用户名: 密码: 验证码:
光传送网的资源优化和约束路由关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联网与物联网应用的高速发展,通信网络业务容量爆炸式增长,光传送技术面临越来越严峻的挑战。以OTN/PTN为代表的新一代光传送技术正在取代传统DWDM、SDH技术的统治地位,逐渐成为新一代光传送网的主流,光传送网络的大容量、分组化、智能化趋势日益明显。OTN/PTN技术标准日益成熟,组网应用大规模展开,由于节点能力约束引起的网络性能受限问题也越来越突出。针对OTN网络,主要是电交叉能力受限引起的资源预留失败问题和光交叉结构不平衡性造成的建路阻塞问题;而针对PTN网络,则主要是调度机制、资源预留和路由的协同性导致的业务QoS性能劣化问题。以这些问题为出发点,在国家863课题“新一代光网络标准、测试和组网应用研究”的支持下,本文重点研究新一代光传送网的关键技术,特别是研究OTN/PTN网络的资源优化和约束路由问题,并取得了若干具有创新性的研究成果。主要工作和创新性成果如下:
     第一,针对OTN多层网络中由于电交叉资源限制导致的资源预留失败问题,参考标准节点模型定义,提出了OTN电结构约束节点模型,并基于此提出了一种基于OTN节点电结构约束的动态路由优化算法。根据光层建路和电层建路的不同模式,算法分为光层建路优先、电层建路优先和光电混合算路优先三种策略,并利用OMNeT++仿真工具对三种策略进行了仿真实验。实验结果表明,相对于其他两种策略,电层建路优先策略在阻塞率性能方面具有较大优势。
     第二,针对OTN节点光交叉结构不平衡性造成的建路阻塞问题,研究了OTN有阻光节点的内在结构,分析了节点光结构约束模型,提出了基于OTN节点光结构约束的冲突感知波长分配算法,以有效降低网络阻塞率,并利用OMNeT++仿真工具进行了仿真实验。实验结果表明,考虑节点光结构约束后,之前广泛使用的波长分配算法的性能发生了很大异化,在所研究的网络模型中,本文提出的M&R、R&M方案的性能要优于传统方案。
     第三,围绕OTN多层网络节点电结构约束模型,针对OTN节点电交叉资源中LIU资源和AIU资源配比不平衡性问题,研究了骨干OTN多层网络中LIU资源和AIU资源配比关系对网络性能的影响,揭示了在流量荷载的各个阶段,LIU配置率在60%-70%的时候OTN网络性能最佳的特性,为骨干OTN网络建设提供了重要参考。并在此基础上提出了一种启发式算法来解决任意OTN网络的电交叉资源优化配置问题,并基于线性逼近策略和阻塞率逼近策略利用OMNeT++仿真工具进行了仿真实验。实验结果表明,阻塞率逼近策略相对于线性逼近策略在资源利用率方面性能有更大的提升,在满足相同阻塞率的情况下大幅降低了LIU资源的配置量。
     第四,MPLS-TP网络面向传送的特性使其对业务QoS的保证有更高的要求。本文针对MPLS-TP网络中调度机制、资源预留和路由的协同性问题,研究了调度机制的不公平性对业务QoS特性的影响并将这种不公平性作为重要约束引入到路由计算过程中,提出了一种基于调度机制不公平性约束的分布式路由优化算法,并利用仿真工具对算法进行了仿真实验。实验结果表明,基于调度机制不公平性约束的分布式路由算法能有效提高高等级业务的QoS特性。
     第五,针对传统光传送网络资源管理优化过程中存在的交互性与管控能力不足和资源配置不均衡等问题,提出了光传送网络资源管理优化平台的方案,在这个方案中论文提出了任务管理中心的架构,结合虚拟化构建了一个开放的、可重构的、交互式网络资源管理优化平台,有效解决了多方接入、数据共享与安全、统一管控和均衡资源配置等问题。在此框架内开发实现了MPLS-TP网络中同步网络规划/优化模块,移植实现了网管模块和传输仿真模块,将网络的规划优化、传输的性能分析和网管有机结合,将前台展示和后台运算实体分离,实现了数据的实时更新和资源的优化配置。
The rapid growth of Internet and other data applications (such as digital video broadcasting, cloud computation, cloud storage, and so on) has become a huge challenge for the optical transport networks. Optical transport networks should be able to carry the full-service, including voice and data services, multimedia services and other business carrying requirements, providing flexible, efficient and reliable bandwidth. OTN and PTN technologies, which are replacing SDH and DWDM, are the inevitable evolution trends. Although data transport can be solved by OTN and PTN, there is still a validity requirement. Under the driven of the validity requirement, there are still a series of problems in optical transport networks, such as service complexity, routing cooperation and network efficiency. To solve these problems, this paper mainly researches on the key technologies in optical transport networks, especially the problem of routing and resource optimization, with the support by the project of the national high-tech research and development program "next generation optical network standards, testing and networking application". A number of innovative research achievements have been gained. The main contribution and innovation of this dissertation are described as follows.
     Firstly, in order to solve the unbalance problem caused by the structure of the OTN node, an OTN numeric model is proposed to analyze the structure constraints problem of the OTN node. Based on the numeric model above, three multi-layer traffic grooming algorithms (OC-DKI, OC-DIK and OC-DIKP) are also proposed, in which the OTN capacity constraint is taken into account. Furthermore, five wavelength assignment algorithms are also proposed. Numeric results show that OC-DKI and M&R/R&M algorithms have better performance.
     Secondly, based on three multi-layer traffic grooming algorithms proposed above, LIU placement problem in the backbone OTN network is simulated and analyzed. Numeric results show that the best LIU placement ratio is 60%-70%. Furthermore, two heuristic algorithms called MBPO and LAO are proposed for solving the cross-connects capacity management problem. All simulations have been done on a simulation platform implemented using disperse event simulation tool OMNeT++, and the proposed algorithm has been implemented using Perl language. Numeric results showed that the MBPO algorithm has better performance than the LAO algorithm, and the resultant scheme enables the operators to decrease the CAPEX.
     Thirdly, QoS sensitive routing is a very important component of traffic engineering in DiffServ MPLS-TP networks. Based on studies of characteristics of packet scheduling algorithms and the problem of unfairness when QoS routing does not consider the mix of traffic classes, a new routing scheme STE-QOSPF-Mix, which takes the reserved bandwidth supported WFQ algorithm into account, is proposed. To determine the QoS route for a flow request, STE-QOSPF-Mix considers the effective available bandwidth instead of residual bandwidth of the path, which is more suitable in DiffServ MPLS-TP networks. The simulation results show that our proposed STE-QOSPF-Mix scheme outperforms other schemes in terms of end to end delay.
引文
[1]http://en.wikipedia.org/wiki/Claude_Chappe.
    [2]Maiman T. H. Stimulated optical radiation in ruby, Nature, vol.187, no.4736,1960, pp. 493-494.
    [3]Kao K.C., Hockham G.A. Dielectric-fibre Surface Waveguides for Optical Frequencies, in Proc. I.E.E, vol.113, no.7, July 1966, pp.1151-1158.
    [4]http://baike.baidu.com/view/131894.htm.
    [5]Maurer, R. Attainment of highly transparent optical waveguides, IEEE Journal of Quantum Electronics, vol.10, no.9, Sep.1974, pp.687-687.
    [6]Tasker G. W., French W. G. Low-loss optical waveguides with pure fused SiO2 cores, Proceedings of the IEEE, vol.62, no.9, Sep.1974, pp.1281-1282.
    [7]王路威.半导体激光器的发展及其应用,成都大学学报(自然科学版),2003年9月,第22卷,第3期,pp.34-38.
    [8]Cook J., Szentesi O.. North American field trials and early applications in telephony, IEEE Journal on Selected Areas in Communications, vol.1, no.3, April 1983, pp.393-397.
    [9]李健.下一代光网络关键控制技术的研究,北京邮电大学,2007年,pp.2.
    [10]韦乐平.光网络技术发展与展望,电信科学,2008年3月,第3期,pp.1-6.
    [11]黄善国,顾畹仪,张永军等.IP数据光网络技术与应用,人民邮电出版社,2008,pp.1.
    [12]张杰,黄善国,李健等.光网络新业务与支撑技术,北京邮电大学出版社,2005,pp.1.
    [13]韦乐平.光网络的发展与市场需要,当代通信,2006年,第15期,pp.10-14.
    [14]张杰,黄善国,李健等.光网络新业务与支撑技术,北京邮电大学出版社,2005年,pp.3-4.
    [15]Klonidis D, Politi C T, Nejabati R. OPSnet:design and demonstration of an asynchronous high-speed optical packet switch, Journal of Lightwave Technology, vol.23, no.10, Otc. 2005, pp.2914-2925.
    [16]Peifang Z, Yang O. How practical is optical packet switching in core networks, IEEE Global Telecommunications Conference, Franeiseo, USA, Dec.2003, pp.2709-2713.
    [17]http://baike.baidu.com/view/2797916.htm.
    [18]Qiao C, Yoo M. Optical burst switching (OBS)-a new paradigm for an optical Internet, Journal of High Speed Networks, vol.8,1999, pp.69-84.
    [19]Turner J S. Terabit burst switching. Journal of High Speed Networks, vol.8, no.1,1999, pp.3-16.
    [20]Charlet G, Corbel E, Lazaro J, et al. WDM transmission at 6 Tbit/s capacity over transatlantic distance, using 42.7Gb/s differential phase-shift keying without pulse carver, Washington, DC, United States:Optical Society of America, Washington, DC 20036-1023, United States,2004.
    [21]J.X. Cai, D. G. Foursa, C. R. Davidson, et al. A DWDM Demonstration of 3.73 Tb/s over 11,000 km using 373 RZ-DPSK Channels at 10 Gb/s, OFC2003, vol.86, pp.866-868.
    [22]Lavigne B, Balmefrezol E, Brindel P, et al. Low input power All-Optical 3R Regenerator based on SOA devices for 42.66Gbit/s ULH WDM RZ transmissions with 23dB span loss and all-EDFA amplification, OFC2003, vol.86, pp.845-847.
    [23]Bhandare S, Sandel D, Hidayat A, et al.1.6-Tb/s (40X40 Gb/s) transmission over 44,.. 94km of SSMF with adaptive chromatic dispersion compensation, IEEE Photonics Technology Letters, vol.17, no.12, Dec.2005, pp.2748-2750.
    [24]甘朝钦.高速传送40Gbps至100Gbps,通讯世界,2007年,第6期,pp.83-84.
    [25]中兴首次亮相lOTbps超高速光网络传输技术,通信产业网,2011-04-02.
    [26]Akihide Sano, Hiroji Masuda, Takayuki Kobayashi, et al.69.1-Tb/s (432 x 171-Gb/s) C-and Extended L-Band Transmission over 240 Km Using PDM-16-QAM Modulation.and Digital Coherent Detection, OFC2010, PDPB7.
    [27]Peter J. Winzer. Beyond 100G Ethernet, Communications Magazine, vol.48, no.7, July 2010, pp.26-30.
    [28]张杰,徐云斌等.自动交换光网络ASON,人民邮电出版社,2004年2月第1版.
    [29]张海懿.下一代光传送网发展新趋势及标准化新进展,通信世界,no.31,2007,pp.2-3.
    [30]曹徐平WSON网络约束路由计算关键技术研究,北京邮电大学,2010年,pp.3.
    [31]Mikac, B. Inkret, R. Ljolje. M. Availability modelling of multi-service photonic network, Proceedings of 6th International Conference on Transparent Optical Networks, vol.1, Jul. 2004, pp.47-52.
    [32]Izmailov Rauf, Ganguly Samrat, Wang Ting. Hybrid hierarchical optical networks, IEEE Communications Magazine, vol.12, no.11, November 2002, pp.88-94.
    [33]Pin-Han Ho, Mouftah H.T., Jing Wu. A Scalable Design of Multigranularity Optical Cross-Connects for the Next-Generation Optical Internet, IEEE Joural on selected areas in communications, vol.21, no.7, Sep.2003, pp.1133-1142.
    [34]Lubo Tancevski. Intelligent next generation WDM optical networks, Information Science, vol.149,2003, pp.211-217.
    [35]Jensen R.A. The impact of technology advances in optical switching and long haul transport on next generation intelligent optical networks,2001 Digest of the LEOS Summer Topical Meetings, Aug.2001.
    [36]ITU-T. Architecture of optical transport networks, G.872,2001.
    [37]ITU-T. Interfaces for the Optical Transport Network (OTN), G.709,2009.
    [38]邓忠礼.光同步传送网和波分复用系统,北方交通大学出版社, 清华大学出版社,2003年10月,pp.469-471.
    [39]ITU-T. Framework of Optical Transport Network Recommendations, G.871,2000.
    [40]ITU-T. The control of jitter and wander within the optical transport network (OTN), G.8251,2010.
    [41]ITU-T. Management aspects of optical transport network elements, G.874,2010.
    [42]ITU-T. Optical transport network (OTN):Protocol-neutral management information model for the network element view, G.874.1,2002.
    [43]ITU-T. Characteristics of optical transport network hierarchy equipment functional blocks, G.798,2010.
    [44]ITU-T. Optical transport network physical layer interfaces, G.959.1,2009.
    [45]ITU-T. Optical safety procedures and requirements for optical transport systems, G.664, 2006.
    [46]ITU-T. Transmission characteristics of optical components and subsystems, G.671,2009.
    [47]ITU-T. Common equipment management function requirements, G.7710,2007.
    [48]ITU-T. Link capacity adjustment scheme for virtual concatenated signals, G.7042,2006.
    [49]ITU-T. Architecture for the automatically switched optical network (ASON), G.8080, 2006.
    [50]ITU-T. Architecture and specification of data communication network, G.7712,2010.
    [51]ITU-T. Distributed Connection Management, G.7713/Y.1704,2001.
    [52]ITU-T. Distributed Call and Connection Management based on PNNI, G.7713.1,2003.
    [53]ITU-T. Distributed Call and Connection Management:Signalling mechanism using GMPLS RSVP-TE, G.7713.2,2003.
    [54]ITU-T. Distributed Call and Connection Management:Signalling mechanism using GMPLS CR-LDP, G.7713.3,2003.
    [55]ITU-T. Generalized automatic discovery for transport entities, G.7714,2005.
    [56]ITU-T. Architecture and requirements for routing in the automatically switched optical networks, G.7715,2002.
    [57]张海燕.PTN标准的最新进展,邮电设计技术,2010年3月,pp.16-18.
    [58]张成良.PTN技术发展趋势和组网应用,邮电设计技术,2010年3月,pp.1-4.
    [59]ITU-T. Architecture of transport MPLS (T-MPLS) layer network, G.8110.1.2006.
    [60]ITU-T. Draft Amendment.l to G.8110.1,2007.
    [61]ITU-T. MPLS layer network architecture, G.8110,2005.
    [62]祁云磊,曲桦T-MPLS的关键技术研究,电信科学,2007年第23期,pp:73-77.
    [63]石帅,谢文军,贾武T-MPLS统一多业务适配及其OPNET建模,光网络技术,2008年第1期,pp:7-11.
    [64]石晶林,J‘炜等MPLS宽带网络互联技术,人民邮电出版社,2001.
    [65]吴江,赵慧玲.下一代的IP骨干网络技术-多协议标记交换,人民邮电出版社,2001.
    [66]E.Rosen, A.Viswanathan, R.Callon. Multi-protocol Label Switching Architecture, IETF RFC 3031, January 2001.
    [67]F.Le Faucheur, S.Davari, et al. Multi-Protocol Label Switching (MPLS) Support of Differentiated Services, IETF RFC 3270, May 2002.
    [68]L.Andersson, I.Minei, et al. LDP Specification, IETF RFC 5036,2007.
    [691 D.Awduche, L.Berger, et al. RSVP-TE:Extensions to RSVP for LSP Tunnels, IETF RFC3209,2001.
    [70]ITU-T. Interfaces for the Transport MPLS Hierarchy, G.8112,2006.
    [71]ITU-T. Characteristics of Transport MPLS equipment functional blocks, G.8121,2006.
    [72]ITU-T. Linear protection switching for transport MPLS networks, G8131,2006.
    [73]ITU-T. Management aspects of the T-MPLS network element, G.8151,2006.
    [74]S. Bryant. Joint Working Team (JWT) Report on MPLS Architectural Considerations for a Transport Profile, IETF RFC 5317, February 2009.
    [75]L. Andersson, R. Asati. "EXP field" renamed to "Traffic Class field", IETF RFC 5462, February 2009.
    [76]M. Bocci, M. Vigoureux, S. Bryant. MPLS Generic Associated Channel, IETF RFC 5586, June 2009.
    [77]B. Niven-Jenkins, D. Brungard, M. Betts, et al. Requirements of an MPLS Transport Profile, IETF RFC 5654, September 2009.
    [78]D. Beller, A. Farrel. An In-Band Data Communication Network for the MPLS Transport Profile, IETF RFC 5718, January 2010.
    [79]M. Vigoureux, D. Ward, M. Betts. Requirements for Operations, Administration, and Maintenance (OAM) in MPLS Transport Networks, IETF RFC 5860, May 2010.
    [80]K. Lam, S. Mansfield, E. Gray. MPLS TP Network Management Requirements, IETF RFC 5951, September 2010.
    [81]S. Mansfield, E. Gray, K. Lam. Network Management Framework for MPLS-based Transport Networks, IETF RFC 5950, September 2010.
    [82]M. Bocci, S. Bryant, D. Frost, et al. A Framework for MPLS in Transport Networks, IETF RFC 5921, July 2010.
    [83]N. Sprecher, A. Farrel. Multiprotocol Label Switching Transport Profile Survivability Framework, IETF Draft, July 2010.
    [84]K. Zhu, B. Mukherjee. Traffic grooming in an optical WDM mesh network, IEEE Journal on Selected Areas in Communications, vol.20, no.1,2002, pp.122-133,
    [85]D. Li, Z. Sun, X. Jia, et al. Traffic grooming on general topology WDM networks, IEE proceedings on Communications, vol.150,2003, pp.197-201.
    [86]D. Li, Z. Sun, X. Jia, et al. Traffic grooming for minimizing wavelength usage in WDM networks, International Conference on Computer Communications and Networks,2002.
    [87]R. Srinivasan, A. K. Somani. Dynamic routing in WDM grooming networks, Photonic Network Communications, vol.5, no.2,2003, pp.123-135.
    [88]H. Zhu, H. Zang, K. Zhu, et al. Dynamic traffic grooming in WDM mesh networks using a novel graph model, GLOBECOM 2002, vol.3, pp.2681-2685.
    [89]I. Cerutti, A. Furnagalli. Multi-rate and multi-hop hybrid optical networks with arbitrary topology, High performance Switching and Routing,2003, pp.239-244.
    [90]K. Zhu, B.Mukherjee. On-line approaches for provisioning connections of different bandwidth granularities in WDM mesh networks, OFC2002,2002, pp.549-551.
    [91]H. Zhu, H. Zang, K. Zhu, et al. A novel generic graph model for traffic grooming in heterogeneous WDM mesh networks, IEEE/ACM Transactions on Networking, vol.11, no. 2,2003, pp.285-299.
    [92]龚倩,徐荣,张民.光网络的组网与优化设计,北京邮电大学出版社,2002年.
    [93]K. Zhu, B. Mukherjee. A review of traffic grooming in WDM optical networks: Architectures and challenges, Optical Networks Magazine, vol.4, no.2,2003, pp.55-64.
    [94]胡玉矿.WDM光网络业务量疏导算法研究,上海交通大学,2001年.
    [95]S. Thiagarajan, A. K. Somani. Capacity Fairness of WDM Networks with grooming capabilities, Optical Networks Magazine, vol.2, no.3,2001, pp.24-32.
    [96]R.Srinivasan, A.K.Somani..A generalized framework for analyzing time-space switched optical networks, IEEE Journal on Selected Areas in Communications, vol.20, no.1,2002, pp.202-215.
    [97]K. Zhu, H. Zhu, B.Mukherjee. Traffic engineering in multi-granularity heterogeneous optical WDM mesh networks through dynamic traffic grooming, IEEE Network, vol.17, no.2,2003, pp.8-15.
    [98]A. Chiu, E. Modiano. Traffic grooming algorithms for reducing electronic multiplexing costs in WDM ring networks, IEEE J. Lightwave Technol., vol.18, no.1,2000, pp.2-12.
    [99]Zhang Huibin, Zhang Jie, Zhao Yongli, et al. The analysis of LIU placement in the OTN over WDM network, IEEE International Conference on Network Infrastructure and Digital Content,2010, pp.881-885.
    [100]Zhang Huibin, Zhang Jie, Zhao Yongli, et al. The EXC Management in the OTN over WDM network, IEEE International Conference on Broadband Network and Multimedia Technology,2010, pp.367-371.
    [101]Zhang Huibin, Zhao Yongli, Han Dahai, et al. QoS sensitive routing in DiffServ MPLS-TP networks, International Conference on Computer Application and System Modeling,2010, pp.1726-1730.
    [102]Zhang Huibin, Zhang Jie, Wang Yang, et al. Synchronous links organization evaluating platform in PTN networks, International Conference on Power System Technology,2010.
    [1]ITU-T. Interfaces for the Optical Transport Network (OTN) Amendment 3:100 Gbit/s support, one-stage multiplexing and other improvements, G.709 AM3,2009.
    [2]易晓波,孙秀清,唐元春等.基于路径计算单元的MPLS/GMPLS网络结构,电信网技术,2008年2月.第2期,pp.41-47.
    [3]黄丽丽,李晓东,叶运峰等.基于PCE的ASON路由技术研究,光通信研究,2009年4月.第2期,pp.10-13.
    [4]A. Farrel, J. P. Vasseur, J. Ash. A Path Computation Element (PCE)-Based Architecture, RFC4655, August 2006.
    [5]J. Ash. Ed, J.L. Le Roux, Ed. Path Computation Element (PCE) Communication Protocol Generic Requirements, RFC4657, September 2006.
    [6]J.L. Le Roux, Ed. Requirements for Path Computation Element (PCE) Discovery, RFC4674, October 2006.
    [7]J.L. Le Roux, Ed. Path Computation Element Communication Protocol (PCECP) Specific Requirements for Inter-Area MPLS and GMPLS Traffic Engineering, RFC4927, June 2007.
    [8]J.L. Le Roux, Ed., JP. Vasseur, Ed., et al. IS-IS Protocol Extensions for Path Computation Element (PCE) Discovery, RFC5089, January 2008.
    [9]J.L. Le Roux, Ed., JP. Vasseur, Ed., et al. OSPF Protocol Extensions for Path Computation Element (PCE) Discovery, RFC5088, January 2008.
    [101 N. Bitar, R. Zhang, et al. Inter-AS Requirements for the Path Computation Element Communication Protocol (PCECP), RFC5376, November 2008.
    [11]I.Bryskin, D. Papadimitriou, et al. Policy-Enabled Path Computation Framework, RFC5394, December 2008.
    [12]JP. Vasseur, Ed, JL. Le Roux, Ed, et al. Path Computation Element (PCE) Communication Protocol (PCEP), RFC5440, March 2009.
    [13]JP. Vasseur, Ed, R. Zhang, et al. A Backward-Recursive PCE-Based Computation (BRPC) Procedure to Compute Shortest Constrained Inter-Domain Traffic Engineering Label Switched Paths, RFC5441, April 2009.
    [14]S. Sivabalan, J. Parker, et al. Diffserv-Aware Class-Type Object for the Path Computation Element Communication Protocol, RFC5455, March 2009.
    [15]E. Oki, T. Takeda, et al. Extensions to the Path Computation Element Communication Protocol (PCEP) for Route Exclusions, RFC5521, April 2009.
    [16]R. Bradford, JP. Vasseur, et al. Preserving Topology Confidentiality in Inter-Domain Path Computation Using a Path-Key-Based Mechanism, RFC5520, April 2009.
    [17]D. King, E. Oki. Path Computation Element Communication Protocol (PCEP) Requirements and Protocol Extensions in Support of Global Concurrent Optimization, RFC 5557, July 2009.
    [18]T. Takeda, JL. Le Roux, A. Farrel. Framework for PCE-Based Inter-Layer MPLS and GMPLS Traffic Engineering, RFC 5623, September 2009.
    [19]A. Farrel. Inclusion of Manageability Sections in Path Computation Element (PCE), RFC 6123, Febrary 2011.
    [20]JP. Vasseur, Ed, JL. Le Roux, Y. Ikejiri. A Set of Monitoring Tools for Path Computation Element (PCE)-Based Architecture, RFC 5886, June 2010.
    [21]JL. Le Roux, JP. Vasseur, Y. Lee. Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP), RFC 5541, June 2009.
    [22]S. Yasukawa, A. Farrel, Ed. Applicability of the Path Computation Element (PCE) to Point-to-Multipoint (P2MP) MPLS and GMPLS Traffic Engineering (TE), RFC 5671, October 2009.
    [23]S. Yasukawa, A. Farrel. Path Computation Clients (PCC)-Path Computation Element (PCE) Requirements for Point-to-Multipoint MPLS-TE, RFC 5862, June 2010
    [24]Q. Zhao, Ed, D. King, Ed, F. Verhaeghe, et al. Extensions to the Path Computation Element Communication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering Label Switched Paths, RFC 6006, September 2010.
    [251 I.Nishioka, D. King. Use of the Synchronization VECtor (SVEC) List for Synchronized Dependent Path Computations, RFC 6007, September 2010.
    [26]赵永利.多层多域智能光网络关键技术研究,北京邮电大学,2010年.
    [27]李晗,任磊,舒建军等.OTN:下一代传送网发展方向,华为技术,2007年7月,第19期,pp.27-28.
    [28]桂炬.下一代光网络管理、控制与应用若干关键技术研究,北京邮电大学,2005年.
    [29]ITU-T. Characteristics of transport equipment-Description methodology and generic functionality, G.806, Feb.2004.
    [30]B. Rajagopalan, J. Luciani, D. Awduche. IP over Optical Networks:A Framework, RFC 3717, March 2004.
    [31]O. Turkcu, S. Subramaniam. Performance of optical networks with limited reconfigurability, IEEE/ACM Transactions on Networking, vol.17, no.6, DEC.2009, pp. 2002-2013.
    [32]OMNeT++ Community Site. http://www.omnetpp.org/.
    [331 G. Bernstein, Y. Lee. Extending GMPLS/PCE for use in wavelength switched optical networks, OFC2008, NME1, no.4528270, pp.1-3.
    [34]A. Giorgetti, F. Paolucci, et al. Routing and wavelength assignment in PCE-based wavelength switched optical networks, ECOC2008, September 2008, pp.21-25.
    [35]Arakawa, S et al., APCC/OECC, vol.1,1999, pp.445
    [36]H. Zang, J. Jue, B. Mukherjee. A Review of Routing and Wavelength Assignment Approaches for Wavelength Routed Optical WDM Networks, Optical Networks Magazine, January 2000, pp.47-60.
    [1]张沛.下一代光网络规划与生存性关键技术的研究,北京邮电大学,2008年.
    [21 John Y. Wei, Changdong Liu, Kevin H Liu. IP over WDM traffic engineering, IEEE/LEOS Summer Topical Meetings, July 2000, pp. IV7-IV8.
    [3]A. S. Arora, S. Subramaniam. Converter placement in wavelength routing mesh topologies, Proc. IEEE ICC, June 2000, pp.1282-1288.
    [4]S. Subramaniam, M. Azizoglu, A. K. Somani. All-optical networks with sparse wavelength conversion, IEEE/ACM Trans. Networking, vol.4, Aug.1996, pp.544-557.
    [5]Chunsheng Xin. Resource Planning for Dynamic Traffic Grooming in WDM Optical Networks, Journal of lightwave technology, vol.27, no.5-8, MAR-APR 2009, pp. 817-824.
    [6]The Perl Programming Language, http://www.perl.org/.
    [7]Zhao YL, Zhang J, Ji YF, Gu WY. Routing and Wavelength Assignment Problem in PCE-Based Wavelength-Switched Optical Networks, IEEE Journal of optial communications and networking, vol.2, APR.2010, pp.196-205.
    [81 Massin R, Lamy-Bergot C, Le Martret CJ, et al. OMNeT++-Based Cross-Layer Simulator for Content Transmission over Wireless Ad Hoc Networks, Journal on wireless communications and networking, NO.502549,2010.
    [9]Cardona G, Rossello F, Valiente G. Comparison of Tree-Child Phylogenetic Networks, IEEE-ACM Transactions on Computational Biology and Bioinformatics, vol.6, no.4, OCT-NOV 2009, pp.552-569.
    [1]张知檄.移动网络资源预留QOS技术研究,国防科学技术大学研究生院,2003年.
    [2]Brander H., Howard J., Menicou G, et al. Quality of service in broadband communications, International Conference on Integrated Broadband Services and Networks,1990, pp. 166-171.
    [3]Raghavan S.V, Prabhakaran B., Tripathi S. K. Handling QoS negotiations in orchestrated multimedia presentations, Journal of High Speed Networks, vol.5, no.3,1996, pp. 277-292.
    [4]Campbell A. T., Coulson G. QoS adaptive transports:delivering scalable media to the desktop, IEEE Network, vol.11, no.2,1997, pp.18-27.
    [5]Chen S.G, Nahrstedt K. An overview of quality of service routing for next-generation high-speed networks:problems and solutions, IEEE Network, vol.12, no.6,1998, pp. 64-79.
    [6]Yap M.T., Fong S., Hutchison D.. Guaranteeing delay in ATM switches by using output port QoS controllers, Electronies Letters, vol.35, no.23,1999, pp.2002-2003.
    [7]Marwaha S., Indulska J., Portmann M.. Challenges and recent advances in QoS provisioning, signaling, routing and MAC protocols for MANETs, Proceedings of the 2008 Australasian Telecommunication Networks and Applications Conference, ATNAC2008, 2008, pp.97-102.
    [8]Mellouk A., Hoceini S., Zeadally S.. Design and performance analysis of an inductive QoS routing algorithm, Computer Communieations, vol.32, no.12, July 2009, pp.1371-1376.
    [9]Yoneda S., Aoki T.. Simple IP network based on QoS free concept,2000 IEEE International conference on Communications, ICC2000, vol.2,2000, pp.701-707.
    [10]Mohapatra P., Li J., Gui C.. QoS in mobile ad hoe networks Source:IEEE Wireless Communications, vol.10, no.3, June 2003, pp.44-52.
    [11]Chen D.Z., Varshney P. K... QoS support in wireless sensor networks:A survey, Proceedings of the International Conference on Wireless Networks, ICWN'04, vol.1,2004, pp.227-233.
    [12]熊轲.支持QoS的可扩展可靠路由算法及转发技术研究,北京交通大学,2009年.
    [13]高文宇,陈松乔,王建新.接纳控制研究综述,计算机工程,第31卷,第1期,2005年1月.
    [14]R. Yavatkar, D. Pendarakis, R. Guerin. A Framework for policy-based Admission Control, RFC2753, January2000.
    [15]R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin. Resource ReSerVation Protocol(RSVP)-Version 1 Functional Specification, RFC 2205,1997.
    [16]D. Awduche, L. Berger, D. Gan, et al. RSVP-TE:Extensions to RSVP for LSP Tunnels, RFC3209, December 2001.
    [17]郑彦兴,田菩,窦文华.基于Paerot最优的QOS路由算法,软件学报,2005年08期.
    [18]郑彦兴.因特网QoS路由算法研究,国防科学技术大学,2005,pp.2-4.
    [19]蒋章震.下一代传送网总体要求研究,CCSA研究报告.
    [20]Floyd S, Jacobson V. Random Early Detection Gateways for Congestion Avoidance. IEEE ACM Transactions on Networking,1993, pp.397-413.
    [21]B.Braden. et al. Recommendation on queue management and congestion avoidance in the Internet. IETF Internet RFC 2309, April 1998
    [22]王重钢,隆克平,龚向阳等,分组交换网络中队列调度算法的研究及其展望,电子学报,vol.29,no.4,April 2001,pp.553-558.
    [23]马原,基于GPS的有线分组调度算法的研究,天津大学,2007年.
    [24]Supporting Differentiated Service Classes:Queue Scheduling Disciplines. http://www. Unipernet work.ru/solutions/literature/whitepapers/200020.pdf.
    [25]I. Stavrakakis. Considerate priority queueing system with guaranteed policy fairness, INFOCOM'92. May 1992, vol.3, pp.2151-2160.
    [26]R.Bennett,H.Zhang.WF2Q:Worst-case fair weighted fair queueing,IEEE INFOCOM'96, Mar.1996,pp.120-128.
    [27]S. Blake, D. Black, M. Carlson, et al An Architecture for Differentiated Services, RFC 2475,1998.
    [28]L. Wu, B. Davie, S. Davari et al. Multi-Protocol Label Switching (MPLS) Support of Differentiated Services, RFC 3270,2002.
    [29]D. Frost, Ed, S. Bryant, Ed., M. Bocci, Ed., MPLS Transport Profile Data Plane Architecture, RFC5960,2010.
    [30]Loa Andersson, Lou Berger, Luyuan Fang, et al. MPLS-TP Control Plane Framework, draft-ietf-ccamp-mpls-tp-cp-framework-06.txt, February 7,2011.
    [31]R. Braden, D. Clark, S. Shenker. Integrated Services in the Internet Architecture:an Overview, RFC 1633,1994.
    [32]林闯,单志广,盛立杰,等Internet区分服务及其几个热点问题的研究[J].计算机学报, vol.23, no.4,2000, pp.419-433.
    [33]Nichols et. al. Definition of the Dzferentiated. Services Field. (DS. Field) in the IPv4 and IPv6 Headers, RFC 2474, Dec.1998.
    [34]John W. Supported Differentiated Service Classes in Large IP Networks,2000. http://www. juniper. net/solutions/literature/white_papers/200019.pdf.
    [35]B. Davie, A. Charny, J.C.R. Bennett, et al. An Expedited Forwarding PHB (Per-Hop Behavior, RFC 3246, Mar.2002.
    [36]J. Heinanen, F. Baker, W. Weiss, et al. Assured forwarding PHB group, RFC 2597, June 1999.
    [37]D. Stiliadis, A. Varma. Latency-rate servers:a general model for analysis of traffic scheduling algorithms, IEEE/ACM Transactions on Networking, vol.6, no.5, October, 1998, pp.611-624.
    [38]F. M. Chiussi, A. Francini. Implementing fair queueing in ATM switches, Part I:A practical methodology for the analysis of delay bounds, GLOBECOM'97,1997, pp.507-518.
    [39]F. M. Chiussi, A. Francini. Implementing fair queueing in ATM switches, Part 2::The logarithmic calendar queue. GLOBECOM'97,1997, pp.519-525.
    [40]S. J. Golestani. A self-clocked fair queueing scheme for broadband applications, IEEE INFOCOMM'94,1994, pp.636-646.
    [41]Peterson L L, Davie B S. Computer Networks:A System Approach, Morgan Kaufman, 2000,2ed, pp.456-457.
    [42]林闯,单志广,任丰原.计算机网络的服务质量(QoS).北京:清华大学出社,2004.
    [43]A. Varma, D. Stiliadis. Hardware implementation of fair queueing algorithms for asynchronous transfer mode network, IEEE Communication Magazine, vol.35, no.12, 1997, pp.54-67.
    [44]Wang J, Nahrstedt H. Parallel IP packet forwarding for tomorrow's IP routers, HPSR 2001, pp.353-357.
    [45]Shimonishi H, M. Yoshida. An improvement of weighted round robin cell scheduling in ATM networks, GLOBECOM'97,1997, pp.1119-1123.
    [46]Shimonishi H, Murase T. A network processor architecture for flexible QoS control in very high-speed line interface, HPSR 2001,2001, pp.402-406.
    [47]M. Shreedhar, G. Varghese. Efficient fair queueing using deficit round-robin, IEEE/ACM Transaction Networking, vol.4, no.3,1996, pp.375-385.
    [48]O. Altintas, et al. Urgency-based round-robin:a new scheduling discipline for packet switching networks, INFOCOMM'98,1998, pp.1197-1183.
    [49]Casavant T L, Kuhl J G. A taxonomy of scheduling in general purpose distributed computing systems, IEEE Trans, on Software Engineering, vol.14, no.2,1988, pp. 141-154.
    [50]D. Katz, K. Kompella, D. Yeung. Traffic Engineering (TE) Extensions to OSPF Version 2, RFC 3630, September 2003.
    [51]冀鑫泉,桂志波Internet中QoS路由算法研究现状及其展望,江苏通信技术,vol.19,no.1,2003,pp.13-16.
    [52]Y Guo, F. A. Kuipers, P. Van Mieghem. A link-disjoint paths algorithm for reliable QoS routing, International Journal of Communication systems, vol.16, no.9,2003, pp.779-798.
    [53]P. Van Mieghem, F. A. Kuipers. On the complexity of QoS routing. Computer Communications, vol.26, no.4,2003, pp.376-387.
    [54]闵应骅.计算机网络路由研究综述,计算机学报,vol.26,no.6,June 2003,pp.641-649.
    [55]周炯槃,通信网理论基础(修订版),2009年10月,人民邮电出版社.
    [56]卢开澄,卢华明.图论及其应用(第二版),清华大学出版社,2002,pp.84-90 125-151.
    [57]Tran C.H. Advanced Routing Algorithms and Load Balancing on MPLS, ICACT, Feb. 2007, pp.1886-1891
    [58]R. E. Bellman. Dynamic Programming, Princeton University Press, Princeton, N.J,1957.
    [59]E. Dijkstra. A Note on Two Problems in Connexion with Graphs, Numerische Mathematik, vol.1,1959, pp.269-271.
    [60]B. V. Cherkassky, A. V. Goldberg, T. Radzik. Shortest Paths Algorithms:Theory and Experimental Evaluation, Annual ACM SLAM Symposium on Discrete Algorithms, January 1994, pp.516-525.
    [61]Kodialam M., Lakshman. T. V. Minimum interference routing with applications to MPLS traffic engineering, INFOCOM 2000, vol.2,2000, pp.884-893.
    [62]Apostolopoulos G, Williams D, S Kamat, et al. QoS Routing Mechanisms and OSPF extensions, RFC2676,1999.
    [63]Kamei S., Kimura T.. Evaluation of Routing Algorithms and Network Topologies for MPLS Traffic Engineering, GLOBECOM '01, vol.1, Nov.2001, pp.25-29.
    [64]Lim S. H., Mashkuri Yaacob, Phang K. K. et al. Traffic engineering enhancement to QoS-OSPF diffserv and MPLS networks, IEE Proceedings Communications, vol.151, no. 1,2004, pp.101-106.
    [65]Lim S. H. Traffic Engineering Enhancement to OSPF for IP QoS with Diffserv and MPLS, Master Paper, University of Malaya, April 2001.
    [66]K. K. Phang, T. C. Ling, T.F. Ang. QoS Routing in Diffserv MPLS Networks, Malaysian Journal of Computer Science, vol.22, no.2,2009, pp.160-173.
    [67]赵键,吴介一,顾冠群.一类基于网络服务品质要求的单播路由算法,通信学报,2001年11月,第22卷,第11期,pp.30-41.
    [68]http://www.opnet.com.
    [1]胡峰.解析烽火通信光传送网规划系统,电信网技术,2007年11期,pp.93-94.
    [2]周彦,戴剑伟.HLA仿真程序设计,北京,飞思科技产品研发中心,2002.6.
    [3]Vmware公司网站.http://www.vmware.com/.
    [4]Huawei. Huawei Takes Lead in Solutions for Transparent Transmission of Clocks, http://www.huawei.com.cn/products/datacomm/catalog.do? id=1217.
    [5]M. J., Klein, R. Urbansky. Network synchronization:A challenge for SDH/SONET, IEEE Communication Magazine, vol.31, no.9, Sep.1993, pp.42-50.
    [6]J. C. Bellamy. Digital network synchronization, IEEE Commun. Mag., vol.33, no.4, Apr. 1995,pp.70-83.
    [7]Stefano Bregni. Synchronization of Digital Telecommunications Networks,2002.
    [8]ANSI T1.101-1999, Synchronization Interface Standard.
    [9]ITU-T. Definition and Terminology for Synchronization Networks. G.810, Aug.1996.
    [10]CCSA. Technical specification for synchronization network based on SDH transport network, YD/T 1267-2003.
    [11]CCSA. Specifications of engineering design for digital synchronization network, YD/T 5089-2005.
    [12]Serva Software, http://www.servasoftware.com/twaver.php.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700