用户名: 密码: 验证码:
竹纤维细胞壁结构特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹纤维细胞壁具有特有的壁层结构——初生壁和薄厚交替的多层次生壁复合而成的微纳米结构,这种结构赋予了纤维细胞刚性强、形态平直、性能稳定的特性,也是竹材优良宏观力学性质的基础。深入研究竹纤维细胞壁结构特征,不仅有助于认识竹子生长机制,而且对于发展竹类资源利用、生物能源转化以及仿生材料设计与制造等都具有重大的理论和现实意义。
     本研究以竹纤维细胞壁为研究对象,以其结构特征为主线,利用多种技术手段和方法以及先进的实验仪器,从竹纤维细胞壁多壁层结构的表征、竹纤维细胞壁微纤丝的排列与尺寸、竹纤维细胞壁半纤维素与纳米结构及竹纤维细胞壁力学性能的关系三个方面开展研究。在竹纤维细胞壁壁层结构的表征研究过程中,分别采用了场发射环境扫描电镜(FE-SEM)、透射扫描电镜(TEM)、原子力显微镜(AFM)对竹纤维细胞壁壁层结构进行表征,并利用AFM对竹纤维细胞壁横截面各壁层内纤维素微纤丝分布情况和壁层厚度进行测量。在竹纤维细胞壁微纤丝的研究中,主要利用AFM对不同处理的竹纤维细胞壁初生壁的纤维素微纤丝排列及大小变化进行表征;在研究半纤维素与竹纤维细胞壁纳米结构及拉伸性能的关系的研究中,主要采用傅立叶变换红外光谱(FT-IR)和X-射线衍射技术(XRD)对竹纤维细胞壁纳米结构进行分析,同时,采用单根纤维拉伸技术在细胞壁水平上研究竹纤维细胞壁拉伸性能的变化。
     论文的主要结论如下:
     (1)在FE-SEM下能够观察冷热交替处理干燥竹材中竹纤维细胞壁的多层结构。在冷热交替处理过程中,竹黄的细胞壁层比竹青的细胞壁层更容易分层;在一个维管束内,各方纤维帽的外围细胞壁在受到冷热处理时更容易分层,便于观察细胞壁的多层结构;但FE-SEM观察冷热往复交替处理干燥的竹材这种方法只能作为一个定性的观察,不能准确地表征出竹纤维细胞壁的多壁层结构。AFM具有很高的分辨率,对尺寸比较小的竹纤维细胞壁各壁层模量表征很有效。竹纤维细胞壁各壁层的模量不同。相比TEM,采用AFM表征细胞壁多壁层结构,不仅制样便捷、能定位观察而且还能够获得样品与针尖的相互作用信息。此外,AFM还是一种研究竹纤维细胞壁的微纤丝结构特征、分布情况以及纤维素微纤丝聚集体尺寸的有效手段。
     (2)竹纤维细胞壁多壁层结构以及各壁层的厚度随着竹纤维所处的位置改变而变化;在竹纤维细胞壁和竹薄壁细胞的横截面,纤维素微纤丝聚集体排列形式都呈随机的无规律排列;一个细胞壁各壁层内的纤维素微纤丝聚集体的密度不同,并且在壁层与壁层相邻的位置纤维素微纤丝聚集体的密度明显大于壁层内纤维素微纤丝聚集体的密度。同时,这一现象在竹薄壁细胞横截面上表象的更明显;纤维素微纤丝聚集体的尺寸在一个竹纤维细胞壁中大小变化不大,而在薄壁细胞中变化较大。
     (3)在AFM下能够清晰观察到竹纤维细胞壁初生壁的微纤丝聚集体的排列以及测量微纤丝聚集体大小,竹纤维细胞壁初生壁的微纤丝呈随机无须的交织状排列。超声处理和不同干燥方式都影响微纤丝的排列,微纤丝聚集体之间的距离,纤维素微纤丝聚集体的大小,以及纤维表面粗糙度。采用冷冻干燥的细胞壁,其微纤丝的结构更接近原来的结构;超声处理增加了表面粗糙度并使得微纤丝暴露的更明显,这提供了一个增加纤维表面润湿性和使竹纤维初生壁微纤丝更易被观察到的方法。
     (4)逐步增加氢氧化钠溶液浓度抽提脱除半纤维素处理过程中,6%、8%氢氧化钠溶液处理时,木聚糖和葡甘露聚糖逐步降解,当氢氧化钠溶液增加到10%时,木聚糖和葡甘露聚糖被去除。当氢氧化钠溶液浓度进一步增加到15%和25%时,细胞壁中有纤维素Ⅱ生成。6%和8%氢氧化钠溶液处理对竹纤维表面纤维素微纤丝的排列及纤维素微纤丝聚集体的形态影响不大,纤维素微纤丝仍旧呈随机的无序的网状排列。当氢氧化钠溶液浓度增加到10%,竹纤维表面纤维素微纤丝排列和纤维素微纤丝聚集体的形态开始由松散的无序网状排列转变成较为紧密的排列。当氢氧化钠溶液的浓度增加到15%和25%时,竹纤维表面纤维素微纤丝排列和纤维素微纤丝聚集体形态完全转变,已无网状排列形态。6%、8%和10%氢氧化钠溶液脱半纤维处理不会影响纤维结晶类型,仍旧属于典型的纤维素Ⅰ晶型,纤维素的相对结晶度先提高后降低,纤维素晶体的平均厚度有小幅度减小。15%和25%氢氧化钠溶液处理使得纤维素晶体发生降解,然后重结晶,纤维素晶型发生了从Ⅰ到Ⅱ的转变,同时,纤维素的相对结晶度有很大的提高,但纤维素晶体的平均厚度减小。
     (5)纤维细胞壁内部结构因为半纤维素逐步脱除出现变化,在当氢氧化钠浓度增加到10%以后,纤维细胞壁表面纤维素微纤丝之间出现细小的孔洞,细胞壁内部壁层之间出现分层。分级抽提半纤维素后,竹纤维细胞壁的纵向拉伸强度和纵向拉伸模量都降低,但脱除半纤维的程度对拉伸强度影响不大,而且当氢氧化钠溶液浓度增加到15%和25%以后,拉伸模量急剧降低;6%和8%氢氧化钠溶液处理的纤维断裂伸长率几乎没有变化,当浓度增加到10%时,纤维的断裂伸长率增加明显,当浓度增加到15%和25%,纤维断裂伸长率急剧增加,是未经碱处理的3倍以上。逐步增加碱溶液浓度分级抽提半纤维处理过程中,竹纤维细胞壁断裂的形式存在明显差异,未经过碱处理和经过6%及8%氢氧化钠溶液处理的竹纤维,断口形状呈撕裂的刷子型,表现出较多的韧性断裂特性,10%氢氧化钠溶液处理的竹纤维,其断口呈斜齿状,断口粗糙,表现出韧性断裂减少,脆性断裂增加;15%和25%氢氧化钠溶液处理的竹纤维,其断口整齐,表面粗糙,表现出明显的脆性断裂特性。
Bamboo fiber has a special cell wall with a multilayer structure consist of primary andsecondary wall. Such a structure leads to strong rigidity, straight and stable mechanicalproperties of cell wall which is also the reason why the mechanical properties are so good.Further studying on the structure and properties of bamboo cell wall is not only important forknowing the growth mechanics of bamboo, but good to the utilization of bamboo resources,transformation of bioenergy and designing and making bionic.
     This research is studying on the structure of bamboo fiber cell wall with kinds of technicsand methods, and advanced instruments. The main contents includes three parts: studying themultilayer structure of bamboo cell wall with FE-SEM, TEM, Nanoindentation and AFM;studying the arrangement of cellulose microfibrils aggregates with AFM; and studying therelationship between hemicellulose of bamboo cell wall and nanostructure and mechanicalproperties with FT-IR, XRD and the technics for tensile testing of single fiber.
     The conclusions are as follows:
     (1)The multilayer structure of bamboo cell in treated by freezing and heating can beobserved in FE-SEM. The cell wall in the inner of bamboo splits more easily than that in theouter of bamboo after the freezing and heating treatment. The cell wall in the outside ofvascular bundle splits more easily. However, the FE-SEM method is only a qualitativeobservation. Comparing with the Nanoindentation, AFM has higher resolution, is effective formeasuring the modulus of cross section of bamboo cell wall. In comparison of TEM, observingbamboo cell wall structure with AFM is much simple which can not only observe the target cellwall,but can obtain more data. In addition, AFM is a effective method to study the cellulosemicrofibril and the distribution and diameter of microfibril aggregates in cross-section ofbamboo cell wall. While it need to notice the preparation of samples when using the AFMobserve the nanostructure of cell wall.
     (2)The multilayer structure and the thickness of each layer in different bamboo cell wallare different. The cellulose microfibril aggregates arrange randomly in the cross section of bothbamboo fiber cell wall and bamboo parenchyma cell wall.The distribution of microfibrilaggregates is different in different layers within on cell wall. There are more microfibrilaggregates in the place of the layer next to each other. Such a phenomenon is more obvious inparenchyma cell wall. The average diameter of microfibril aggregates in fiber cell wall is thesame, while that in parenchyma cell wall are different.
     (3)It is accessible to observe the nanoscale characteristics in bamboo fiber cell wall,especially the microfibrils, using AFM.The microfibril aggregates in primary cell wall ofbamboo fiber overlap, forming a randomly interwoven structure observed with AFM. And boththe ultrasonic treatment and the drying methods affected the arrangement and dimension ofmicrofibril aggregates. The structure of cell wall freeze-dried is near to the native structure.Ultrasonic treatment can increase roughness of bamboo fiber and exposure of microfibrilaggregates, which provides insight on enhancing wettability of bamboo fiber and observingmicrofibril aggregates.
     (4)Xylan and glucomannan degraded when bamboo fiber was treated by6%and8%NaOH solution. While the concentration increased to10%, xylan and glucomannan wereremoved. The pattern of cellulose microfibril aggregates treated by6%and8%NaOH solutiondid not change observing with AFM which changed sharply when the concentration of NaOHincrease to15%and25%. CelluloseⅠdid not change, while the CrI first increased, and thendecrease with the alkali treatments with6%,8%and10%concentration. However, when theconcentration increase to15%and25%, there some celluloseⅠtransform into celluloseⅡ.Meanwhile, the CrI increased sharply, but the average thickness of cellulose crystal increased.
     (5)The structure of bamboo cell wall change with the reduction of hemicellulose. Whenthe concentration of NaOH solution increased to10%, tinny pores began to appear betweencellulose microfibrils aggregates and the layer of cell wall split. With the extraction ofhemicellulose, both the tensile strength and tensile modulus of single fiber decreased. While when the concentration of NaOH increased to15%and25%, tensile modulus decreasedsharply, but tensile strength did not decrease. The elongation at break were similar when thefiber treated by6%and8%NaOH solution. When the concentration increased to10%, theelongation began to increase obviously which increased sharply when the concentration wentup to15%and25%. Besides, the form of fracture were different with different alkali treatment.The fracture form of fibers treated by6%and8%alkali solution liked the brush whichrepresented tenacity. When the concentration increased to10%, the fracture form were liketeeth, while the form were orderly when the concentration increased to15%and25%whichindicated the frangibility of fibers.
引文
陈红,费本华,王戈,等.不同化学处理方法对竹纤维化学成分的影响.林产工业,2013,40(3):49-51.
    陈红,田根林,费本华.利用AFM技术研究毛竹纤维初生壁微纤丝.林业科学,2014,50(4):90-94.
    贺新强,李素文,胡玉熹,等.毛竹细胞壁自发荧光的显微荧光分光光度分析.植物学报,1999,41(7):711-714.
    胡巧玲,李晓东,沈家骢.仿生结构材料的研究进展.材料研究学报,2003,17(4):337-343.
    黄德欢,王庆康,庞乾骏,等.扫描隧道显微镜单原子操纵技术及其物理机理.上海交通大学学报,2001,35(2):157-167.
    黄艳辉,费本华,余雁,等.毛竹单根纤维的力学性质研究.中国造纸,2009,28(8):10-12.
    贾贤.天然生物材料及其仿生工程材料.北京:化学工业出版社,2007,78-86.
    江泽慧.世界竹藤.沈阳:辽宁科学技术出版社,2002,228-229.
    刘波.毛竹发育过程中细胞壁形成的研究.中国林业科学研究院博士学位论文.2008.
    刘丽,张翔,黄玉东,等.超声作用对芳纶纤维表面性质的影响.复合材料学报,2003,20(2):35-40.
    莫肖云,黄丽秀,田芳年,等.超声波提取两面针中的总碱.中国野生植物资源,2009,28(5):58-62.
    田根林,江泽慧,余雁,等.扫描电镜原位拉伸研究竹材增韧机制.北京林业大学学报,2012,34(5):144-147.
    王正熙.聚合物的红外光谱分析和应用.成都,四川大学出版社,1989.
    王小青,费本华,任海清.杉木光变色的FTIR光谱分析.光谱与光谱分析.2009,29(5):1272-1275.
    吴瑾光.近代傅里叶变化红外光谱技术和应用(上、下).科学技术文献出版社,1994.
    徐卫林.红外技术与纺织材料.北京:化工工业出版社,2005.
    余雁,江泽慧,费本华,等.管胞细胞壁力学研究进展评述.林业科学,2003,39(5):133-139.
    余雁,江泽慧,王戈,等.毛竹纤维微纤丝取向的原子力显微镜的观察.北京林业大学学报,2008,30(1):124-127.
    张双燕.化学成分对木材细胞壁力学性能影响的研究.中国林业科学研究院博士学位论文,2011.
    郑子尧.用原子力显微镜研究TiO2等电子材料表面结构.武汉大学硕士学位论文,2005.
    Abe H, Ohtani J, Fukazawa K. FE-SEM observation on the microfibrillar orientation in the secondary wallof tracheids. IAWA Bulletin,1991,12(4):431-438.
    Abe H, Ohtani J, Fukazawa K. Microfibrillar orientation of the innermost surface of conifer tracheid walls.IAWA Bulletin,1992,13:411-417.
    Abe H, Funada R, Ohtani J, Fukazawa K. Changes in the arrangement of microtubules and microfibrils indifferentiating conifer tracheids during the expansion of cells. Annals of Botany,1995,75:305-310.
    Abe H, Funada R, Imaizumi H. Dynamic changes in the arrangement of cortical microtubules in conifertracheids during differentiation. Planta,1995,197:418-421.
    kerholm M, Salmén L. Interactions between wood polymers studied by dynamic FT-IR spectroscopy.Polymer,2001,42:963–969.
    kerholm M, Salmén L. The oriented structure of lignin and its viscoelastic properties studied by static anddynamic FT-IR spectroscopy. Holzforschung,2003,57:459–465.
    kerholm M, Salmén L. Softening of wood polymers induced by moisture studied by dynamic FTIRspectroscopy. Journal of Applied Polymer Science,2004,94:2032–2040.
    Amada S, Untao S. Fracture properties of bamboo. Composites: Part B,2001,32:451-459.
    Aranberri-Askargorta I, Lampke T, and Bismarc, A. Wetting behavior of flax fibers as reinforcement forpolyprophylene. Journal of Colloid Interface Science,200,263(2):580-589.
    Arioli T, Peng L, Betzner A S. Molecular analysis of cellulose biosynthesis in Arabidopsis. Journals ofBiology Chemistry,1928,279(30):717-720.
    Atalla R H, Hackney J M, Uhlin I, Thompson N S. Hemicelluloses as structure regulators in the aggregationof native cellulose. International Journal of Biological Macromolecules,1993,15:109–112.
    Baker A A, Helbert W, Sugiyama J, Miles M J. Surface structure of native cellulose microcrystals by AFM.Applied Physics A,1998,66: S559-S563.
    Bardage S, Donaldson L, Tokoh C, Daniel G. Ultrastructure of the cell wall of unbeaten Norway spruce pulpfibre surfaces. Nordic Pulp Paper Research Journal,2004,19:448–452.
    Bergander B, Salmén L. Cell wall properties and their effects on the mechanical properties of fibers. Journalof Materials Science,2002,37(1):151–156.
    Bente M, Avramidis G, Forster S, Rohwer G E. Wood surface modification in dielectric barrier discharges atatmospheric pressure for creating water repellent characteristics. Holz Roh Werkst,2004,62:157-163.
    Binnig G, Rohrer H, Gerber Ch, Weibel E. Surface studies by scanning tunneling microscopy. ScanningTunneling Microscopy,1982,49(1):57-61.
    Binnig G, Quate CF. Atomic force microscope. Physical Review Letters,1986,56(9):930-933.
    Boyd J D. An anatomical explanation for visco-elastic and mechanosorptive creep in wood, and effects ofloading rate on strength. In: New Perspective in Wood Anatomy. Ed.Baas, P. Martinus Nijhoff/Dr WJunk Publishing, La Hague.1982, pp.171-222.
    Brandt B, Zollfrank C, Franke O, Formm J, Goken M, Durst K. Micromechanics and ultrastructure ofpyrolysed softwood cell wall. Acta Biomaterialia,2010,6:4346-4351.
    Burgert I, Keckes J, Fruhmann K, Fratzl P, Tschegg S E. A comparison of two techniques for wood fiberisolation–evaluation by tensile tests on single fibers with different microfibril angle. Plant Biology,2002,4:9-12.
    Burgert I, Fruhmann K, Keckes J, Fratzl P, Stanzl-Tschegg S E. Microtensile testing of wood fiberscombined with video extensometry for efficient strain detection. Holzforschung,2003,57:661-664.
    Burgert I. Exploring the micromechanical design of plant cell walls.American Journal of Botany,2006,93:1391-1401.
    Chafe S C, Chauret G. Cell wall structure in the xylem parenchyma of trembling aspen. Protoplasma,1974,80:129-147.
    Chen H, Wang G, Cheng H T. Properites of single bamboo fibers isolated by different chemical methods.Wood and Fiber Science,2011,43(2):1-10.
    Chen Y, Sarkanen S. Macromolecular lignin replication: a mechanistic working hypothesis. PhytochemicalReview,2003,2:235-255.
    Cheng Q, Wang S Q. A method for testing the elastic modulus of single cellulose fibrils via atomic forcemicroscopy. Composites: Part A,2008,39:1838-1843.
    Cheng Q, Wang S Q, Harper DP. Effects of process and source on elastic modulus of single cellulose fibrilsvaluated by atomic force microscopy. Composited: Part A,2009,40:583-588.
    Clair B, Arinero R, Lévéque G, Ramonda M, Thibaut B. Imaging the mechanical properties of wood cellwall layers by atomic force modulation microscopy. IAWA Journal,2003,24(3):223-230.
    Cousins W J. Elastic modulus of lignin as related to moisture content. Wood Science and Technology,1976,10:9-17.
    Cousins W J. Young’s modulus of hemicellulose as related to moisture content, Wood Science andTechnology,1978,12:161-167.
    Crow E, Murphy R J. Microfibril orientation in differentiating and maturing fibre and parenchyma cell wallsin culms of bamboo. Botanical Journal of Linnean Society,2000,134:339-359.
    Cybulska J, Konstankiewicz K, Zdunek A, Skrzypiec K. Nanostructure of natural apple cell wall and modelcell wall materials. International Agrophysics,2010,24:107-114.
    Cybulska J, Zdunek A, Psonka-Antonczyk K M, Stokke B T. The relation of apple texture with cell wallnanostructure studied using an atomic force microscope. Carbohydrate Polymer,2013,92:128-137.
    Crawshaw J, Bras W, Mant G R, Cameron R E. Simultaneous SAXS and WAXS investigations of changes innative cellulose fiber microstructure on swelling in aqueous sodium hydroxide. Journal of AppliedPolymer Science,2002,83:1209-1218.
    Daniel G. WURC’s impact on our understanding of wood fibre nanostructure. In: Salmén L (ed) Fifth plantbiomechanics conference, Stockholm, Sweden,2006
    Das M, Chakraborty D. Influence of alkali treatment on the fine structure and morphology of bamboo fibers.Journal of Applied Polymer Science,2006,102(5):5050-5056.
    Das M, Chakraborty D. Evaluation of improvement of physical and mechanical properties of bamboo fibersdue to alkali treatment. Journal of Applied Polymer Science,2008,107(1):522-527.
    Davies L M, Harris P J. Atomic force microscopy of microfibrils in primary cell walls. Planta,2003,217:283-289.
    Denoyelle G, Papperstidn S. Textile Research Journal,1959,62,390.
    Ding S Y, Himmel M E. The maize primary cell wall microfibril: A new model derived from directvisualization. Journal of Agricultural and Food Chemistry,2006,54:597-606.
    Donaldson L. Cellulose microfibril aggregates and their size variation with cell wall type. Wood Scienceand Technology,2007,41:443-460.
    Donaldson L. Microfibril angle: measurement, variation and relationships-a review. IAWA Journal,2008,29(4):345-386.
    Duchesne I, Daniel G. Changes in surface ultrastructure of Norway spruce fibres during kraft pulping–visualisation by field emission-SEM. Nordic Pulp Paper Research Journal,2000,15:54-61.
    Emons A C M. Methods for visualizing cell-wall texture. Acta Botanical Neerlandica,1988,37:31-38.
    Fahlén J, Salmén L. On the lamellar structure of the tracheid cell wall. Plant Biology,2002,4:339-345.
    Fahlén J, Salmén, L. Cross-sectional structure of the secondary wall of wood fibers as affected by processing.Journal of Materials Science,2003,38:119-126.
    Fahlén J, Salmén L. Pore and matrix distribution in the fibre wall revealed by atomic force microscopy andimage analysis. Biomacromolecules,2005,6:433-438.
    Faix O. Classification of lignins from different botanical origins by FTIR spectroscopy. Holzforschung,1991,45:21-27.
    Fengel D. Ultrastructural behavior of cell wall polysaccharides. Tappi,1970,53(3):497-503.
    Fengel D, Shao X. A chemical and ultrastructural study of the bamboo species Phyllostachys makinoi Hay.Wood Science and Technology,1987,18:103-112.
    Fengel D, Wegener G. Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin/New York,1984.
    Fengel, D. Influence of water on the OH valency range indeconvoluted FTIR spectra of cellulose.Holzforschung,1993,47:103-108.
    Fishman M L, Cooke P H, Coffin D R. Nanostructure of native pectin sugar acid gels visualized by atomicforce microscopy. Biomacromolecules,2006,5,334-341.
    Francois C. Materials handbook (2nd edition).2008. Arizona USA: Material and Electrochemical ResearchCorp.
    Fratzl P, Burgert I, Gupta H S. On the role of interface polymers for the mechanics of natural polymericcomposites. Physical Chemistry Chemical Physics,2004a,6:5575-5579.
    Fujii T. Cell-wall structure of the culm of Azumanezaza (Pleioblastus chino Max.). Mokuzai Gakhaishi,1985,31(11):865-872.
    Gassan J, Bledzki A K. Possibilities for improving the mechanical properties of jute/epoxy composites byalkali treatment of fibres. Composites Science and Technology,1999,59(9)1303-1309.
    Gillis P P. Effect of hydrogen bonds on the axial stiffness of crystalline native cellulose. Journal ofPolymer Science Part A,1969,2(7):783-794.
    Gong C. Ultrasound induced cavitation and sonochemical effects. PhD dissertation, Massachusetts Instituteof Technology, Cambridge, MA,1999,137pp.
    Gritsch C S, Kleist G, Murphy R.Developmental changes in cell wall structure of phloem fibres of thebamboo Dendrocalamus asper. Annals of Botany,2004,94:497-505.
    Groom L H, Mott L, Shaler S M. Mechanical properties of individual southern pine fibers. Part I:determination and variability of stress-strain curves with respect to tree height and juvenility. Woodand Fiber Science,2002a,34:14-27.
    Green P B, Chapman G B. On the development and structure of the cell wall in Nitella. American Journal ofBotany,1955,42(8):685-693.
    Gustafsson J, Lehto J H,Tienvieri T. Surface characteristics of thermomechanical pulps: the influence ofdefibration temperature and refining. Colloids and Surfaces A: Physicochemical Engineering Aspects,2003,225:95-104.
    Hammel K. Plant litter quality and decomposition: a historical overview. CAB International,1996
    Hanley S J, Gray D G. Atomic force microscope images of black spruce wood sections and pulp fibers.Holzforschung,1994,48(1):29-34.
    Hansma H G, Kim K J, Laney D E, Garcia R A, Argaman M, Allen M J, Parsons S M. Properties ofbiomolecules measured from atomic force microscope images: a review. Journal of Structural Biology,1997,119:99-108.
    Ha M A, Apperley D C, Evans B W, Huxham I M, Jardine W G, Vietor R J, Reis D, Vian B, Jarvis M C. Finestructure in cellulose microfibrils: NMR evidence from onion and quince. The Plant Journal,1998,16:183-190.
    Hergert H L. Infrared spectra. In: Sarkanen K.V. and C.H.Ludwig (Eds.) Lignins. Occurrence, Formation,Structure and Reactions. John Wiley&Sons, New York, Chichester, Brisbane, Toronto, Singapore.1971:267-297.
    Heyn A N J. Small particle X-ray scattering by fibers, size and shape of microcrystallites. Journal of AppliedPhysics,1955a,26:519-526.
    Heyn A N J. Small particle X-ray scattering by fibers. II. Radial distribution of microcrystallites. Journal ofApplied Physics,1955b,26:1113-1120.
    Highley T L. Changes in chemical components of hardwood and softwood by brown-rot fungi. Material undOrganismen,1987,22(1):39-45.
    Hirakawa Y, Ishida S. A SEM study on the layer structure of secondary wall of differentiating tracheids inconifer. Research Bulletins of the College Experiment Forests Hokkaido University,1981,37:55-72.
    Hinterstoisser B, kerholm M, Salmén L. Effect of fiber orientation in dynamic FTIR study on nativecellulose. Carbohydrate Research,2001,334:27-37.
    Hinterstoisser B, kerholm M, Salmén L. Load distribution in native cellulose. Biomacromolecules,2003,4:1232-1237.
    Houwink A L, Roelofsen P A. Composition and structure of yeast cell walls. Nature,1951,168:693-694.
    Huang YH, Fei B H, Yu Y, et al. Plant age effect on the mechanical properties of moso bamboo(Phyllostachys heterocycla var. pubescens) single fibers[J]. Wood Science and Technology,2012,42(2):1-6.
    Hult E L, Larsson P T, Iversen T.A comparative CP/MAS C-13-NMR study of cellulose structure in sprucewood and kraft pulp. Cellulose,2000,7:35-55.
    Hult E L, Larsson P T, Iversen T. Cellulose fibril aggregation–an inherent property of kraft pulps. Polymer,2001,42:3309-3314.
    Imamura Y, Harada H, Saiki H. Electron microscopic study on the formation and organization of the cellwall in the secondary wall. Bulletins of Kyoto University Forests,1972,44:183-193.
    Itoh T. Lignification of bamboo (Phyllostachys heterocycla Mitf.) during its growth. Holzforschung,1990,44:191-200.
    Jakob H F, Fratzl P, Tschegg S E. Size and arrangement of elementary cellulose fibrils in wood cells: asmall-angle X-ray scattering study of Picea abies. Journal of Structural Biology,1994,113:13-22.
    Jakob H F, Fengel D, Tschegg S E, Fratzl P. The elementary cellulose fibril in Picea abies: comparison oftransmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering.Macromolecules,1995,28:8782-8787.
    Jakob H F, Tschegg S E, Fratzl P. Hydration dependence of the wood-cell wall structure in Picea abies. Asmallangle X-ray scattering study. Macromolecules,1996,29:8435-8440.
    Jayne B A.(1959) Mechanical properties of wood fibers. Tappi42:461-467.
    Jungnikl K, Paris O, Fratzl P, Burgert I.The implication of chemical extraction treatments on the cell wallnanostructure of softwood. Cellulose,2007,15:407-418.
    Keckes J, Burgert I, Fruhmann K, Muller M, Kolln K, Hamilton M, Burghammer M, Roth S V,Stanzl-Tschegg S, Fratzl P. Cell-wall recovery after irreversible deformation of wood. Nature Materials,2003,2:810-814.
    Keegstra K, Talmadge K W, Bauer W D, Albersheim P. The structure of plant cell walls. III. A model of thewalls of suspension-cultivated sycamore cells based on the interconnections of the macromolecularcomponents. Plant Physiology,1973,51:188-196.
    Kerr A J, Goring D A I. The ultrastructural arrangement of the wood cell wall. Cellulose Chemistry andTechnology,1975,9:563-573.
    Kirby A R, Gunning A P, Waldron K W, Morris V J, Ng A. Visualization of plant cell walls by atomic forcemicroscopy. Biophysical Journal,1996,70:1138-1143.
    Kirby A R, Ng A, Waldron K W, Morris V J. AFM investigation of cellulose fibers in bintje potato (Solanumtuberosum L.) cell wall fragments. FOBI,2006,1:163-167.
    Kim J S, Lee K H, Cho C H, et al. Micromorphological characteristics and lignin distribution in bamboo(Phyllostachys pubescens) degraded by white rot fungus Lentinus edodes. Holzforschung,2008,62:481-487.
    Koh T H, Melton L D, Newman R H. Solid-state13C NMR characterization of cell walls of ripeningstrawberries. Canadian Journal of Botany,1997,75:1957-1964.
    Koljonen K, sterberg M, Johansson L S, Stenius P. Surface chemistry and morphology of differentmechanical pulps determined by ESCA and AFM. Colloids and Surfaces A: PhysicochemicalEngineering Aspects,2003,228:143-158.
    Kono H, Numata Y. Two-dimensional spin-exchange solid-state NMR study of the crystal structure ofcellulose II. Polymer,2004,45(13):4541-4547.
    Kontturi E, Vuorinen T. Indirect evidence of supramolecular changes within cellulose microfibrils ofchemical pulp fibers upon drying. Cellulose,2009,16:65-74.
    Kroon-Batenburg L M, Kroon J, Norholt M G. Chain modulus and intramolecular hydrogen bonding innative and regenerated cellulose fibers. Polymer Communications,1986,27:290-292.
    Lawoko M, Henriksson G, Gellerstedt G. Structural differences between the lignin-carbohydrate complexespresent in wood and in chemical pulps. Biomacromolecules,2005,6:3467-3473.
    Lee M H, Park H S, Yoon K J, Hauser P J. Enhancing the durability of linen-like properties of lowtemperature mercerized cotton. Textile Research Journal,2004,74(2):146-154.
    Lewis N G, Davin L B, Sarkanen S. The nature and function of lignins. In: Barton DHR, Nakanishi K,Meth-Cohn O (eds) Comprehensive Natural Products Chemistry,1999, Vol3, Elsevier, London.
    Liang C Y, Bassett K H, McGinnes E A, Marchessault RH. Infrared spectra of crystalline polysaccharides.VII. Thin wood sections. Tappi,1960,43(12):1017-1024.
    Liese W. Structural research on bamboo and rattan for their wider utilization. Bamboo Research,1996,15:1-14.
    Liese W. The protection of bamboo against deterioration. In Jena, P.K. ed., Proceedings of the2ndInternational Conference on Non-Conventional Building Materials (NOCMAT-97), Bhubaneswar,India,17-19June1997. Natural Resources Development Foundation, Bhubaneswar, India.1997, pp.111-117.
    Lin J, He X, Hu Y, et al.Lignification and lignin heterogeneity for various age classes of bamboo(Phyllostachys pubescens) stems. Physiologia Plantarum,2002,114:296-302.
    Liu H, Fu S, Zhu J Y, Li H, Zhan H. Visualization of enzymatic hydrolysis of cellulose using AFM phaseimaging. Enzyme Microbial Technology,2009,45:274-281.
    Liu H, Fu S, Zhu J Y, Li H, Zhan H. Visualization of enzymatic hydrolysis of cellulose using AFM phaseimaging. Enzyme and Microbial Technology,2009,45:274-281.
    Liu Y P, Hu H. X-ray diffraction study of bamboo fibers treated with NaOH. Fiber and Polymer,2008,9(6):735-739.
    Lybeer B, Koch G. A topochemical and semiquantitative study of the lignification during ageing of bambooculms (Phyllostachys viridiglaucescens). IAWA Journal,2005,26:99-109.
    Mohanty K, Misra M, and Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: An overview.Macromolecular Materials and Engineering.,2000,276/277:1-24.
    Marga F, Grandbois M, Cosgrove D J, Baskin T I. Cell wall extension results in the coordinate separation ofparallel microfibrils: Evidence from scanning electron microscopy and atomic force microscopy. PlantJournal,2005,43,181-190.
    Murphy R J, Alvin K L. Variation in fibre wall structure of bamboo. IAWA Bulletin,1992,13:403-410.
    Murphy R J, Alvin K L.Fibre maturation in the bamboo Gigantochloa scortechinii. IAWA bulletin,1997b,18:147-156.
    Navaranjan N, Blaikie R J, Parbhu A N, Richardson J D, Dickson A R. Atomic force microscopy for themeasurement of flexibility of single softwood pulp fibres. Journal of Materials Science,2008,43:4323-4329.
    Navi P, Stanzl-Tschegg S. Micromechanical of creep and relaxation of wood. Holzforshcung,2009,63:186-195.
    Nelson R. The use of holocellulose to study cellulose supermolecular structure. Journal of Polymer Science,1961,51:27-58.
    Newman R H. Nuclear-magnetic-resonance study of spatial relationships between chemical-components inwood cell-walls. Holzforschung,1992,46:205-210.
    Newman R H, Ha M A, Melton LD. Solid-state13C NMR investigation of molecular ordering of cellulose inthe cellulose of apple cell walls. Journal of Agricultural and Food Chemistry,1994,42:1402-1406.
    Newman R H, Davies L M, Harris P J. Solid-state13C nuclear magnetic resonance characterization ofcellulose in the cell walls of Arbidopsis thaliana leaves. Plant Physiology,1996,111:475-485.
    Niimura H, Yokoyama T, Kimura S, Matsumoto Y, Kuga S. AFM observation of ultrathin microfibrils infruit tissues. Cellulose,2010,17:13-18.
    Niklas K J. Plant biomechanics—an engineering approach to plant form and function. University of ChicagoPress, Chicago/London,1992.
    Obataya E, Kitin P, Yamauchi H. Bending characteristics of bamboo (Phyllostachys pubescens) with respectto its fiber–foam composite structure. Wood Science and Technology,2007,41:385-400
    Olsson A M, Salmén L. Viscoelasticity of insitu lignin as affected by structure–softwood vs hardwood. ACSSymposium Series,1992,489:133-143.
    Olsson A M, and Salmén L. The association of water tocellulose and hemicellulose in paper examined byFTIR spectroscopy. Carbohydrate Research,2004,339:813-818.
    O’SullivanAC. Cellulose: the structure slowly unravels.Cellulose,1997,4:173-207.
    Osterberg M, Schmidt U, Jaaskelainen A. Combining confocal Raman spectroscopy and atomic forcemicroscopy to study wood extractives on cellulose surface. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2006,291(1-3):197-201.
    Panshin A J, Zeeuw C D. Textbook of wood technology. New York: McGraw Hill Book Co.,1980
    Parameswaran N, Liese W. On the fine structure of bamboo fibres. Wood Science and Technology,1976,10,231-246.
    Parameswaran N, Liese W. Ultrastructural aspects of bamboo cells. Cellulose Chemistry and Technology,1980,14:587-609.
    Pakzad A, Jhon S, Yassar R S. Gradient of nanomechanical properties in the interphase of cellulosenanocrystal composites. Composites Science and Technology,2012,72:314-319.
    Pesacreta T C, Carlson L C, Triplett B A. Atomic force microscopy of cotton fiber cell wall surfaces in airand water: quantitative and qualitative aspects. Planta,1997,202:435-442.
    Pesacreta C T, Groom H L, Rial G T. Atomic force microscopy of the intervessel pit membrane in the stemof Sapium sebiferum (euphorbiaceae). IAWA Journal,2005,26(4):397-426.
    Pittenger B., Erina N, Su C. Quantitative mechanical properties mapping at the nanoscale with peakforceQNM.Application Note Veeco Instruments Inc,2010.
    Preston R D, Singh K. The fine structure of bamboo fibres. I. Optical properties and x-ray data. Journal ofExperimental Botany,1950,1:214-226.
    Ratho T, Patel A (1981) Small-angle X-ray studies on sisal fiber. J Phys D Appl Phys14:2169-2177
    Ray D, Sarkar B K. Characterization of alkali-treated jute fibers for physical and mechanical properties.Journal of Applied Polymer Science,2001,80:1013-1020.
    Revol J F, Goring D A I. On the mechanism of the mercerization of cellulose in wood. Journal of AppliedPolymer Science,1981,26:1275-1282.
    Roelofsen P A, Houwink A L. Cell wall structure of staminal hairs of tradescantia virginica and its relationwith growth. Protoplasma,1950,40(1):1-22.
    Rowell R. The Chemistry of Solid Wood. American Chemical Society, Washington D. C.1984.
    Salmén L, Olsson A M. Interaction between hemicelluloses, lignin and cellulose: structure–propertyrelationships. Journal of Pulp Paper Science,1998,24:99-103.
    Salmén L. Micromechanical understanding of the cell-wall structure Plant biology and pathology,2004,327:873-880.
    Salmén L, Fahlén J. Reflections on the ultrastructure of softwood fibres. Cellulose Chemistry andTechnology,2006,40:181-185.
    Segal L, Greely J J, Martin Jr A E, Conrad C M. An empirical method for estimating the degree ofcrystallinity of native cellulose using X-ray diffractometer.Textile Research Journal,1959,29(10):786-794.
    Shao Z P, Fang C H, Tian G L. Mode I interlaminar fracture property of moso bamboo (Phyllostachyspubescens). Wood Science and Technology,2009,43(5-6):527-536.
    Silva J L G, Al-Qureshi H A. Mechanics of wetting systems of natural fibers with polymeric resin. Journal ofMaterials Processing Technology,1999,92,93:124-128.
    Smith B G, Harris P J, Melton L D, Newman R H. The range of mobility of the non-cellulosicpolysaccharides is similar in primary cell walls with different polysaccharide compositions.Physiologia Planarumt,1998,103:233-246.
    Snell R, Groom L H, Rials T G. Characterizing the surface roughness of thermomechanical pulp fibers withatomic force microscopy. Holzforschung,2001,55(5):511-520.
    Suzuki K, Itoh T. The changes in cell wall architecture during lignification of bamboo, Phyllostachys aureaCarr. Trees,2001,15:137-147.
    Sterling C, Spit B J. Microfibrillar arrangement in developing fibers of Asparagus. American Journal ofBotany,1957,44(10):851-859.
    Stoll M, Fengel D. Studies on holo-cellulose and alpha-cellulose from spruce wood usingcryo-ultramicrotomy.1. Structural-changes of fiber walls during delignification and alkali extraction.Wood Science and Technology,1977,11:265-274.
    Tashiro K, Kobayashi M. Theoretical evaluation of threedimensional elastic constants of native andregenerated celluloses: role of hydrogen bonds. Polymer,1991,32(8):1516-1526.
    Terashima N, Awano T, Takabe K, Yoishida M. Formation of macromolecular lignin in Ginkgo xylem cellwalls as observed by field emission scanning electron microscopy.Compets Rendus Biologies,2004,327:903-910.
    Teard L, Passian A, Farahi RH, Kalluri UC, Davison BH, Thundat T. Spectroscopy and atomic forcemicroscopy of biomass. Ultramicroscopy,2010,110:701-707.
    Thimm J C, Burritt D J, Ducker W A, Melton L D. Celery parenchyma cell walls examined by atomic forcemicroscopy: effect of dehydration on cellulose microfibrils. Planta,2000,212:25-32.
    Thimm J C, Burritt D J, Sims I M, Newman R H, Ducker W A, Melton L D. Celery (Apium graveolens L.)parenchyma cell walls: cell walls with minimal xyloglucan. Physiologia Planarumt,2002,116,164-171.
    Thimm J C, Burritt D J, Ducker W A, Melton L D. Pectins influence microfibril aggregation in celery walls:an atomic force microscopy study. Journal of Structural Biology,2009,168(2):337-344.
    Tokoh C, Takabe K, Sugiyama J, Fujita M. Cellulose synthesized by Acetobacter xylinum in the presence ofplant cell wall polysaccharides. Cellulose,2002,9:65-74.
    Tono T, Ono K. The layered structure and its morphological transformation by acid treatment. Journal ofJapanese Wood Research Society,1962,8:245-249.
    Varma D S, Varma M, Varma I K. Coir fibers part Ⅰ: effect of physical and chemical treatment on properties.Textile Research Journal,1984,54:827-832.
    Wang G, Shi Q S, Wang J W, Cao S P, Cheng H T. Tensile of properties of four types of individual cellulosicfibers. Wood and Fiber Science.,2011,43(4):353-364.
    Wang X Q, Fei B H, Burgert I, et al. Cell wall structure and formation of maturing fibres of moso bamboo(Phyllostachys pubescens) increase buckling resistance. Journal of the Royal Society Interface,2012,9(70):988-996.
    Wang Y R, Lepp nen K, Andersson S, et al. Studies on the nanostructure of the cell wall of bamboo usingx-ray scattering. Wood Science and Technology,2012,46(1):317-332.
    Weissler A. Ultrasonics in chemistry. Journal of Chemical Education,1984,25(1):28-30.
    Whitney S E G, Brigham J E, Darke A H, Reid J S G, Gidley I M J. In vitro assembly of cellulose/xyloglucannetworks: ultrastructural and molecular aspects. The Plant Journal,1995,8:491-504.
    Whitney S E C, Brigham J E, Darke A H, Reid J S G, Gidley M J. Structural aspects of the interaction ofmannanbased polysaccharides with bacterial cellulose. Carbohydrate Research,1998,307:299-309.
    Whitney S E C, Gothard M G E, Mitchell J T, Gidley M J. Roles of cellulose and xyloglucan in determiningthe mechanical properties of primary plant cell walls. Plant Physiology,1999,121:657-663.
    Wickholm K, Larsson P T, Iversen T. Assignment of non-crystalline forms in cellulose I by CP/MAS13CNMR spectroscopy. Carbohydrate Research,1998,312:123-129.
    Yu H, Liu R G, Shen D W, Wu Z H, Huang Y. Arrangement of cellulose microfibrils in the wheat straw cellwall. Carbohydrate Polymer,2008,72:122-127.
    Yu Y, Fei B H, Wang H K, et al. Longitudinal mechanical properties of cell wall of Masson pine (Pinusmassoniana Lamb) as related to moisture content: A nanoindentation study. Holzforschung,2011,65:121-126.
    Yu Y, Tian G L, Fei B H.2011. Mechanical characterization of single bamboo fibers with nanoindentationand microtensile technique. Holzforschung,2011,65:113-119.
    Zhang L, Chen F, Yang H, Ye X, Sun X, Liu D. Effect of temperature and cultivar on nanostructural changesof water-soluble pectin and chelate-soluble pectin in peaches. Carbohydrate Polymer,2012,87:816-921.
    Zhang S Y, Wang C G, Fei B H, et al. Mechanical function of lignin and hemicelluloses in wood cell wallrevealed with microtension of single wood fiber. BioResources,2013,8(2):2376-2385.
    Zhou B L. Some progress in the biomimetic study of composite materials. Materials Chemistry and Physics,1996,45(2):114-119.
    Zimmermann T, Thommen V, Reimann P, Hug H J. Ultrastructural appearance of embedded and polishedwood cell walls as revealed by Atomic Force Microscopy. Journal of Structural Biology,2006,156:363-369.
    Zou L H, Jin H, Lu W Y, Li X. Nanoscale structural and mechanical characterization of the cell wall ofbamboo fibers. Materials Science and Engineering: C,2009,29:1375-1379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700