用户名: 密码: 验证码:
我国典型地区大气污染特征的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国高速的经济发展和城市化进程加速了大气环境的恶化,高浓度的大气污染物严重危害人体健康并破坏生态环境。因此,控制大气污染物排放、改善空气质量已成为我国面临的一个非常严峻的环境问题。本研究旨在通过空气质量模型的模拟,分析我国主要大气污染物浓度的时空分布现状,探讨几个代表性城市和地区污染物的形成过程,以期为国家区域大气污染控制对策提供理论基础。
     本论文利用美国环保局第三代空气质量模型Models-3/CMAQ(4.7版本)对我国主要污染物(PM10、O3、SO2和NO2)浓度进行了数值模拟。主要分析了这些污染物浓度的时空分布以及冷锋天气系统对颗粒物浓度的影响。另外,还根据过程分析模块(综合过程速率和综合反应速率)的结果分析了臭氧和二次无机颗粒物分别对其前体物(VOCs, NOx、SO2和NH3)敏感性、定量地分析了不同的大气物理-化学过程(大气水平输送、垂直输送、气溶胶化学过程、云雾和湿沉降过程、干沉降等)对代表性地区颗粒物和臭氧的形成过程的影响。模拟结果与地面观测和卫星数据的对比表明,本论文模拟结果存在一定的偏差,但是基本能够满足后续情景分析、敏感性分析和过程分析的要求。
     从CMAQ模拟结果看出,我国PM10、SO2和NO2浓度的空间分布在地理上存在相似性,四个季节均呈现东高西低的空间分布特点,高浓度区主要包括京津冀、长三角、珠三角和四川盆地。受气象条件和源排放量季节变化等因素的影响,三种污染物种浓度一般在冬季最高,夏季最低。臭氧的时空分布与PM10、SO2和NO2不同,臭氧浓度(1小时最大值,>70ppb)最大值出现在夏季,主要位于我国华北地区。春季,长江以北~30°N-42°N之间有一条臭氧高浓度带贯穿我国东西,该区域臭氧(1小时最大值)浓度范围约60-70 ppb之间,其他地区臭氧浓度约55-65 ppb。冬季由于太阳辐射较弱,臭氧浓度较低,全国大部分地区臭氧浓度在50ppb以下,冬季臭氧浓度较高的地区出现在青藏高原,约50~60 ppb。冷锋天气过程对PM10浓度影响的模拟个例的研究表明,本次模拟很好的捕捉到这次冷锋天气过程,冷锋“间歇期”是污染物浓度逐渐积累的时间,冷锋过后,颗粒物浓度明显降低。
     臭氧生成敏感性分析表明,冬季我国中东部广大地区(东北地区、华北平原、长江三角洲和珠江三角洲等)和西部的几个城市大气臭氧生成主要受VOCs控制,西部地区除几个城市外其他地区臭氧生成受NOx控制。夏季臭氧生成VOCs控制区的范围比冬季大大缩小,仅分布在我国几个大城市地区(如北京、上海等),其他地区臭氧生成主要对NOx敏感。从北京和上海市区、郊区小坪和瓦里关大气背景站这几个不同地区大气中HOx自由基收支循环分析也可看出,城市和郊区大气HOx自由基循环过程存在差异,不同的自由基循环终止反应证明夏季北京、上海市区臭氧生成对VOCs敏感,小坪和瓦里关臭氧生成对NOx敏感。颗粒物生成敏感性分析得出,夏季颗粒物质量浓度对SO2敏感性最强,其次为NOx和NH3。对夏季SO2、NOx、AVOCs以及NH3排放量削减的情景模拟结果表明,除了颗粒物的一次源排放之外,S02源排放削减比NOx和NH3削减可以更有效控制颗粒物质量浓度。城市地区夏季臭氧污染可以AVOCs控制排放为主。但是若通过SO2和NOx减排控制城市地区颗粒物污染,则会引起臭氧浓度的升高。从臭氧和颗粒物生成敏感性分析与情景模拟的结论可见,在我国臭氧和颗粒物污染都比较严重的情况下,通过控制污染源排放同时降低臭氧和颗粒物污染、改善空气质量会受到较多因素限制,因此污染物排放控制措施的制定需考虑不同地区在不同时间下的具体特点。
     北京市区夏季近地面大气臭氧昼夜浓度差大于高层大气臭氧昼夜浓度差,臭氧夜间易在高层贮存,对次日日间臭氧浓度造成影响。边界层内臭氧大气化学过程在垂直方向存在差异,臭氧生成高值区在200-1500 m之间。近地层臭氧浓度升高主要依赖边界层内高层大气臭氧的垂直输送。干沉降是近地面大气臭氧去除的重要途径之一,另外近地面臭氧还因与NO反应而被消耗。相对于近地层和几百米高,1500 m之上大气臭氧浓度受光化学影响减弱。
     一次颗粒物排放对北京市夏季低层大气(」~300 m)的PM10质量浓度的影响大于高层大气。气溶胶化学过程对PMlo质量浓度的影响有正有负:负贡献主要包括低层大气中硝酸盐的分解等过程,正贡献包括大气中硫酸盐、硝酸盐以及二次气溶胶等新粒子的生成、H2SO4和HN03在已经存在粒子上的凝结等。干、湿沉降对颗粒物去除有重要的作用,干沉降对颗粒物的去除作用多发生在近地面。大尺度的水平传输可降低北京市颗粒物浓度,而垂直传输在不同高度不同时间对颗粒物质量浓度的影响不同。
During the past several decades, rapid economic development and urbanization process led to deterioration of air quality in China. High concentrations of air pollutants caused serious risk to human health and ecological environment damage. Therefore, it is urgent to improve air quality through reducing emission in China. The primary objectives of this study are to evaluate seasonal characteristics of major pollutants and to understand formation mechanisms of major air pollutants in China via air quality model simulation. Such information would provide useful perspectives for developing local and regional emission control strategies.
     Models-3/CMAQ v4.7 was applied to simulate the concentrations of the major pollutants (PM10, O3, SO2 and NO2) in China. Temporal and spatial distributions of these pollutants and the impact of cold front weather system on PM10 concentrations were investigated. Process analysis (PA) in CMAQ (including integrated process analysis (IPR) and integrated reaction rate analysis (IRR)) were used to identify the most influential processes and chemical reactions (such as horizontal/vertical transport, aerosol processes, clouds/fog processes and wet/dry deposition) that led to the accumulation or loss of O3 and PM10 in atmosphere. Secondary inorganic aerosol and O3 chemistry regime analysis were also analyzed based on the CMAQ-PA results. Model evaluation results indicated that our simulated results were acceptable and could fulfill the need of air quality impact and control scenario analysis, O3 and PM chemistry regime analysis and process analysis.
     CMAQ simulations showed that higher concentrations of SO2, NO2, and PM10 occurred over Jing-Jin-Ji Bohai sea rim region, Yangtze River Delta (YRD) area, Pearl River Delta (PRD) area and Sichuan Basin. Highest surface concentrations of SO2, NO2, and PM10 were found in winter and lowest in Jul due to the variations of weather condition and pollutants emissions. Temporal and spatial variations of O3 concentrations were different from SO2, NO2, and PM10. Highest 1-h O3 concentrations (>70 ppb) were found over North China Plain in summer. April also had relatively high O3 mixing ratios of about 60-70 ppb over large areas in the North of Yangzi River (~30°N-42°N), which extended from east to west of China while 55-65 ppb over most other areas. Compared with other seasons, Jan had the lowest O3 mixing ratios (<50 ppb) over most area of China due to weaker solar radiation in winter, except Tibetan Plateau in the western part of China (O3 mixing ratios were 50-60 ppb). Case study of PM10 concentrations influenced by cold front system indicated that our simulation captured this cold front weather system and cold front weather system could reduce PM10 concentrations significantly.
     Indicator analysis of O3 chemistry regime indicated that VOC-limited chemistry covered the central and eastern China including the North China Plain, YRD, PRD and the northeastern China, as well as some major cities in most provinces, while other areas were NOx-limited O3 chemistry in winter. NOx-limited O3 chemistry dominated over almost entire China during summer except several metropolitan areas (such as Beijing and Shanghai). Differences between HOx radical termination reactions in urban and rural areas also indicated VOCs-limited chemistry over Beijing and Shanghai, and NOx-limited chemistry at Xiaoping and Waliguan sites. Indicator analysis of PM chemistry regime suggested that PM formation was more sensitive to SO2 reduction than NOx and NH3. Scenario analysis indicated that SO2 control would be more effective to PM10 reduction than NOx and NH3 besides primary emissions of PM10. AVOCs reduction could lead to O3 reduction over metropolitan areas in summer while NOx reduction could lead to O3 reduction over rest areas. However, if SO2 and NOx reduction were used to control aerosol pollution over metropolitan areas, O3 mixing ratios will increase. These results indicated that different emission control strategies for air quality improvement (separate NOx or VOC emission control, or integrated control of NOx and VOCs emissions) should be taken over different regions and during different seasons to effectively control ambient O3 and PM10 air pollution.
     Diurnal variations of O3 concentrations in Beijing at surface layer were larger than that at higher altitude, indicating that O3 stored at higher layers at nighttime and contributed to the O3 mixing ratios of next day. Obvious discrepancy of O3 formation processes existed between surface layer and upper level. Highest O3 production rate was found at 200-1500 m layer, and vertical transport was the dominate factor that contributed to O3 accumulation at surface layer. O3 reaction with NO and dry deposition process were two major factors that contributed to O3 loss at surface layer. Above 1500 m, gas-phase chemistry contributed much less to O3 formation compared with lower layers.
     Primary particulate species mainly contributed to PM10 increase at low layers (< 300 m). Aerosol processes had positive and negative contributions to PM10 concentrations, e.g. the positive contributions included the formation of sulfate, nitrate, second organic aerosol, the condensation of gas phase H2SO4 and HNO3 on pre-existing particles, while the negative contribution was due to the thermal decomposition of nitrate. Wet and dry deposition processes were two main sinks of PM10, and dry deposition only occurred at surface layer. Horizontal transport helped transport particles from heavily-polluted areas to downwind areas. Vertical transport contributions to PM10 concentrations changed with layers.
引文
[1]Hao J.-M., He K.-B., Duan L., et al. Air pollution and its control in China. Front. Environ. Sci. Engin. China,2007,1(2):129-142.
    [2]张扬,王婷.我国酸雨综述.中国科技博览,2009,32,212.
    [3]Chan K. C. and Yao X.-H. Air pollution in mega cities in China. Atmos. Environ.,2008, 42:1-42.
    [4]葛茂发,刘泽,王炜罡.二次光化学氧化剂与气溶胶间的非均相过程.地球科学进展,2009,24(4):351-362.
    [5]杨仪方,钱枫,谢婷,张慧峰.北京市春季大气颗粒物污染特性研究.环境污染与防治,2009,31(7):44-51.
    [6]Wang X.-P. and Mauzerall L. D. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies. Atmos. Environ.,2006,40: 1706-1721.
    [7]Lippmann M. Health effects of tropospheric ozone:Review of recent research findings and their implications to ambient air quality standards. Journal of Exposure Analysis and Environmental Epidemiology,1993,3:103-129.
    [8]Pagano P., Zaiacomo T. D., Scarcella E., et al. Mutagenic activity of total and particle-sized fraction of urban particulate matter. Environ. Sci. Technol.,1996,30:3512-3516.
    [9]安俊岭,韩志伟,王自发.NOx与NMHC的变化对O3生成量的影响.大气科学,1999,23(6):753-761.
    [10]朱先磊,张远航,曾立民等.北京市大气细颗粒物PM2.5的来源研究.环境科学研究,2005,18(5):1-5.
    [11]谢绍东,于淼,姜明.有机气溶胶的来源与形成研究现状.环境科学研究,2006,26(12):1933-1939.
    [12]刘倩,王体健,李树,江飞.海盐气溶胶影响酸碱气体及无机盐气溶胶的敏感性试验.气候与环境研究,2008,13(5):598-607.
    [13]Byun D.W., Ching J. K.S., Novak J., and Young J. Development and Implementation of the EPA's Models-3 Initial Operating Version:Community Multi-scale Air Quality (CMAQ) Model, Twenty-Second NATO/CCMS International Technical Meeting on Air Pollution Modelling and Its Application,2-6 Jun,1997.
    [14]Byun D.W. and Ching J.K.S. Science algorithms of the EPA Models-3 Community Multiscale Air Quality Model (CMAQ) modeling system. EPA/600/R-99/030, U. S. Environmental Protection Agency, Office of Research and Development, Washington, D.C,1998.
    [15]Jang C. J. et al. Annual Application of U.S. EPA's Third-Generation Air Quality Modeling System over Continental United States.94th Annual A&WMA's Conference and Exhibition, Orlando, FL,2001.
    [16]Jang, C. J. et al. Evaluation and Sensitivity Studies of U.S.EPA's Models-3/CMAQ Annual Simulations over the Continental United States.95th Annual A&WMA's Conference and Exhibition,2002.
    [17]Matthias V., Aulinger A., Quante M. Adapting CMAQ to investigate air pollution in North Sea coastal regions. Environmental Modelling & Software,2008,23:356-368.
    [18]Zhang Y., Liu P., Queen A. et al. A comprehensive performance evaluation of MM5-CMAQ for the summer 1999 Southern Oxidants Study episode—Fart Ⅱ Gas and aerosol predictions. Atmos. Environ.,2006,40:4839-4855.
    [19]Liu X.-H., Zhang Y, Olsen K. M., Wang W.-X. et al. Responses of Future Air Quality to Emission Controls over North Carolina, Part I:Model Evaluation for Current-Year Simulations. Atmos. Environ.,2010,44:2443-2456.
    [20]Zhang M.-G, Uno I., Zhang R. et al Evaluation of the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system with observations obtained during the TRACE-P experiment:Comparison of ozone and its related species. Atmos. Environ.,2006, 40:4874-4882.
    [21]Jeffries H.E. and Tonnesen S. A comparison of two photochemical reaction mechanisms using mass balance and process analysis. Atmos. Environ.,1994,28:2991-3003.
    [22]王自发,庞成明,朱江等.大气环境数值模拟研究新进展.大气科学,2008,32(4):987-995.
    [23]王自发,吴其重.区域空气质量模式与我国的大气污染控制.科学对社会的影响,2009,3:24-29.
    [24]王自发,谢付莹,王喜全等.嵌套网格空气质量预报模式系统的发展与应用,大气科学,2006,30(5):778-790.
    [25]唐孝炎,张远航,邵敏.大气环境化学,2006,北京出版社.
    [26]杜鹏飞,杜娟,郑筱津等.基于ICS3模型的南宁市S02污染控制策略.清华大学学报,2005,45(9):1209-1212.
    [27]徐大海,朱蓉.大气平流扩散的箱格预报模型与污染潜势指数预报.应用气象学报,2000,11(1):1-12.
    [28]杨听,李兴生.近地面03变化化学反应机理的数值研究.大气科学,1999,23(4):427-437.
    [29]韩志伟,张美根,雷孝恩等.城市空气污染数值预报试验,气候与环境研究,1999,4(3):283-290.
    [30]An J. L., Ueda H., Matsuda K., et al. Simulated impacts of SO2 emissions from the Miyake volcano on concentration and deposition of sulfur oxides in September and October of 2000. Atmos. Environ.,2003,37:3039-3046.
    [31]雷孝恩,张美根,韩志伟等.大气污染数值预报基础和模式.北京:气象出版社,1998.321pp.
    [32]王体健,李宗恺,南方.区域酸性沉降的数值研究I.模式.大气科学,1996,20(5):606-614.
    [33]Grell A. G., Dudhia J., Stauffer D. R A description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5).NCAR/TN-398, Dec.1994.
    [34]Skamarock W.C., Klemp J.B., Dudhia J. A description of the Advanced Research WRF, version 2. NCAR/TN-468,2005.
    [35]Dolwick P. D. et al. Summary of Results from a Series of Models-3/CMAQ Simulations of Ozone in the Western United States," 94th Annual A&WMA Conference and Exhibition, Orlando, FL,2001.
    [36]Wang K., Zhang Y., Jang C., et al. Modeling study of intercontinental air pollution transport over the trans-Pacific region in 2001 using the Community Multiscale Air Quality modeling system. J. Geophys. Res.,2009,114, D04307, doi:10.1029/2008JD010807.
    [37]Wilczak J. M., Djalalova I., McKeen S., et al. Analysis of regional meteorology and surface ozone during the TexAQS Ⅱ field program and an evaluation of the NMM-CMAQ and WRF-Chem air quality models. J. Geophys. Res.,2009,114, D00F14, doi: 10.1029/2008JD011675.
    [38]Smyth S.C., Jiang W-M., Roth H., Moran M. D., Makar P. A., Yang F-Q., Bouchet V.S., and Landry H. A comparative performance evaluation of the AURAMS and CMAQ air-quality modeling system. Atmos. Environ.,2009,43:1059-1070.
    [39]Wu S.-Y., Krishnan S., Zhang Y., Aneja V. Modeling atmospheric transport and fate of ammonia in North Carolina, Part Ⅰ. Evaluation of meteorological and chemical predictions. Atmos. Environ.,2008,42:3419-3436.
    [40]Im U., Markakis K., Unal A, et al., Study of a winter PM episode in Istanbul using the high resolution WRF/CMAQ modeling system. Atmos. Environ.,2010,44,3085-3094.
    [41]Eder B. and Yu S.-C. A performance evaluation of the 2004 release of Models-3 CMAQ. Atmos. Environ.,2006,40:4811-4824.
    [42]Yu Y., Sokhi R S., Kitwiroon N., et al. Performance characteristics of MM5-SMOKE-CMAQ for a summer photochemical episode in southeast England United Kingdom, Atmos. Environ.,2008,42:4870-4883.
    [43]Qin Y, Tonnesen G. S, Wang Z. Weekend/weekday differences of ozone, NOx, CO, VOCs, PM10 and the light scatter during ozone season in southern California. Atmos. Environ.,2004, 38:3069-3087.
    [44]石玉珍,徐永福,王庚辰等.北京市夏季03、NOx等污染物”周末效应”研究.环境科学,2009,30(10):2832-2837.
    [45]Pont V and Fontan J. Comparison between weekend and weekday ozone concentration in large cities in France. Atmos. Environ.,2001,35:1527-1535.
    [46]唐文苑,赵春生,耿福海等.上海地区臭氧周末效应研究.中国科学D辑,2009,39(1):99-105.
    [47]周艳明,刘厚凤,吴保庆.边界层臭氧浓度变化特征及相关因子分析.气象与环境学 报,2008,24(1):63-66.
    [48]Tonse S.R., Brown N.J., Harley R. A, and Jin L. A process-analysis based study of the ozone weekend effect. Atmos. Environ.,2008,42:7728-7736.
    [49]Monks P. S. A review of the observations and origins of the spring ozone maximum. Atmos. Environ.,2000,34:3545-3561.
    [50]Smith S.N., and Mueller S.F. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) Model-I:building an emission data base. Atmos. Chem. Phys.2010,10, 4931-4952.
    [51]Zhang Y, Liu X.-H., Olsen K. M., Wang W.-X. Responses of Future Air Quality to Emission Controls over North Carolina, Part II:Analyses of Future-Year Predictions and Their Policy Implications. Atmos. Environ.,2010,44:2767-2779.
    [52]Arnold J. R., Dennis R L. Testing CMAQ chemistry sensitivities in base case and emissions control runs at SEARCH and SOS99 surface sites in the southeastern US. Atmos. Environ., 2006,40:5027-5040.
    [53]Pun B.K, Seigneur C., Bailey E.M., Gautney L.L. Response of atmospheric particulate matter to changes in precursor emissions:a comparison of three air quality models. Environ. Sci. Technol.,2008,42:831-837.
    [54]Lam, Yun-Fat, "Effects of 2000-2050 Global Climate Change on Ozone and Particulate Matter Air Quality in the United States Using Models-3/CMAQ System. " PhD diss. University of Tennessee,2010. http://trace.tennessee.edu/utk graddiss/817.
    [55]Yu S.-C., Mathur R., Kang D.-W. et al. A study of the ozone formation by ensemble back trajectory-process analysis using the Eta-CMAQ forecast model over the northeastern U.S. during the 2004 ICARTT period. Atmos. Environ.,2009,43:355-363.
    [56]Jiang G-F., and Westberg H Using back trajectories and process analysis to investigate photochemical ozone production in the Puget Sound region. Atmos. Environ.,2003,37: 1489-1502.
    [57]Liu X.-H., Zhang Y, Xing J. et al. Understanding of Regional Air Pollution over China using CMAQ-Part Ⅱ. Process Analysis and Sensitivity Study, Atmos. Environ.,2010,44: 3719-3727.
    [58]Zhang Y, Wen X-Y, Wang K., et al Probing into regional O3 and particulate matter pollution in the United States:Part Ⅱ. An examination of formation mechanisms through a process analysis technique and sensitivity study, J. Geophys. Res.,2009,114, D22305, doi: 10.1029/2009JD011900.
    [59]O'Neill M.S. and Lamb KB. Intercomparison of the community Multiscale air quality model and CALGRID using process analysis. Environ. Sci. Technol.,2005,39:5742-5753.
    [60]Xu J., Zhang Y-H., Fu S. J., et al. Process analysis of typical summertime ozone episodes over Beijing area. Sci. Tot Environ.2008,399:147-157.
    [61]Yu S.-C., Mathur R., Schere K. Evaluation of real-time PM2.5 forecasts and process analysis for PM2.5 formation over the eastern United States using the Eta-CMAQ forecast model during the 2004 ICARTT study. J. Geophys. Res,2008,113, D06204, doi: 10.1029/2007 JD009226.
    [62]Xie Y Testing ozone sensitivities using process analysis, Chemical indicators, and very fine scale modeling with CMAQ in the Pacific Northwest, Ph.D thesis. Washington State University,2008, pp156.
    [63]Kang D.-W., and Aneja P. V Nonmethane hydrocarbons and ozone in three rural southeast United States national parks:A model sensitivity analysis and comparison to measurements. J. Geophys. Res.,2003,108, D19, doi:10.1029/2002JD003054.
    [64]Khiem M. Ooka R., Hayami H., et al, Process analysis of ozone formation under different weather conditions over the Kanto region of Japan using the MM5/CMAQ modelling system. Atmos. Environ.2010,44,4463-4473.
    [65]Jang J.-C., Jeffries H.E., Byun D., Pleim J.E. Sensitivity of ozone to model grid resolution—I. Application of high-resolution Regional Acid Deposition Model. Atmos. Environ.,1995, 29:3085-3100.
    [66]Baklanov A, Rasmussen A, Fay B., Berge E., Finardi S. Potential and shortcomings of numerical weather prediction models in providing meteorological data for urban air pollution forecasting. Water, Air, and Soil Pollution,2002, Focus 2:43-60.
    [67]Jimenez P., Jorba O., Parra R., Baldasano J.M. Influence of high-model grid resolution on photochemical modeling in very complex terrains. International Journal of Environment and Pollution,2005,24:180-200.
    [68]Queen A and Zhang Y. Examining the sensitivity of MM5-CMAQ predictions to explicit microphysics schemes and horizontal grid resolutions, Part III-The impact of horizontal grid resolution. Atmos. Environ.,2008,42:3869-3881.
    [69]Cohan D.S., Hu Y.-T., Russell AG. Dependence of ozone sensitivity analysis on grid resolution. Atmos. Environ.,2006,40:126-135.
    [70]Zhang Y, Liu P., Liu X.-H, et al Fine scale modeling of wintertime aerosol mass, number, and size distributions in central California. J. Geophys. Res.,2010,115, D15207,doi: 10.1029/2009JD012950.
    [71]Wang K., Zhang Y., Jang C.J., Phillips S., Nenes A, Fountoukis C. Implementation of dust treatments into CMAQ and initial application to the April 2001 Asian dust episode.12th Conference on Atmospheric Chemistry, Atlanta, Jan,2010.
    [72]Zhang Y., Huang J.-P., Henze K. D. Seinfeld H. J. Role of isoprene in secondary organic aerosol formation on a regional scale. J. Geophys. Res.,2007,112, doi: 10.1029/2007JD008675.
    [73]Yu S., Mathur R, Sarwar G, Kang D., Tong D., Pouliot G., Pleim J. Eat-CMAQ air quality forcasts for O3 and related species using three different photochemical mechanisms (CB4, CB05, SAPRC-99):comparisons with measurements during the 2004 ICARTT study. Atoms. Chem. Phys. Discuss.,2009,9:22955-22992.
    [74]Luecken D.J., Philips S., Sarwar G, Jan C. Effects of using the CB05 vs. SAPRC99 vs. CB4 chemical mechanism on model predictions:ozone and gas-phase photochemical precursor concentrations. Atmos. Environ.,2008,42:5805-5820.
    [75]Yamamoto K, and Shimizu K Estimate of springtime atmospheric mercury distribution in East Asia by CMAQ model. Geophys. Research. Abs.2010,12, EGU2010-2268-1.
    [76]Carlton AG., Turpin B. J., Altieri K. E., et al. CMAQ Model performance enhanced when in-cloud secondary organic aerosol is included:Comparisons of organic carbon predictions with measurements. Environ. Sci. TechnoL 2008,42,8798-8802.
    [77]Wang X., Hu Y., Russell A, Mauzerall D., Zhang Y.-H Using Models3/CMAQ to simulate regional air quality in China. In:2002 Models-3User's Workshop. EPA, Research Triangle Park.21-23 Oct.2002.
    [78]Zhu B., Akimoto H., Wang Z.-F., et al. Why dose surface ozone peak in summertime at Waliguan? Geophys. Res. Lett.,2004,31, L17104, doi:10.1029/2004GL020609.
    [79]Tie X., Brasseur G.P., Zhao C. et al. Chemical characterization of air pollution in Eastern China and the Eastern United States. Atmos. Environ.,2006,40:2607-2625.
    [80]Lin M., Oki T. Holloway T., et al. Long-range transport of acidifying substances in East Asia-Part I, Model evaluation and sensitivity studies. Atmos. Environ.,2008,42:5939-5955.
    [81]Lin M., Oki T., Bengtsson M., et al. Long-range transport of acidifying substances in East Asia-Part II, Source-receptor relationships. Atmos. Environ.,2008,42:5956-5967.
    [82]Zhang M.-G, Akimoto H., Uno I. A three-dimensional simulation of HOx concentrations over East Asia during TRACE-P. J. Atmos. Chem.,2006,54:233-254.
    [83]Wang L.-T., Jang C., Zhang Y, et al. Assessment of air quality benefits from national air pollution control policies in China. Part Ⅱ:Evaluation of air quality predictions and air quality benefits assessment. Atmos. Environ.,2010,44:3449-3457.
    [84]Zhao Y., Duan L., Xing J., Larssen T., Nielsen C.P., Hao J.M. Soil acidification in China:Is Controlling SO2 emissions enough? Environ. Sci. Technol.,2009,43:8021-8026.
    [85]An X., Zhu T., Wang Z., Li C., Wang Y, A modeling analysis of a heavy air pollution episode occurred in Beijing. Atmospheric Chemistry and Physics,2007,7:3101-3114.
    [86]Streets D. G, Fu J.S., Jang C. J., Hao J.-M., et al. Air quality during the 2008 Olympic Games. Atmos. Environ.,2007,41:480-492.
    [87]Chen D., Cheng S., Liu L., et al. An integrated MM5-CMAQ modeling approach for assessing trans-boundary PM10 contribution to the host city of 2008 Olympic summer games-Beijing, China. Atmos. Environ.,2007,41:1237-1250.
    [88]Wang Z.-F. Ensemble air quality Multi-model forecast system for Beijing (EMS-Beijing): Description and Application.12th Conference on Atmospheric Chemistry, AMS,2010.Jan. Atlanta, GA.
    [89]Wang X.-S., Song Y, Zhang Y.-H., et al., CMAQ modeling of near-ground ozone pollution during the CAREBeijing-2006 campaign in Beijng, China. Geophys. Research. Abs.2010,12, EGU2010-10660.
    [90]Wang F., Chen D.-S., Cheng S.-Y., et al. Identification of regional atmospheric PM10 transport pathways using HYSPLIT, MM5-CMAQ and synoptic pressure pattern analysis. Environ. Modeling and Software.2010,25(8):927-934.
    [91]Huang, J.-P., Fung, J.C.H., Lau, A.K.H.,2006. Integrated processes analysis and systematic meteorological classification of ozone episodes in Hong Kong.Journal of Geophysical Research 111, D20309eD20323.
    [92]徐峻,张远航.北京市区夏季臭氧生成过程分析.环境科学学报,2006,26(6):973-980.
    [93]冯业荣.珠江三角洲气溶胶污染的机理分析及数值模拟研究.中山大学,博士学位论文,2006.
    [94]Zhang Q., Streets D.G., Carmichael G.R., et al Asian Emissions in 2006 for the NASA INTEX-B Mission. Atmos. Chem. Phys. Diss.,2009,9:4081-4139.
    [95]Streets D.G., Zhang Q., Wang L.-T. et al. Revisiting China's CO emissions after the Transport and Chemical Evolution over the Pacific (TRACE-P) mission:Synthesis of inventories, atmospheric modeling, and observations.
    [96]Zhang Y, Vijayaraghavan K, Wen X.-Y., et al. Probing into regional O3 and PM pollution in the U.S., partl. A 1-year CMAQ simulation and evaluation using surface and satellite data. J. Geophys. Res.,2009,114, doi:10.1029/2009JD011898.
    [97]李成才,毛节泰,刘启汉等.利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征.科学通报,2003,48(19):2094-2100.
    [98]Operational guidance for the Community Multiscale Air Quality (CMAQ) Modeling system, Jun.,2010.
    [99]陆克定,张远航.HOx自由基的实地测量及其化学机制解析.化学进展,2010,22(2/3):500-514.
    [100]Seinfeld J. H. and Pandis S. N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change, John Wiley, New York,1998.
    [101]陆克定,张远航,苏杭等.珠江三角洲夏季臭氧区域污染及其控制因素分析.中国科学,2010,40:407-420.
    [102]Sillman, S. The use of NOy, H2O2 and HNO3 as indicators for O3-NOx-ROG sensitivity in urban locations. J. Geophys. Res.,1995,100:14175-14188.
    [103]Sillman S., He D.-Y., Pippin M. R., et al. Model correlations for ozone, reactive nitrogen and peroxides for Nashville in comparison with measurements:Implications for VOC-NOX sensitivity. J. Geophys. Res.,1998,103:22629-22644.
    [104]Sillman S., He D.-Y., Cardelino C., and Imhoff R. E. The use of photochemical indicators to evaluate ozone-NOx-hydrocarbon sensitivity:Case studies from Atlanta, New York and Los Angeles, J. Air Waste Manage. Assoc.,1997,47:642-652.
    [105]Sillman S. and He D.-Y. Some theoretical results concerning O3-NOx-VOC chemistry and NOX-VOC indicators. J. Geophys. Res.,2002,107, doi:10.1029/2001JD001123.
    [106]Sillman S., Vautard R., Menut L., Kley D. O3-NOx-VOC sensitivity and NOx-VOC indicators in Paris:Results from models and atmospheric pollution over the Paris Area (ESQUIF) measurements. J. Geophys. Res.,2003,108, doi:10.1029/2002JD001561.
    [107]Tonnesen G S. and Dennis R. L. Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and NOx:1. Local indicators of instantaneous odd oxygen production sensitivity, J. Geophys. Res,2000,105:9213-9225, doi:10.1029/1999JD900371.
    [108]Lu C.-H. and Chang J. S. On the indicator-based approach to assess ozone sensitivities and emissions features, J. Geophys. Res.,1998,103:3453-3462, doi:10.1029/97JD03128.
    [109]Milford J. B., Gao D. F., Sillman S. Total reactive nitrogen (NOy) as an indicator of the sensitivity of ozone to reductions in hydrocarbon and NOxemissions. J. Geophys. Res.,1994, 99:3533-3542.
    [110]Liang J.-Y, Jackson B., Kaduwela A. Evaluation of the ability of indicator species ratios to determine the sensitivity of ozone to reductions in emissions of volatile organic compounds and oxides of nitrogen in northern California, Atmos. Environ.,2006,40:5156-5166.
    [111]Pinder R. W., Dennis R. L., Bhave P. V. Observable indicators of the sensitivity of PM25 nitrate to emission reductions-Part I:Derivation of the adjusted gas ratio and applicability at regulatory-relevant time scales. Atmos. Environ.,2008,42:1275-1286.
    [112]Ansari A. S. and Pandis S. N. Response of inorganic PM to precursor concentrations. Environ. Sci. Technol.,1998,32:2706-2714.
    [113]Dennis R.L, Bhave P. V., Pinder R. W. Observable indicators of the sensitivity of PM25 nitrate to emission reductions-Part Ⅱ:Sensitivity to errors in total ammonia and total nitrate of the CMAQ-predicted non-linear effect of SO2 emission reductions. Atmos. Environ.,2008, 42:1287-1300.
    [114]Chu S. PM2.5 episodes as observed in the speciation trends network, Atmos. Environ.,2004, 39:5237-5246.
    [115]Yu S., Eder B., Dennis R., et al New unbiased symmetric metrics for evaluation of air quality model. Atmospheric Science Letters,2006,7:26-34.
    [116]Cheng S.-H., Zhang Y., Chen Y.-S., et al. Application of MM5 in China:Model evaluation, seasonal variations, and sensitivity to horizontal grid resolutions. Atmos. Environ. (In preparation).
    [117]王耕勤.中国VOC和NOx陆地生态源及其对对流层臭氧影响的数值研究,博士学位论文,2001.
    [118]Bei N., Lei W., Zavala M., Molina L.T. Ozone predictabilities due to meteorological uncertainties in Mexico City basin using ensemble forecasts. Atmos. Chem. Phys. Discuss., 2010,10:3299-3263.
    [119]U.S. EPA (U.S. Environmental Protection Agency),2007. Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze. Office of Air and Radiation/Office of Air Quality Planning and Standards, U.S. EPA, Research Triangle Park, NG.
    [120]Boylan, J. VISTAS,2005. PM Model Performance Goal and Criteria. Presented at the National Regional Planning Organizations Modeling Meeting, Denver, CO,2005.
    [121]杨华安,但尚铭.四川盆地冬季风速、降水量与大气污染浓度分析.四川气象,1995,15(3):28-30.
    [122]Yamaji K., Ohara T., Uno I., Tanimoto H., Kurokawa J., Akimoto H. Analysis of the seasonal variation of ozone in the boundary layer in East Asia using the Community Multi-scale Air Quality model:What controls surface ozone levels over Japan? Atmos. Environ.,2006,40:1856-1868.
    [123]Lin M., Holloway T., Oki T. Mechanisms controlling surface ozone over East Asia:a Multiscale study coupling regional and global chemical transport models. Atoms. Chem. Phys. Discuss.,2008,8:20239-20281.
    [124]丛春华,李维亮,周秀骥.青藏高原及其邻近地区上空平流层-对流层之间大气的质量交换.科学通报,2001,46(22):1914-1918.
    [125]Liu Y, Li W., Zhou X., et al. Mechanism of formation of the Ozone Valley over the Tibetan Plateau in Summer-transport and chemical process of ozone. Advances in atmospheric sciences,2003,20(1):103-109.
    [126]Pochanart P., Akimoto H., Kinjo Y., and Tanimoto H. Surface ozone at four remote island sites and the preliminary assessment of the exceedances of its critical level in Japan. Atmos. Environ.,2002,36:4235-4250.
    [127]李杰,吴其重,高超,王喜全,王自发.东亚春季边界层臭氧的数值模拟研究.环境科学研究,2009,22(1):1-6.
    [127]Wang X.-H and Li X.-S. A numerical study of the variations and distribution of tropospheric ozone and its precursors over China. Acta Meteorologica Sinica,1998, 56:333-348.
    [128]Han KM., Song C.H., Ahn HJ. et al Investigation of NOx emissions and NOx-related chemistry in East Asia using CMAQ-predicted and GOME-derived NO2 columns. Atoms. Chem. Phys.,2009,9:1017-1036.
    [129]Borge R., Lopez J., Lumbreras J., et al. Influence of boundary conditions on CMAQ simulations over the Iberian Peninsula. Atmos. Environ.,2010,44:2681-2695.
    [130]Zhang Y, Vijayaraghavan K, Wen X-Y, Jacobson M. Z. Probing into regional O3 and PM pollution in the U.S., part Ⅰ. A 1-year CMAQ simulation and evaluation using surface and satellite data. J. Geo. Res.,2009,114, doi:10.1029/2009JD011898.
    [131]Liang, J.-Y, Jacobson, M.Z. Effects of subgrid segregation on ozone production efficiency in a chemical model. Atmospheric Environment,2000,34,2975-2982.
    [132]Haagen-Smit A.J. Chemistry and physiology of Log Angeles smog. Ind Eng Chem Res, 1952,44(6):1342.
    [133]王雪松,李金龙,张远航,谢邵东,唐孝炎.北京地区臭氧污染的来源分析.中国科学,2009,39(6):548-559.
    [134]Ma J., Liu H., Haug lustaine D. Summertime tropospheric ozone over China simulated with a regional chemical transport model, I:Model description and evaluation. J. Geophys. Res., 2002,107(22), doi:10.1029/2001JD001354.
    [135]Ma J., Zhou X., Haug hustaine D. Summertime tropospheric ozone over China simulated with a regional chemical transport model, II:Source contributions and budget. J. Geophys. Res.,2002,107(22), doi:10.1029/2001JD001355.
    [136]Li J., Wang Z.-F., Akimoto H., Yamaji K., Takigawa M., Pochanart P., Liu Y., Tanimoto H, Kanaya Y. Near-ground ozone source attributions and outflow in central eastern China during MTX2006. Atmos. Chem. Phys.2008,8:7335-7351.
    [137]Yarwood G., Morris R. E., Yocke M. A. Development of a methodology for source apportionment of ozone concentration estimates from a photochemical grid model.89th AWMA Annual Meeting, Nashville, TN,1996.
    [138]ENVIRON. User's guide to the Comprehensive Air Quality Model,2002.
    [139]Wang T., Nie W., Gao J., et al. Air quality during the 2008 Beijing Olympics:secondary pollutants and regional impact. Atmos. Chem. Phys. Discuss.,2010,10:12433-12463.
    [140]West J.J., Ansari AS., Pandis S.N. Marginal PM2.5:nonlinear aerosol mass response to sulfate reductions in the eastern United States. Journal of Air and Waste Management,1999, 49:1415-1424.
    [141]Vayenas D.V, Takahama S., Davidson C.I., Pandis S.N. Simulation of the thermodynamics and removal processes in the sulfate-ammonia-nitric acid system during winter:implications for PM2.5 control strategies. J. Geophys. Res.,2005,110, doi:10.1029/2004JD005038.
    [142]Pinder R.W. and Adams P.J. Ammonia emission controls as a cost-effective strategy for reducing atmospheric Particulate matter in the Eastern United States. Environ. Sci. Technol., 2007,41:30-386.
    [143]Wang Y., Hao J.-M., McElroy M. B., Munger J. W., Ma, H. Ozone air quality during the 2008 Beijing Olympics:effectiveness of emission restrictions. Atmos. Chem. Phys.2009,9: 5237-5251.
    [144]Meng Z., Dabdub D., Seinfeld J.H. Chemical coupling between atmospheric ozone and particulate matter. Science,1997,277:116-119.
    [145]Pai P., Vijayaraghavan K., Seigneur C. Particulate matter modeling in the Los Angeles Basin using SAQM-AERO. Journal of the Air and Waste Management Association,2000,50: 32-42.
    [146]张键.兰州西固地区光化学烟雾污染特点及其趋势分析.兰化科技.1991,9:288-294.
    [147]胡建林,张远航.长江三角洲地区臭氧生成过程分析.环境科学研究,2005,18(2):13-18.
    [148]贾龙,葛茂发,徐永福等.大气臭氧化学研究进展.化学进展,2006,18(11):1565-1574.
    [149]World Meteorological Organization. Global Ozone Research and Monitoring Project, Report No.47, scientific A8se8sment of Ozone Depletion:2002. Geneva, Switzerland, 2003.
    [150]樊文雁.北京及周边地区大气污染初步研究兰州大学,硕士论文,2008.
    [151]Wesely M. L. and Hicks B. B. A review of the current status of knowledge on dry deposition. Atmos. Environ.,2000,34:2261-2282.
    [152]邵敏,任信荣,王会祥等.城市大气中OH与HO2自由基的生成和消除的定量关系,科学通报,2004,49,1716-1721.
    [153]齐斌,陈忠明,邵可声等.OH自由基引发的甲烷光化学氧化体系中有机过氧化物的研究.环境化学,1998,17(4):309-314.
    [154]安俊琳.北京大气臭氧浓度变化特征及其形成机制研究.南京信息工程大学.博士学位论文.2007.
    [155]王式功,杨德保,李腊平等.兰州城区冬半年冷锋活动及其对空气污染的影响.高原气象,1998,17(2):142-149.
    [156]盛裴轩,毛节泰,王建民等.华南地区春季冷锋云系中污染物的输送.环境科学学报,1992,12(1):16-27.
    [157]刘毅,刘小红,李家伦等.冷锋天气边界层内臭氧及氮氧化物的观测研究.大气科学,2000,24(2):165-172.
    [158]兰国栋,胡晏玲.乌鲁木齐市一次冷空气过境天气对空气污染的影响分析.干旱环境监测,2007,21(4):205-209.
    [159]丁国安,陈尊裕,高志秋等.北京城区低层大气PM10和PM2.5垂直结构及其动力特征.中国科学D辑地球科学,2005,35,(增刊Ⅰ):31-44.
    [160]NCEP/FNLanalysis dataset.http://www.esrLnoaa.gov/psd/data/reanalysis/reanalysis.shtml.
    [161]李金香,邱启鸿,辛连忠等.北京秋冬季空气严重污染的特征及成因分析.中国环境监测,2007,23(2):89-94.
    [162]段献忠,陈欢欢.珠江三角洲空气污染时空分布特征及一次区域性污染过程气象特征数值模拟.中山大学研究生学刊,2008,29(3):42-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700