用户名: 密码: 验证码:
TGF-β1对乳腺癌细胞及乳腺癌干细胞特征作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     研究TGF-β1对乳腺癌细胞中乳腺癌干细胞标记物表达、对乳腺癌干细胞富集、自我更新、转移侵袭、化疗耐药等相关基因蛋白表达的影响及对乳腺癌细胞周期、侵袭及诱导耐药等方面的作用;盐霉素对乳腺癌干细胞的作用及其逆转表阿霉素及多西紫杉醇耐药的作用。
     研究方法:
     取用MCF7、MCF7/ADM、MDA-MB-231、SKBR3四株乳腺癌细胞株,运用流式细胞仪法检测各株细胞中ALDH1阳性细胞群比例及细胞周期,实时定量逆转录PCR(Q-RT-PCR), Western blot法检测p21的表达;同法比较TGF-β1作用四株细胞后ALDH1阳性细胞群、细胞周期、p21基因及蛋白水平表达差异;乳腺细胞球培养法富集乳腺癌干细胞,流式细胞仪检测TGF-β1在富集乳腺癌干细胞中的作用,Q-RT-PCR、Western blot法检测各处理因素的乳腺癌细胞侵袭转移、化疗耐药、周期调控、细胞转化相关因子SATB1、MMP1、P21、Vimentin、E-cadherin基因及蛋白水平表达差异;Transwell侵袭小室法检测各处理因素前后乳腺癌细胞侵袭能力变化;CCK-8法检测各处理因素前后乳腺癌细胞对化疗药物表阿霉素、多西紫杉醇、盐霉素药物敏感性差异;将盐霉素与表阿霉素、多西紫杉醇两药或三药联合作用各处理因素乳腺癌细胞,CCK-8法检测细胞生长抑制率,检测盐霉素在逆转表阿霉素及多西紫杉醇耐药方面的作用。
     实验结果:
     流式细胞仪检测显示MCF7、MCF7/ADM、MDA-MB-23、SKBR3四株细胞中ALDH1阳性细胞群比例分别为1.49%、8.38%、1.53%、4.23%,以MCF7/ADM细胞株中ALDH1阳性细胞群含量最高。加入TGF-β1培养后MCF7、MCF7/ADM、SKBR3三株细胞株(ALDH1不宜做为MDA-MB-231乳腺癌干细胞标记物)中ALDH1阳性乳腺癌干细胞侧群比例平均分别为3.83%、10.06%、6.32%。加入TGF-β1培养后MCF7、MCF7/ADM、MDA-MB-231、SKBR3四株细胞中p21 mRNA的表达分别较未加入TGF-β1培养细胞显著上调,分别上调2倍、1.7倍、1.5倍和1.2倍(n=3,p<0.05)。加入TGF-β1培养后MCF7、MCF7/ADM、MDA-MB-231、SKBR3四株细胞表现出G1期阻滞(n=3,p<0.05)。TGF-β1上调p21、SATB1、MMP1、Vimentin的表达,下调E-cadherin的表达;TGF-β1使细胞出现进一步的G0/G1期阻阻滞(p<0.001)。TGF-β1可使细胞具有更强的克隆形成能力,细胞球形成率显著升高(p<0.001);TGF-β1可增强细胞侵袭能力(p<0.05)。表阿霉素(EPI)、多西紫杉(DOX)对MCF7的IC50值分别为:0.4ug/ml、0.2ug/ml;对MCF7/ADM的IC50值分别为:20ug/ml、0.6ug/ml;对SC细胞的IC50值分别为:50ug/ml、lug/ml;对SC-T细胞的IC50值分别为:120ug/ml、10ug/ml。SC及SC-T细胞对EPI、DOX体现出显著耐药性。盐霉素(SAL)对MCF7/ADM、SC、SC-T三组细胞的IC50值分别为:3±0.2ug/ml、8±0.5ug/ml、9±0.2umol/ml。EPI、DOX及SAL三种药物单独作用于MCF7/ADM、SC、SC-T细胞时,乳腺癌干细胞体现出明显的药物抵抗性,在TGF-β1、作用后药物抵抗更为明显,p<0.01;在两药联用方面,DOX和SAL联用的方式显著优于其他组合,p<0.01。EPI、DOX、SAL三药联用时,三组细胞生长抑制率无明显差异,p>0.1。
     实验结论:
     1.TGF-β1可以增加乳腺癌细胞的肿瘤干细胞池,提高细胞周期调控因子p21的表达,使细胞出现G0/G1期阻滞。
     2.TGF-β1可以上调自我更新和侵袭能力相关的p21、MMP、SATB1、Vimentin基因水平和蛋白水平的表达。
     3.TGF-β1可以有效富集乳腺癌干细胞。促进乳腺癌干细胞标记物ALDH1的表达,增强细胞自我更新、侵袭能力,诱导乳腺癌细胞化疗耐药。
     4.针对乳腺癌干细胞杀伤的药物盐霉素可以增加乳腺癌细胞对表阿霉素及多西紫杉醇的敏感性,逆转表阿霉素和多西紫杉醇的耐药,三药联合使用时在中等剂量即可有效杀伤乳腺癌细胞及乳腺癌干细胞。
Objective:To detect the enrichment of breast cancer stem cells induced by TGF-β1, and the effect on the metastasis, invasion, cell cycle regulation, drug resistance of breast cancer stem cells; To detect the killing effect of salinomycin on breast cancer stem cells and the effect of reversing epirubicin and docetacel resistance.
     Methods:The breast cancer stem cells from MCF7/ADM were enriched by mammosphere method cultured with or without TGF-β1 (lOng/ml) which labeled with SC and SC-T respectively. MCF7, MCF7/ADM, MDA-MB-231, SKBR3 cultured with or without TGF-β1 (10ng/ml) were labeled with ALDEFLOUR kit, the proportion of ALDH1 positive cells in four cell lines and SC, SC-T cells were detected with flow cytometry (n=3); Expression of p21, MMP1, SATB1, Vimentin, E-cadherin protein were detected with Q-RT-PCR and Western blot; The cell cycle of the six cells were detected with flow cytometry; The invasion ability of MCF7/ADM、SC and SC-T cells were detected with Transwell. The cell self-renewal ability of the three cells were detected with mammosphere formation method. The cell cycle of the three cells were detected with flow cytometry (n=3); The drug sensitivity of the three cells were detected with cell counting kit 8 (CCK8) method. The growth inhibition of salinomycin combined with epirubicin and/or docetaxel were detected with CCK8 method (n=3).
     Results:The proportion of ALDH1 positive cells in MCF7, MCF7/ADM, MDA-MB-231, SKBR3 were 1.49%,8.38%,1.53%,4.23%; The proportion of ALDH1 positive cells in MCF7, MCF7/ADM, SKBR3 which were cultured with TGF-β1 were 3.83%,10.06%, 6.32% respectively (n=3), which were obviously higher than the cell cultured without TGF-β1 (n=3, p<0.05)); Compared with cells cultured without TGF-β1, there is G1 phase cell cycle arrest when MCF7, MCF7/ADM, MDA-MB-231, SKBR3 cells cultured with TGF-β1 (n=3, p<0.05). The expression of p21 in the cell lines were significant higher than the cells cultured without with TGF-β1 (n=3,P<0.05). TGF-β1 up-regulated the expression of p21, SATB1, MMP1, while down-regulated the expression of E-cadherin. TGF-β1 enhanced the mammosphere formation ability (p<0.001), invasion ability of breast cancer stem cells (p<0.05) and G1 phase arrest (p<0.001). The IC50 value of epirubicin (EPI) and docetaxel (DOX) in MCF7 were 0.4ug/ml,0.2ug/ml respectively (n=3); the IC50 value of EPI and DOX in MCF7/ADM cell were 20ug/ml,0.6ug/ml respectively (n=3); while the IC50 value of EPI and DOX in SC cell were 50ug/ml, lug/ml respectively (n=3); the IC50 value of EPI and DOX in SC-T cell were 120ug/ml, 10ug/ml respectively (n=3). The IC50 value of salinomycin (SAL) in MCF7/ADM, SC, SC-T cells were 3±0.2ug/ml,8±0.5ug/ml, 9±0.2umol/ml respectively; The growth inhibition on SC and SC-T cells were lower than MCF7/ADM, with EPI, DOX and SAL respectively. Combined with two of EPI, DOX and SAL, the better growth inhibition effect was arised when DOX combined with SAL, p<0.01; Combined with all three drugs, the growth inhibition were more than 70% on MCF7/ADM, SC and SC-T cells, p>0.1.
     Conclusion:
     1. TGF-β1 could increase the proportion of breast cancer stem cells, and could up-regulate the expression of p21 mRNA and help the cells arrest in G0/G1 phase as well.
     2. TGF-β1 could up-regulate the expression of p21、MMP、SATB1、Vimentin, while down-regulate the expression of E-cadherin.
     3. TGF-β1 could enhance the enrichment of breast cancer stem cells. TGF-β1 could boost self-renewal and invasion ability of breast cancer stem cell, and induce the chemotherapy resistance, promote the expression of breast cancer stem cell marker.
     4. Salinomycin could kill breast cancer stem cells effectively. Salinomycin sensitizes breast cancer cells and breast cancer stem cells to the effect of epirubicin and docetaxel.
引文
[1]A1-Hajj M, Wicha M S, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci U S A,2003,100(7):3983-3988.
    [2]Patrawala L, Calhoun T, Schneider-Broussard R, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic[J]. Cancer Res,2005,65(14):6207-6219.
    [3]Tirino V, Desiderio V, D'Aquino R, et al. Detection and characterization of CD133+ cancer stem cells in human solid tumours[J]. PLoS One,2008,3(10):e3469.
    [4]Shackleton M, Vaillant F, Simpson K J, et al. Generation of a functional mammary gland from a single stem cell[J]. Nature,2006,439(7072):84-88.
    [5]Vaillant F, Asselin-Labat M L, Shackleton M, et al. The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis[J]. Cancer Res,2008,68(19):7711-7717.
    [6]Baeuerle P A, Gires O. EpCAM (CD326) finding its role in cancer[J]. Br J Cancer,2007,96(3):417-423.
    [7]Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties[J]. Cancer Res,2005,65(13):5506-5511.
    [8]Ginestier C, Hur M H, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J]. Cell Stem Cell,2007,1(5):555-567.
    [9]Moses H, Barcellos-Hoff M H. TGF-beta biology in mammary development and breast cancer[J]. Cold Spring Harb Perspect Biol,2011,3(1):a3277.
    [10]Asiedu M K, Ingle J N, Behrens M D, et al. TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype[J]. Cancer Res,2011,71(13):4707-4719.
    [1]Suzuki Y, Ishii H, Sekimoto M, et al. [Cancer stem cell][J]. Nihon Rinsho,2011,69 Suppl 3:98-102.
    [2]A1-Hajj M, Wicha M S, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci U S A,2003,100(7):3983-3988.
    [3]Ginestier C, Hur M H, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J]. Cell Stem Cell,2007,1(5):555-567.
    [4]Stier S, Cheng T, Forkert R, et al. Ex vivo targeting of p21Cip1/Wafl permits relative expansion of human hematopoietic stem cells[J]. Blood,2003,102(4):1260-1266.
    [5]van Os R, Kamminga L M, Ausema A, et al. A Limited role for p21Cip1/Wafl in maintaining normal hematopoietic stem cell functioning[J]. Stem Cells,2007,25(4):836-843.
    [6]Yu H, Yuan Y, Shen H, et al. Hematopoietic stem cell exhaustion impacted by p18 INK4C and p21 Cipl/Wafl in opposite manners[J]. Blood,2006,107(3):1200-1206.
    [7]Zhang J, Attar E, Cohen K, et al. Silencing p21(Wafl/Cipl/Sdil) expression increases gene transduction efficiency in primitive human hematopoietic cells[J]. Gene Ther,2005,12(19):1444-1452.
    [8]Patrawala L, Calhoun T, Schneider-Broussard R, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic[J]. Cancer Res,2005,65(14):6207-6219.
    [9]Tirino V, Desiderio V, D'Aquino R, et al. Detection and characterization of CD133+ cancer stem cells in human solid tumours[J]. PLoS One,2008,3(10):e3469.
    [10]Vaillant F, Asselin-Labat M L, Shackleton M, et al. The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis[J]. Cancer Res,2008,68(19):7711-7717.
    [11]Baeuerle P A, Gires O. EpCAM (CD326) finding its role in cancer[J]. Br J Cancer,2007,96(3):417-423.
    [12]Shackleton M, Vaillant F, Simpson K. J, et al. Generation of a functional mammary gland from a single stem cell[J]. Nature,2006,439(7072):84-88.
    [13]Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties[J]. Cancer Res,2005,65(13):5506-5511.
    [14]Deng S, Yang X, Lassus H, et al. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers[J]. PLoS One,2010,5(4):e10277.
    [15]Ricardo S, Vieira A F, Gerhard R, et al. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype[J]. J Clin Pathol,2011.
    [16]Abukhdeir A M, Park B H. P21 and p27:roles in carcinogenesis and drug resistance[J]. Expert Rev Mol Med,2008,10:e19.
    [17]Harper J W, Adami G R, Wei N, et al. The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases[J]. Cell,1993,75(4):805-816.
    [18]El-Deiry W S, Tokino T, Velculescu V E, et al. WAF1, a potential mediator of p53 tumor suppression[J]. Cell,1993,75(4):817-825.
    [19]Cheng T, Rodrigues N, Shen H, et al. Hematopoietic stem cell quiescence maintained by p21cipl/waf1[J]. Science,2000,287(5459):1804-1808.
    [20]Kourea H P, Koutras A K, Zolota V, et al. Expression of p27KIP1, p21WAF1 and p53 does not correlate with prognosis in node-negative invasive ductal carcinoma of the breast[J]. Anticancer Res,2006,26(2B):1657-1668.
    [21]Choudhury A R, Ju Z, Djojosubroto M W, et al. Cdknla deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation[J]. Nat Genet,2007,39(1):99-105.
    [22]Wang Y, Baskerville S, Shenoy A, et al. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation[J]. Nat Genet,2008,40(12):1478-1483.
    [23]Yu Z, Wang C, Wang M, et al. A cyclin Dl/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation[J]. J Cell Biol,2008,182(3):509-517.
    [1]Taylor M A, Lee Y H, Schiemann W P. Role of TGF-beta and the tumor microenvironment during mammary tumorigenesis[J]. Gene Expr,2011,15(3):117-132.
    [2]Barcellos-Hoff M H, Akhurst R J. Transforming growth factor-beta in breast cancer:too much, too late[J]. Breast Cancer Res,2009,11(1):202.
    [3]Qiu L X, Yao L, Mao C, et al. TGFB1 L10P polymorphism is associated with breast cancer susceptibility:evidence from a meta-analysis involving 47,817 subjects[J]. Breast Cancer Res Treat,2010,123(2):563-567.
    [4]Watabe T, Miyazono K. Roles of TGF-beta family signaling in stem cell renewal and differentiation[J]. Cell Res,2009,19(1):103-115.
    [5]He X C, Zhang J, Tong W G, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling[J]. Nat Genet,2004,36(10):1117-1121.
    [6]Kobielak K, Stokes N, de la Cruz J, et al. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling[J]. Proc Natl Acad Sci U S A,2007,104(24):10063-10068.
    [7]Jian H, Shen X, Liu I, et al. Smad3-dependent nuclear translocation of beta-catenin is required for TGF-betal-induced proliferation of bone marrow-derived adult human mesenchymal stem cells[J]. Genes Dev,2006,20(6):666-674.
    [8]Falk S, Wurdak H, Ittner L M, et al. Brain area-specific effect of TGF-beta signaling on Wnt-dependent neural stem cell expansion[J]. Cell Stem Cell,2008,2(5):472-483.
    [9]Mani S A, Guo W, Liao M J, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell,2008,133(4):704-715.
    [10]Li C Y, Suardet L, Little J B. Potential role of WAF1/Cip1/p21 as a mediator of TGF-beta cytoinhibitory effect[J]. J Biol Chem,1995,270(10):4971-4974.
    [11]Naber H P, Ten D P, Pardali E. Role of TGF-beta in the tumor stroma[J]. Curr Cancer Drug Targets,2008,8(6):466-472.
    [12]Asiedu M K, Ingle J N, Behrens M D, et al. TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype[J]. Cancer Res,2011,71(13):4707-4719.
    [13]Liu M, Casimiro M C, Wang C, et al. p21CIP1 attenuates Ras-and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo[J]. Proc Natl Acad Sci U S A,2009,106(45):19035-19039.
    [14]A1-Hajj M, Wicha M S, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci U S A,2003,100(7):3983-3988.
    [15]Graham S M, Jorgensen H G, Allan E, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro[J]. Blood,2002,99(1):319-325.
    [16]Bao S, Wu Q, Mclendon R E, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature,2006,444(7120):756-760.
    [17]Missero C, Di Cunto F, Kiyokawa H, et al. The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression[J]. Genes Dev,1996,10(23):3065-3075.
    [1]Reya T, Morrison S J, Clarke M F, et al. Stem cells, cancer, and cancer stem cells[J]. Nature,2001,414(6859):105-111.
    [2]Benson J R, Jatoi I, Keisch M, et al. Early breast cancer[J]. Lancet,2009,373(9673):1463-1479.
    [3]Jordan C T, Guzman M L, Noble M. Cancer stem cells[J]. N Engl J Med,2006,355(12):1253-1261.
    [4]Grimshaw M J, Cooper L, Papazisis K, et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells[J]. Breast Cancer Res,2008,10(3):R52.
    [5]Alvi A J, Clayton H, Joshi C, et al. Functional and molecular characterisation of mammary side population cells[J]. Breast Cancer Res,2003,5(1):R1-R8.
    [6]Patrawala L, Calhoun T, Schneider-Broussard R, et al.Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic[J]. Cancer Res,2005,65(14):6207-6219.
    [7]Ginestier C, Hur M H, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J]. Cell Stem Cell,2007,1(5):555-567.
    [8]Zhou L, Jiang Y, Yan T, et al. The prognostic role of cancer stem cells in breast cancer:a meta-analysis of published literatures[J]. Breast Cancer Res Treat,2010,122(3):795-801.
    [9]Abukhdeir A M, Park B H. P21 and p27:roles in carcinogenesis and drug resistance[J]. Expert Rev Mol Med,2008,10:e19.
    [10]Eck S M, Blackburn J S, Schmucker A C, et al. Matrix metalloproteinase and G protein coupled receptors:co-conspirators in the pathogenesis of autoimmune disease and cancer[J]. J Autoimmun,2009,33(3-4):214-221.
    [11]Zhou J, Brinckerhoff C, Lubert S, et al. Analysis of matrix metalloproteinase-1 gene polymorphisms and expression in benign and malignant breast tumors[J]. Cancer Invest,2011,29(9):599-607.
    [12]Ho I A, Chan K Y, Ng W H, et al. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma[J]. Stem Cells,2009,27(6):1366-1375.
    [13]Yang J M, Xu Z, Wu H, et al. Overexpression of extracellular matrix metalloproteinase inducer in multidrug resistant cancer cells[J]. Mol Cancer Res,2003,1(6):420-427.
    [14]Cai S, Han H J, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expression regulated by SATB1[J]. Nat Genet,2003,34(l):42-51.
    [15]Han H J, Russo J, Kohwi Y, et al. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis[J]. Nature,2008,452(7184):187-193.
    [16]Radisky D C, Labarge M A. Epithelial-mesenchymal transition and the stem cell phenotype[J]. Cell Stem Cell,2008,2(6):511-512.
    [17]Asiedu M K, Ingle J N, Behrens M D, et al. TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype[J]. Cancer Res,2011,71(13):4707-4719.
    [18]Mani S A, Guo W, Liao M J, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell,2008,133(4):704-715.
    [19]Dave B, Chang J. Treatment resistance in stem cells and breast cancer[J]. J Mammary Gland Biol Neoplasia,2009,14(l):79-82.
    [20]Woodward W A, Chen M S, Behbod F, et al. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells[J]. Proc Natl Acad Sci U S A,2007,104(2):618-623.
    [21]Li X, Lewis M T, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy[J]. J Natl Cancer Inst,2008,100(9):672-679.
    [1]Nicolini A, Ferrari P, Fini M, et al. Stem cells:their role in breast cancer development and resistance to treatment[J]. Curr Pharm Biotechnol,2011,12(2):196-205.
    [2]Gupta P B, Onder T T, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening[J]. Cell,2009,138(4):645-659.
    [3]Nicolini A, Ferrari P, Fini M, et al. Stem cells:their role in breast cancer development and resistance to treatment[J]. Curr Pharm Biotechnol,2011,12(2):196-205.
    [4]A1-Ejeh F, Smart C E, Morrison B J, et al. Breast cancer stem cells:treatment resistance and therapeutic opportunities[J]. Carcinogenesis,2011,32(5):650-658.
    [5]Dave B, Chang J. Treatment resistance in stem cells and breast cancer[J]. J Mammary Gland Biol Neoplasia,2009,14(1):79-82.
    [6]Creighton C J, Li X, Landis M, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features[J]. Proc Natl Acad Sci U S A,2009,106(33):13820-13825.
    [7]Hayashida T, Jinno H, Kitagawa Y, et al. Cooperation of cancer stem cell properties and epithelial-mesenchymal transition in the establishment of breast cancer metastasis [J]. J Oncol,2011,2011:591427.
    [8]Sharma B, Singh R K. Emerging candidates in breast cancer stem cell maintenance, therapy resistance and relapse[J]. J Carcinog,2011,10:36.
    [9]Fuchs D, Daniel V, Sadeghi M, et al. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-la cells[J]. Biochem Biophys Res Commun,2010,394(4):1098-1104.
    [10]Riccioni R, Dupuis M L, Bernabei M, et al. The cancer stem cell selective inhibitor salinomycin is a p-glycoprotein inhibitor[J]. Blood Cells Mol Dis,2010,45(1):86-92.
    [11]Kim J H, Chae M, Kim W K, et al. Salinomycin sensitizes cancer cells to the effects of doxorubicin and etoposide treatment by increasing DNA damage and reducing p21 protein[J]. Br J Pharmacol,2011,162(3):773-784.
    [12]King T D, Suto M J, Li Y. The Wnt/beta-catenin signaling pathway:a potential therapeutic target in the treatment of triple negative breast cancer[J]. J Cell Biochem,2012,113(1):13-18.
    [13]Kim K Y, Yu S N, Lee S Y, et al. Salinomycin-induced apoptosis of human prostate cancer cells due to accumulated reactive oxygen species and mitochondrial membrane depolarization[J]. Biochem Biophys Res Commun,2011,413(1):80-86.
    [14]Han B, Zhang J T. Multidrug resistance in cancer chemotherapy and xenobiotic protection mediated by the half ATP-binding cassette transporter ABCG2[J]. Curr Med Chem Anticancer Agents,2004,4(1):31-42.
    [15]Murray S, Briasoulis E, Linardou H, et al. Taxane resistance in breast cancer:Mechanisms, predictive biomarkers and circumvention strategies[J]. Cancer Treat Rev,2012.
    [1]Polyak K, Weinberg R A. Transitions between epithelial and mesenchymal states:acquisition of malignant and stem cell traits[J]. Nat Rev Cancer,2009,9(4):265-273.
    [2]Thiery J P, Acloque H, Huang R Y, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell,2009,139(5):871-890.
    [3]Prat A, Parker J S, Karginova O, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer[J]. Breast Cancer Res,2010,12(5):R68.
    [4]Liu S, Wicha M S. Targeting breast cancer stem cells[J]. J Clin Oncol,2010,28(25):4006-4012.
    [5]Abraham B K, Fritz P, Mcclellan M, et al. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis[J]. Clin Cancer Res,2005,11(3):1154-1159.
    [6]A1-Hajj M, Wicha M S, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci U S A,2003,100(7):3983-3988.
    [7]Ginestier C, Hur M H, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J]. Cell Stem Cell,2007,1(5):555-567.
    [8]Sheridan C, Kishimoto H, Fuchs R K, et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties:an early step necessary for metastasis [J]. Breast Cancer Res,2006,8(5):R59.
    [9]Liu R, Wang X, Chen G Y, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells[J]. N Engl J Med,2007,356(3):217-226.
    [10]Mani S A, Guo W, Liao M J, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell,2008,133(4):704-715.
    [11]Morel A P, Lievre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition[J]. PLoS One,2008,3(8):e2888.
    [12]Charafe-Jauffret E, Ginestier C, Iovino F, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature[J]. Cancer Res,2009,69(4):1302-1313.
    [13]Wright M H, Calcagno A M, Salcido C D, et al. Brcal breast tumors contain distinct CD44+/CD24-and CD133+ cells with cancer stem cell characteristics[J]. Breast Cancer Res,2008,10(1):R10.
    [14]Dontu G, E1-Ashry D, Wicha M S. Breast cancer, stem/progenitor cells and the estrogen receptor[J]. Trends Endocrinol Metab,2004,15(5):193-197.
    [15]Dontu G, Abdallah W M, Foley J M, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells[J]. Genes Dev,2003,17(10):1253-1270.
    [16]Shackleton M, Vaillant F, Simpson K J, et al. Generation of a functional mammary gland from a single stem cell[J]. Nature,2006,439(7072):84-88.
    [17]Kelly O G, Pinson K I, Skarnes W C. The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation inmice[J]. Development,2004,131(12):2803-2815.
    [18]Zhu Y T, Jia Y, Hu L, et al. Peroxisome-proliferator-activated receptor-binding protein (PBP) is essential for the growth of active Notch4-immortalized mammary epithelial cells by activating SOX10 expression [J]. Biochem J,2010,425(2):435-444.
    [19]Murone M, Rosenthal A, de Sauvage F J. Sonic hedgehog signaling by the patched-smoothened receptor complex[J]. Curr Biol,1999,9(2):76-84.
    [20]Dave B, Chang J. Treatment resistance in stem cells and breast cancer[J]. J Mammary Gland Biol Neoplasia,2009,14(1):79-82.
    [21]Woodward W A, Chen M S, Behbod F, et al. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells[J]. Proc Natl Acad Sci U S A,2007,104(2):618-623.
    [22]Li X, Lewis M T, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy[J]. J Natl Cancer Inst,2008,100(9):672-679.
    [23]Creighton C J, Li X, Landis M, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features[J]. Proc Natl Acad Sci U S A,2009,106(33):13820-13825.
    [24]Janda E, Nevolo M, Lehmann K, et al. Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin[J]. Oncogene,2006,25(54):7117-7130.
    [25]van der Pluijm G. Epithelial plasticity, cancer stem cells and bone metastasis formation[J]. Bone,2011,48(1):37-43.
    [26]Weigelt B, Peterse J L, van T V L. Breast cancer metastasis:markers and models[J]. Nat Rev Cancer,2005,5(8):591-602.
    [27]Dykxhorn D M, Wu Y, Xie H, et al. miR-200 enhances mouse breast cancer cell colonization to form distant metastases[J]. PLoS One,2009,4(9):e7181.
    [28]Klymkowsky M W, Savagner P. Epithelial-mesenchymal transition:a cancer researcher's conceptual friend and foe[J]. Am J Pathol,2009,174(5):1588-1593.
    [29]Santisteban M, Reiman J M, Asiedu M K, et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells[J]. Cancer Res,2009,69(7):2887-2895.
    [30]Damonte P, Gregg J P, Borowsky A D, et al. EMT tumorigenesis in the mouse mammary gland[J]. Lab Invest,2007,87(12):1218-1226.
    [31]Stingl J, Raouf A, Eirew P, et al. Deciphering the mammary epithelial cell hierarchy[J]. Cell Cycle,2006,5(14):1519-1522.
    [32]Bhat-Nakshatri P, Appaiah H, Ballas C, et al. SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype[J]. BMC Cancer,2010,10:411.
    [33]Aktas B, Tewes M, Fehm T, et al. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients[J]. Breast Cancer Res,2009,11(4):R46.
    [34]Mccoy E L, Iwanaga R, Jedlicka P, et al. Sixl expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition[J]. J Clin Invest,2009,119(9):2663-2677.
    [35]Yang M H, Hsu D S, Wang H W, et al. Bmil is essential in Twistl-induced epithelial-mesenchymal transition[J]. Nat Cell Biol,2010,12(10):982-992.
    [36]Vesuna F, Lisok A, Kimble B, et al. Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression[J]. Neoplasia,2009,11 (12):1318-1328.
    [37]Evdokimova V, Tognon C, Ng T, et al. Translational activation of snail 1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition[J]. Cancer Cell,2009,15(5):402-415.
    [38]To K, Fotovati A, Reipas K M, et al. Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance[J]. Cancer Res,2010,70(7):2840-2851.
    [39]Yu M, Smolen G A, Zhang J, et al. A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression[J]. Genes Dev,2009,23(15):1737-1742.
    [40]Yin X, Wolford C C, Chang Y S, et al. ATF3, an adaptive-response gene, enhances TGF{beta} signaling and cancer-initiating cell features in breast cancer cells[J]. J Cell Sci,2010,123(Pt 20):3558-3565.
    [41]Jo M, Eastman B M, Webb D L, et al. Cell signaling by urokinase-type plasminogen activator receptor induces stem cell-like properties in breast cancer cells[J]. Cancer Res,2010,70(21):8948-8958.
    [42]Wellner U, Schubert J, Burk U C, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs[J]. Nat Cell Biol,2009,11(12):1487-1495.
    [43]Park S M, Gaur A B, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2[J]. Genes Dev,2008,22(7):894-907.
    [44]Gregory P A, Bert A G, Paterson E L, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J]. Nat Cell Biol,2008,10(5):593-601.
    [45]Shimono Y, Zabala M, Cho R W, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells[J]. Cell,2009,138(3):592-603.
    [46]Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells[J]. Cell,2007,131(6):1109-1123.
    [47]Zhang M, Atkinson R L, Rosen J M. Selective targeting of radiation-resistant tumor-initiating cells[J]. Proc Natl Acad Sci U S A,2010,107(8):3522-3527.
    [48]Creighton C J, Li X, Landis M, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features[J]. Proc Natl Acad Sci U S A,2009,106(33):13820-13825.
    [49]Li X, Lewis M T, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy[J]. J Natl Cancer Inst,2008,100(9):672-679.
    [50]Phillips T M, Mcbride W H, Pajonk F. The response of CD24(-/low)/CD44+breast cancer-initiating cells to radiation[J].J Natl Cancer Inst,2006,98(24):1777-1785.
    [51]Cheng G Z, Chan J, Wang Q, et al. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel[J]. Cancer Res,2007,67(5):1979-1987.
    [52]Li Q Q, Xu J D, Wang W J, et al. Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells[J]. Clin Cancer Res,2009,15(8):2657-2665.
    [53]Ansieau S, Bastid J, Doreau A, et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence[J]. Cancer Cell,2008,14(1):79-89.
    [54]Gupta P B, Onder T T, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening[J]. Cell,2009,138(4):645-659.
    [55]Vazquez-Martin A, Oliveras-Ferraros C, Cufi S, et al. Metformin regulates breast cancer stem cell ontogeny by transcriptional regulation of the epithelial-mesenchymal transition (EMT) status[J]. Cell Cycle,2010,9(18):3807-3814.
    [56]Bandyopadhyay A, Wang L, Agyin J, et al. Doxorubicin in combination with a small TGFbeta inhibitor:a potential novel therapy for metastatic breast cancer in mouse models[J]. PLoS One,2010,5(4):e10365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700