity to landform classification and the accuracy evaluation.
     The main contents and achievements of the thesis are as follows:
     (1) Research on landform scale similarity by Fourier spectrum analysis
     Profiles are the most intuitive reflection of fluctuations of terrain features and landform morphology. The thesis proposes a method based on Fourier spectrum analysis and its second order statistics the profiles for landform scale similarity characterizing. Experiments in the whole area of Shannxi province show that:there is obvious linear relationship between the Fourier power spectrum and the frequencies of the landform profile. The linear relationship reflects the landform scale similarity. Experiments show that landform scale similarity is high in the northern area of loess plateau, Baoji and Hanzhong Basin belts and the Qin mountain zones of Shannxi province; while the landform scale similarity is low in the inbetweens areas of loess and sandy landforms in the northern area of Shannxi province, Guanzhong Basin and the Hanzhong Basin. This spatial distribution of landform scale similarity has high coincidence with the landform complexity.
     (2) Research on landform scale similarity by continuous wavelet analysis
     The wavelet transform modules maxima reflect landform scale similarity. Firstly, this thesis designs a workflow for one dimensional profile data acquisizition and preprocessing. Then the thesis proposes a new model which could be used to characterizing landform scale similarity by construction and analysis of the wavelet transformation scale representation—scale space. Finall comparisons among different mother wavelets in landform scale similarity characterizing are investigated. The experiments in the Shannxi province show that there exists high correspondence by different wavelets in different test areas. The experiments show that the landform scale similarity characterized by two dimensional profiles Fourier spectrum analysis is more obvious the the one dimensionl cases. The mother wavelets used for landform scale similarity characterizing could be departed into two kinds. The first kind wavelets include mexican2d, esmex2d, wheel2d, dergauss2d, gaussz2d, dog2d, sdog2d, sqdog2d and endstop2; while the other kind of mother wavelets includes es2cauchy2d and endstopl. The first kind performs bettern than the second ones. The two dimensional wavelet transform modoule maxima not only characterize landform scale similarity, but their spatial scale as well.
     (3) Research on spatial distribution regularity of landform scale similarity in Shannxi province
     By comparing the results obtained by the methods in the thesis, namely fourier,2D continuous wavelet transform (CWT), the thesis investigates the spatial distributions regularity of landform scale similarity in the whole Shannxi province. The experiments show that there are orderly spatial variations of landform scale similarity. There is high coincidence between results achieved by Fourier spectrum analysis and continuous wavelet transformation analysis. They all trend higher in the gully and hilly area in the northern loess plateau, low and hilly area in southeastern part of Shannxi province. While the landform scale similarity trends low in areas like Hanzhong&Ankang Basin, Guanzhong Basin and inbetween areas of sandy and loess areas. These characteristics reflect their terrain relief. Experiments show that Fourier and wavelet based methods perform better than the traditional statistical methods, the Fourier based method performs bettern than the wavelet based method in the plain area while the wavelet based method behaves better in the loess hilly area.
     The frequency domain based multi-scale analysis method reflects similarity, multi-scale characteristics of landform morphology in a new scope. There is high continuity in landform scale similarity quantitation and it benefits cognition of landform origins. The spatial distribution of landform scale similarity would offer helpful reference for landform classification and geographical comprehensive zoning. The frequency domain based landform scale analysis method would enrich and improve the methodology of digital terrain analysis.
引文
[1]Allain, C., Cloitre, M.,1991. Characterizing the lacunarity of random and deterministic fractal sets [J]. Physical Review A,1991,44:3352-3358.
    [2]Anthony P. Lyons, Warren L. J. Fox, Thomas Hasiotis, Eric Pouliquen. Characterization of the Two-Dimensional Roughness of Wave-Rippled Sea Floors Using Digital Photogrammetry [J], IEEE Journal of Oceanic Engineering,2002.27(3):515-124.
    [3]Antonio torralba, Aude Oliva. Depth estimation from image structure [J]. IEEE transactions on pattern analysis and machine interlligence,2003b, 24(9):1-13.
    [4]Antonio Torralba, Aude Oliva. Statistics of natural image categories [J], Network:computation in neural systems,2003a,391-412.
    [5]Antonio Torralba, Pawan. Sinha. Indoor scene recognition [R]. AI Memo 2001-015, CBCL Memo 202,2001:1-17.
    [6]Arneodo, A., Decoster, N., S.G. Roux. A wavelet-based method for multifractal image analysis. I. Methodology and test applications on isotropic and anisotropic random rough surfaces [J], Eur. Phys. J. B,2000,15, 567-600.
    [7]Arneodo, A., F. Argoul, J. Elezgaray, G. Grasseau. Wavelet transforms analysis of fractals:application to nonequilibrium phase transitions [J], Nonlinear dynamics,1988a.
    [8]Arneodo, A., G. Grasseau & M. Holschneider Wavelet transform of multifractals [J]. Phys. Rev. Lett.1988b,61,2281-2284.
    [9]Aude Oliva, Antonio Torralba. Modeling the shape of the scene:a holistic representation of the spatial envelope [J], international journal of computer vision,2001,42(3):145-175.
    [10]Bin Luo, Jean-Francois Aujol, Yann Gousseau. Local scale measure for remote sensing images [J], SSVM 2009, LNCS 5567:856-867.
    [11]Bradshaw, G. A., Spies, T.A. Characterizing canopy gap structure in forests using wavelet analysis [J]. Journal of Ecology,1992,80:205-215.
    [12]C. Thompson, Jacky Croke, Ingrid Takken. A catchment-scale model of mountain stream channel morphologies in southeast Australia [J], Geomorphology,2008,95:119-144.
    [13]C.G. Harris, M.J. Stephens. A combined corner and edge detector [C], Proceedings Fourth Alvey Vision Conference, Manchester,1988:147-151.
    [14]Christophe Damerval, Sylvain Meignen. Blob detection with wavelet maxima lines [J], IEEE SIGNAL PROCESSING LETTERS,2007, 14(l):39-42.
    [15]Chuansheng Liu, Wanchang Zhang, Bin Yong. Using Lacunarity Index and Wavelet Analysis to Characterize Scale-dependent Landscape Heterogeneity of Hotian Oasis in China [J], proceeding of IEEE international geosciences and remote sensing symposium.2007:3408-3411.
    [16]Condit R, Ashton PS, Baker P et al. Spatial patterns in the distribution of tropical tree species [J], Science,2000,288:1414-1418.
    [17]Daniel Mann. On patterned ground [J], Science,2003,354:299.
    [18]David G. Lowe, Object recognition from local scale-invariant features [C], International Conference on Computer Vision, Corfu, Greece,1999, 1150-1157.
    [19]David J.Field. Relations between the statistics of natural images and the response properties of cortical cells [J], Optical society of America,1987, 4(12):2379-2394.
    [20]David Lowe. Object recognition from local scale-invariant features [J]. In Proceedings of the Seventh IEEE International Conference on Computer Vision (ICCV),1999,2:1150-1157.
    [21]Diggle P J. Statistical analysis of spatial point patterns [M], New York: Academic Press,1983.
    [22]Dudgeon J.E., Gopalakrishnan R. Fractal-based modeling of 3D terrain surfaces [C], Proceedings of the IEEE Southeastcon 96. Bringing Together Education, Science and Technology,1996, Tampa, FL, USA:246-252.
    [23]Dungan J L, Perry J N, Dale M R T, et al. A balance view of scale in spatial statistical analysis [J], Ecography,2002,25:626-640.
    [24]F. Bojie, Yang Zhijian and Wang Yanglin et al. A mathematical model of soil moisture spatial distribution on the hillslope of the Loess Plateau [J]. Science in China (D),2001,44 (5):395-402.
    [25]F. Tang, H. Tao. Fast Multi-scale Template Matching Using Binary Features [J]. IEEE workshop on application of computer vision,2007:36-36.
    [26]G Merle 1, F Dubouloz-Monnet, P Lambert, A C Grillet. Global and multi-scale image analysis using power spectra [J]. Institute of physics publishing measurement science and technology,2005,16:805-812.
    [27]G. Bloschl. M. Sivapalan. Scale issues in hydrological modeling:A review [J]. Hydrol Process,1995.9 (3-4):251-290.
    [28]G. R. Hancock. The impact of depression removal on catchment geomorphology, soil erosion and landscape evolution [J], Earth surface processes and landforms,2008,33:459-474.
    [29]Herzfeld U C, Overbeck C. Analysis and Simulation of Scale-Dependent Fractal Surface with Application to Seafloor Morphology [J]. Computers & Geosciences,1999,25:979-1007.
    [30]I V. Florinsky, G A. Kuryakova. Determination of grid size for digital terrain modelling in landscape investigations—exemplified by soil moisture distribution at a micro-scale [J], International Journal of geographical information science,2000,14,8,815-832.
    [31]J Wood. The geomorphological characterisation of digital elevation models [J], Advances in Cancer Research,1996,104, Publisher:University of Leicester.
    [32]J. Wu. Effects of changing scale on landscape pattern analysis:scaling relations [J]. Landscape Ecology,2006,19(2):125-138.
    [33]J. Wu., Jelinski, D.E., Luck, M., Tueller, P.T. Multiscale analysis of landscape heterogeneity:scale variance and pattern metrics [J]. Geographic Information Sciences,2000,6:6-19.
    [34]J.P. Antoine, P. Carrette, R. Murcnzi, B. Piette. Image analysis with two-dimensional continuous wavelet transform [J], Signal Processing 1993, 31:241-272.
    [35]Jan-Mark Geusebroek, Arnold W. M. Smeulders. A Physical Explanation for Natural Image Statistics [J], International Workshop on Texture Analysis and Synthesis,2002,47-52.
    [36]Jenson S. K. and J. O. Domingue. Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis [J]. Photogrammetric Engineering and Remote Sensing,1988,54 (11): 1593-1600.
    [37]Jianguo Wu, Harbin Li, Orie L. Loucks. Scaling and Uncertainty Analysis in Ecology Methods and Applications [M], Springer,2006, ⅩⅧ.
    [38]Jianguo, W.,1999. Hierarchy and scaling:Extrapolating information along a scaling ladder [J], Canadian Journal of Remote Sensing,25:367-380.
    [39]Jon vopata, James s. Aber, volli kalm. Patterned ground in the culebra range, southern Colorado [J], emporia state research studies,2006,43(1):8-21.
    [40]K. Streib, J W. Davis. Using Ripley's K-function to Improve Graph-Based Clustering Techniques [C], the 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA,20-25 June 2011:2305-2312.
    [41]L. Dragut, T Blaschke. Automated classification of landform elements using object-based image analysis [J], Geomorphology,2006,81 (3-4):330-344.
    [42]Li-Chung Wu, Laurence Zsu-Hsin Chuang, Dong-Jiing Doong. Chia Chuen Kao.Quantification of non-homogeneity from ocean remote-sensing images using two-dimensional continuous wavelet transforms [J], International Journal of Remote Sensing,2011,32(5),1303-1318.
    [43]Longley P A, Batty M. Fractal Measurement and Line Generalization [J], Computers & Geosciences,1989,15(2):167-183.
    [44]M. A. Kessler, et al. Self-organization of sorted patterned ground [J], Science, 2003,380; 299.
    [45]M. C. Burl, T. Stough, W. Colwell. E. B Biehaus et al. Automated Detection of Craters and Other Geological Features [C]. In:Proceedings of the Sixth International Symposium on Artificial Intelligence, Robotics, and Automation in Space,2001:AM 118.
    [46]M. Duval-Destin, M.A. Muschietti and B. Torresani, Continous wavelet decompositions, multiresolution and contrast analysis [J]. SIAM J. Math Anal.24(1993).
    [47]Mandelbrot, B.B. The fractal geometry of nature [M]. W H freeman,1983, New York.
    [48]Mark a. Bishop. SRTM DEM and ASTER GDEM use for the spatial geomorphometric analysis of global sand sea patterns [J], proceedings of geomorphometry 2011:147-150.
    [49]Meisel J E, T.M.G.. Scale detection in real and artificial landscapes using semivariance analysis [J]. Landscape Ecology,1998,13:347-362.
    [50]Michael Schulz, Manfred Mudelsee. REDFIT:estimating red-noise spectra directly from unevenly spaced paleoclimatic time series [J], Computers & Geosciences 28 (2002):421-426.
    [51]N. WANG, C. LU. Two-Dimensional Continuous Wavelet Analysis and Its Application to Meteorological Data [J], Journal of Atmospheric and Oceanic Technology,2010,27:652-666.
    [52]Pierre Dutilleul, Timothy W. Haltigin, Wayne H. Pollard. Analysis of polygonal terrain landforms on Earth and Mars through spatial point patterns [J], Environmetrics,2009; 20:206-220.
    [53]Plotnick R E, G.R.H., O'Neill R. V.. Lacunarity indices as measures of landscape texture [J]. Landscape Ecology,1993,8:201-211.
    [54]Plotnick, R.E., Gardner, R.H., Hargrove, W.W., Prestegaard, K.,Perlmutter, M.. Lacunarity analysis:A general technique for the analysis of spatial patterns [J]. Physical Review E,1996,53:5461-5468.
    [55]Qiming Zhou, Petter Pilesjo, Yumin Chen. Estimating surface flow paths on a ditital elevation model using a triangular facet network [J], Water resources research,2011,47(W07522):1-12.
    [56]Ripley B D, Modeling spatial pattern [J], Journal of the Royal Statistical Society:Series B,1977,39:178-212.
    [57]Ripley B. D. Spatial statistics [M], New York:Wiley,1981.
    [58]Ripley, B.D. The second-order analysis of stationary point processes [J], Journal of Applied Probability,1976,13,255-266.
    [59]S Kienzle. The Effect of DEM Raster Resolution on First Order, Second Order and Compound Terrain Derivatives [J], Transactions in GIS,2004, 8(1):83-111.
    [60]S. Kienzle. The Effect of Grid Cell Size on Major Terrain Derivatives [C]. Proceedings:ESRI User Conference, San Diego, CA,2004:14.
    [61]S. N. Lane, T.D.James, M.D.Crowell. Application of digital photogrammetry to complex topography for geomorphological research [J], Photogrammetric record,2000,16 (95):793-821.
    [62]Schiffers K, Schurr F M, Tielbger K. Dealing with Virtual Aggregation-a New Index for Analysing Heterogen eous Point Patterns [J], Ecography,2008, 31(5):545-555.
    [63]T. Lindeberg. Scale-space [M], Encyclopedia of Computer Science and Engineering (Benjamin Wahed), IV, pages 2495-2504, Hoboken, New Jersey, 2009.
    [64]T. Singh, Vikrant Jain. Tectonic constraints on watershed development on frontal ridges:Mohand Ridge, NW Himalaya, India [J], Geomorphology 106 (2009)231-241.
    [65]Tony Lindeberg. Feature detection with automatic scale selection [J]. International journal of Computer vison,1998,30(2):79-116.
    [66]Turner, M.G. Landscape ecology:living in a mosaic. In:S.I. Dodson et al. (Editors), Ecology [M]. Oxford University Press, New York,1998:78-122.
    [67]Walcott Rachel C., Summerfield M. A. Scale dependence of hypsometric integrals:An analysis of southeast African basins [J], Geomorphology,2008, 96:174-186.
    [68]Whalley W B, Orford J D. The Use of Fractals and Pseudo fractals in the Analysis of Two-dimensional Outlines:Review and Further Exploration [J], Computers & Geosciences,1989,15(20):185-197.
    [69]Wiegand T., K. A. Moloney. Rings, circles and null-models for point pattern analysis in ecology [J]. Oikos 2004,104:209-229.
    [70]Wood J D. The geomorphological characterisation of digital elevation models [D]. University of Leicester, UK, Doctoral Thesis, http://www. soi.city.ac.uk/-jwo/phd.
    [71]Xiangcheng Mi, Haibao Ren, Zisheng Ouyang, Wei Wei et al. The use of the Mexican Hat and the Morlet wavelets for detection of ecological patterns [J], Plant Ecology,2005,179:1-19.
    [72]Yeval Gefen, A.A., Benoit B Mandelbrot. Phase transitions on fractals:Ⅲ. Infinitely ramified lattices [J]. Physical Review A:Mathematical and General, 1984,17:1277-1289.
    [73]艾南山,岳天祥.再论流域系统的信息熵[J],水土保持学报,1988,2(4):1-9.
    [74]卜彦龙,潘亮,沈林成.基于FBM分形特征的快速小波地形模拟算法[J],电子与信息学报,2009(3):537-541.
    [75]蔡博峰,于嵘.景观生态学中的尺度分析方法[J],生态学报,2008,28(5):2279-2288.
    [76]苍学智,汤国安,仲腾,李若殷.山顶点类型及其形态特征数字表达[J],南京师大学报(自然科学版),2010,33(1):136-140.
    [77]常占强,吴立新.基于小波变换和混合熵编码的山区格网DEM数据压缩 [J],地理与地理信息科学,2004,20(1):24-27.
    [78]陈盼盼,张友顺,王春,葛珊珊.基于DEM的山顶点快速提取技术[J],现代测绘,2006,29(2):11-13.
    [79]陈仁喜,赵忠明,王殷行.基于整型小波变换的DEM数据压缩[J],武汉大学学报·信息科学版,2006,31(4):344-347.
    [80]承继成,江美球.流域地貌数学模型[M],北京:科学出版社,1986.
    [81]程维明,柴慧霞,周成虎等.新疆地貌空间分布格局分析[J],地理研究,2009,28(5):1157-1169.
    [82]迟文学,王劲峰,李新虎,廖一兰等.出生缺陷的空间点格局分析[J],环境健康杂志,2007,24(4):238-240.
    [83]崔灵周,朱永清,李占斌.基于分形理论和GIS的黄土高原流域地貌形态量化及应用研究[M].郑州:黄河水利出版社,2006.
    [84]董霖,张永相.多重分形表面特征的小波分析方案[J],表面技术,2004,33(3):59-60.
    [85]范冬冬,李生宇,雷加强,徐新文,代述勇,孙艳伟,杨文,刘小路,刘宝松.塔克拉玛干沙漠腹地高大复杂纵向沙垄区沙丘分形特征[J],干旱区地理,2009,(6):941-947.
    [86]冯平,冯焱.河流形态特征的分维计算方法[J],地理学报,1997,52(4)324-329.
    [87]傅伯杰,陈利项,马克明,王仰麟.景观生态学原理及应用[M],科学出版社,北京,2001:207-228.
    [88]傅伯杰,汪西林.DEM在研究黄土丘陵沟壑区土壤侵蚀类型和过程中的应用[J],水土保持学报,1994,8(3):17-21.
    [89]高艳妮,陈玮,何兴元,李小玉.基于二维小波分析的景观特征尺度识别[J],应用生态学报,2010,21(6):1523-1529.
    [90]郭福涛,胡海清,马志海.应用空间点模式方法研究大兴安岭雷击火空间分布格局[J],生态学报,2009,29(12):6741-6746.
    [91]黄桂芳,刘茂松,徐驰,郁文等.南京市城区景观特征尺度动态[J],应用生态学报,2008,19(3):606-612.
    [92]惠刚盈,李丽,赵中华等.林木空间分布格局分析方法[J],生态学报,2007,27(11):4717-4728.
    [93]李发源.黄土高原地面坡谱及空间分异研究[D],中国科学院博士学位论文,2007,四川:成都.
    [94]李建平,唐远炎.小波分析方法的应用[M],重庆大学出版社,1999:3-8.
    [95]李建平.小波分析与信号处理---理论、应用及软件实现[M],重庆:重庆出版社,1997:46-47,104-124.
    [96]李锐.基于遥感和DEM的典型地貌形态提取研究—以沙漠为例[J],解放军信息工程大学硕士论文,2007,河南:郑州.
    [97]李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J],地理研究,2005,24(11):11-18.
    [98]李双成,高伟明,周巧富,刘逢媛.基于小波变换的NDVI与地形因子多尺度空间相关分析[J],生态学报,2006,26(12):4198-4203.
    [99]李小梅,沙晋明,连江龙.基于小波变换的NDVI区域特征尺度[J],生态学报,2010,30(11):2864-2873.
    [100]李旭涛,彭复员,曹汉强,朱光喜.地形表面的自相似程度与分类感知[J],电子与信息学报,2007,29(6):1480-1482.
    [101]李旭涛,朱光喜,曹汉强,彭复员.各向异性多尺度自相似随机场与地形构建[J],国图象图形学报,2007b,(7):1286-1290.
    [102]刘爱利,汤国安.中国地貌基本形态DEM的自动划分研究[J],地球信息科学,2006,04:8-14.
    [103]刘春,王家林,刘大杰.多尺度小波分析用于DEM网格数据综合[J],中国图象图形学报,2004,9(3):340-344.
    [104]刘学军,晋蓓,王彦芳.DEM流径算法的相似性分析[J],地理研究,2008b,27(6):1347-1357.
    [105]刘学军,卢华兴,仁政,任志峰.论DEM地形分析中的尺度问题[J],地理研究,2007,26(3):434-443.
    [106]刘学军,王彦芳,晋蓓.顾及数据特性的格网DEM分辨率计算[J],地理研究,2010,29(5):854:864.
    [107]刘学军,王彦芳,晋蓓.GIS栅格化分辨率计算器的实现与应用[J],地球信息科学学报,2009,11(5):638-644.
    [108]刘学军,张平.DEM坡度、坡向的有效尺度范围[J],武汉大学学报·信息科学版,2008a,33(12):1254-1258.
    [109]龙恩,程维明,周成虎等.基于Strm-DEM与遥感的长白山基本地貌类型提方法[J],山地学报,2007,25(5):557-565.
    [110]龙毅,周侗,汤国安,刘学军.典型黄土地貌类型区的地形复杂度分形研究[J],山地学报,2007,25(4):385-392.
    [111]卢涛,马克明,傅伯杰,倪红伟.三江平原沟渠网络结构对区域景观格局的影响[J],生态学报,2008,28(6):2746-2752.
    [112]卢志军,王巍,张文辉,李红等.巴山木竹发笋和大熊猫取食的时空格局及相关性分析[J],生物多样性,2009,17(1):1-9.
    [11 3]鲁学军,张洪岩,高志强,裴韬.区域地理系统单元等级圆锥建模[J],地理研究,2005,24(16):935-946.
    [114]鲁学军,周成虎,张洪岩,徐志刚.地理空间尺度—结构分析模式探讨[J],地理科学进展,2004,23(2):107-114.
    [115]陆中臣,贾绍凤,黄克新等.流域地貌系统[M],大连:大连出版社,1991.
    [116]罗明良,汤国安.地貌认知及空间剖分的山顶点提取[J],测绘科学,2010,35(5):126-128.
    [117]吕希奎,易思蓉,韩春华.基于M进制小波技术的DEM压缩研究[J],水土保持研究,2007,14(6):125-127.
    [118]买凯乐,张文辉.基于ALOS影像的黄土丘陵区典型流域景观空间格局[J],应用生态学报,2011,22(3):741—747.
    [119]孟斌,王劲峰.地理数据尺度转换方法研究进展[J],地理学报,2005,60(2):277-288.
    [120]潘耀忠,范一大,史培军.近50年来中国沙尘暴空间分异格局及季相分布----初步研究[J],自然灾害学报,2003,12(1):1-8.
    [121]亓琳.三维表面纹理自相似性度量研究[D],中国海洋大学硕士学位论文:2008,山东:青岛.
    [122]齐德利,于蓉,张忍顺.中国丹霞地貌空间格局[J],地理学报,2005,60(1):41-52.
    [123]邱炳文,苏簪铀,陈崇成.基于小波变换的武夷山自然保护区NDVI与地形因子多尺度空间相关分析[J],生态学杂志,2009,28(9):]915-1920.
    [124]邱炳文,随银坡,陈崇成.南方丘陵山区典型地物景观特征尺度研究[J],自然资源学报,2010,25(11):1970-1978.
    [125]邱扬,杨磊,王军,张英,孟庆华,张晓光.黄土丘陵小流域景观格局指数的粒度效应[J],应用生态学报,2010,21(5):11 59-1166.
    [126]申广荣,王丽荣,钱振华.高分辨率图像景观特征尺度的小波和地统计分析[J],上海交通大学学报(农业科学版),2007,25(05):43]-438.
    [127]申卫军,邬建国,林永标,任海.空间粒度变化对景观格局分析的影响[J],生态学报,2003a,23(12):2506-2519.
    [128]申卫军,邬建国,任海,林永标.空间幅度变化对景观格局分析的影响[J],生态学报,2003b,23(11):2219-2231.
    [129]沈中原,李占斌.流域地貌形态特征多重分形算法研究[J],水科学进展, 2009,20(03):385-391.
    [130]时培建,郭世权,杨清培.毛竹的异质性空间点格局分析[J],生态学报,2010,30(16):4401-4407.
    [131]时培建,刘杰,杨振.汶川地震的时空点格局分析[J],地震学报,2009,3l(5):506-515.
    [132]孙丹峰.IKONOS影像景观格局特征尺度的小波与半方差分析[J],生态学报,2003,23(3):603—611.
    [133]谭道发,法向东.陕西省土地资源[M],陕西人民出版社,西安:1998.
    [134]汤国安,刘学军,房亮,罗明良.DEM及数字地形分析中尺度问题研究综述[J],武汉大学学报(信息科学版),2006,3l(12):1059-1066.
    [135]汤国安,刘学军,阊国年.数字高程模型及地学分析的原理与方法[M],科学出版社,北京,2005:234-259.
    [136]唐新建,朱同林,柳健,王川婴.DEM地形表面B样条小波多尺度建模[J],中山大学学报(自然科学版),2005,44(3):20-24.
    [137]陶旸.基于纹理分析方法的DEM地形特征研究[D],南京师范大学博士学位论文:2007,江苏:南京.
    [138]田金文,苏康,柳健,张天序.基于小波分解与分形内插相结合的地形数据压缩方法[J],宇航学报,1998,19(4):1—6.
    [139]铁永波,李宗亮.磨西河流域泥石流流域形态的非线性特征[J],工程地质学报,2011,(3):376-380.
    [140]涂汉明,刘振东.中国地势起伏度最佳统计单元的求证[J],湖北大学学报(自然科学版),1990,12:266-271.
    [141]万刚,朱长青.多进制小波及其在DEM数据有损压缩中的应用[J],测绘学报,1999,28(1):36-40.
    [142]汪自军,陈圣波,韩念龙,湛邵斌.地学尺度转换理论及方法研究[J],地理空间信息,2007,5(4):60-63.
    [143]王劲峰,孟斌,郑晓瑛.北京市2003年SARS疫情的多维分布及其影响因素分析[J],中华流行病学杂志,2005,26(3):2l 81-2186.
    [144]王桥,毋河海.地图信息的分形描述与自动综合研究[M],武汉测绘科技大学出版社,1998,武汉,28-29.
    [145]王文圣,向红莲,黄伟军,丁晶.基于连续小波变换的径流分维研究[J],水利学报,2005,(5):598—601.
    [146]王协康,方绎.流域地貌系统定量研究的新指标[J],山地研究,1998,16(1): 8-12.
    [147]王宇宙,赵宗涛.一种多进制小波变换DEM数据简化方法[J],计算机应用,2003,23(6):107-109.
    [148]邬建国.景观生态学—格局、过程、尺度与等级(第二版)[M],高等教育出版社,北京,2006:17-18.
    [149]吴勇,汤国安,杨昕.小波派生多尺度DEM的精度分析[J],测绘通报,2007,4:38-41.
    [150]肖笃宁.论现代景观科学的形成与发展[J],地理科学,1999,19(4):378-394.
    [151]徐建华.现代地理学中的数学方法(第二版)[M],高等教育出版社,2002,北京.
    [152]许模,王迪,漆继红,杨艳娜.基于分形理论的喀斯特地貌形态分析[J],成都理工大学学报(自然科学版),2011,(3):328-333.
    [153]杨昕,汤国安,刘学军,李发源,祝士杰.数字地形分析的理论方法与应用[J],地理学报,2009,64(9):1058-1070.
    [154]杨听.基于DEM地形指数的尺度效应与尺度转换[D],南京师范大学博士学位论文:2007,江苏:南京.
    [155]杨族桥,郭庆胜,牛冀平,肖小红.DEM多尺度表达与地形结构线提取研究[J],测绘学报,2005,34(2):134-137.
    [156]杨族桥,郭庆胜.基于提升方法的DEM多尺度表达研究[J],武汉大学学报·信息科学版,2003,28(4):476-478.
    [157]尤海舟,贾成,樊华,何飞.格局分析的最新方法--点格局分析[J],四川林业科技,2009,30(6):106-110.
    [158]于浩,杨勤科,张晓萍,何浩.基于小波多尺度分析的DEM数据综合及尺度转换[J],地理与地理信息、科学,2009,25(4):12-16.
    [159]郁文,刘茂松,徐驰,陈奋飞.南京市城市景观的特征尺度[J],生态学,2007,27(4):1480-1488.
    [160]岳健,雷加强,穆桂金.塔克拉玛干沙漠复合纵向沙垄区大尺度地貌格局初步研究[J],科学通报,2008,53,增刊Ⅱ:159-168.
    [161]张继贤,林宗坚,柳健,张钧,黄宸.利用小波进行多尺度地形生成方法的研究[J],中国图象图形学报,1998,3(11):931-935.
    [162]张建兴,马孝义,赵文举.黄土高原重点流域河网分形特征研究[J],泥沙研究,2008,5:9-14.
    [163]张健,郝占庆,宋波.长白山阔叶红松林中红松与紫椴的空间分布格局及其关联性[J],应用生态学报,2007,18(8):1681-1687.
    [164]张金山,沈兴菊,刘华,杨思全.攀枝花泥石流沟谷形态的非线性特征[J].长江流域资源与环境,2005,(6):801-804.
    [165]张金屯,孟东平.芦芽山华北落叶松林不同龄级立木的点格局分析[J],生态学报,2004,24(1):35-40.
    [166]张金屯.植物种群空间分布的点格局分析[J],植物生态学报,1998,22(4):344-349.
    [167]张丽萍,马志正.流域地貌演化的不同阶段沟壑密度与切割深度关系研究[J],地理研究,1998,17(3):273-278.
    [168]张娜.生态学中的尺度问题:内涵与分析方法[J],生态学报,2006,26(7):2340-2355.
    [169]张婷.基于DEM的流域沟谷网络尺度特征及尺度分解[D],南京师范大学博士学位论文,2008,江苏:南京.
    [170]赵常明,陈庆恒,乔永康.青藏高原东缘岷江冷杉天然群落的种群结构和空间分布格局[J],植物生态学报,2004,28(3):341-350.
    [171]赵辉,郭索彦,解明曙,雷廷武.不同尺度流域日径流分形特征[J],应用生态学报,2011,(1):159-164.
    [172]赵金.土地利用检测适宜尺度选择方法研究—以塔里木河流域为例[J],地理学报,2007,62(6):659-668.
    [173]赵文武,傅伯杰,陈利顶.景观指数的粒度变化效应[J],第四纪研究,2003,23(3):326-333.
    [174]赵学森,高党忠,马小军,唐永建,张林,孙涛,董申.靶丸X射线数字图像的轮廓分析及功率谱评价[J],强激光与粒子束,2010,22(12):2925-2929.
    [175]赵志彬,刘晶红.基于图像功率谱的航空光电平台自动检焦设计[J],光学学报,2010,30:(12):3495-3500.
    [176]仲腾,汤国安,周毅,李若殷,张维.基于反地形DEM的山顶点自动提取[J],测绘通报,2009,(4):35-37.
    [177]周访滨,刘学军.基于栅格DEM自动划分微观地貌形态的研究[J],武汉理工大学学报·信息与管理工程版,2008,30(2):172-175.
    [178]周启鸣,刘学军.数字地形分析[M],科学出版社,北京,2006.
    [179]朱红春,陈楠,刘海英,汤国安.自1:10000比例尺DEM提取地形起伏度--以陕北黄土高原的实验为例[J],测绘科学,2002,130(14):86-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700