用户名: 密码: 验证码:
长白山云冷杉林幼树结构和生长动态分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究长白山地区云冷杉林天然更新幼树的结构和生长动态,基于吉林汪清县金沟岭林场检查法1大区内的连续两年定位观测的70块10m×10m方形更新样地的调查数据60株云冷杉解析木数据,本文运用森林经理学、数量生态学和统计学的方法研究了长白山云冷杉混交林天然更新幼树的地径-株数分布以及地径和高度的相关关系、树种结构、水平空间结构、垂直空间结构、单株幼树生长模型、生长过程模型并根据建立的单株幼树生长模型结合计算机技术开发了单株幼树生长模拟系统。具体结果如下:
     不分树种时幼树的数量随着地径和高度的增大而减小,呈倒“J”型分布。主要树种云杉、冷杉、红松和色木幼树的数量均随着地径的增大而减小,但是椴树幼树随地径的增大先增大后减少。分别用线性、指数、乘幂和威布尔分布函数等方程拟合了幼树株数和地径、株数和高度以及高度与地径之间的关系,结果显示,不分树种和分树种幼树的株数-地径和株数-高度分布的最佳拟合方程均为威布尔分布,而高度与地径的关系用线性方程的拟合最好;
     运用重要值、多样性指数和种间联结分析方法分析了幼树上层木的树种结构。通过重要值计算发现,云冷杉上层木的优势树种为云杉、冷杉、红松和椴树,而在下层木中,色木、冷杉、椴树、云杉和红松共同构成了幼树的主体;通过计算上层林木和下层幼树的多样性指数发现,上层木的树种多样性要大于下层幼树的多样性;幼树树种种间联结分析显示,冷杉、色木槭、椴树、红松和云杉之间呈正联结关系,说明这些树种可以稳定地共存。
     运用方差/均值比率、平均拥挤指标和聚块性指标、丛生指标、负二项参数(K)、Cassie指标(CA)等方法研究了幼树的空间水平分布结构,结果显示,幼树呈聚集分布,且随着高度的增加,总体上聚集程度减弱。通过运用最近邻体分析方法分析云杉、冷杉、椴树和红松四个树种的幼树随成树的分布格局显示,四种优势种幼树最易在冷杉成树的树冠下及其附近更新,在椴树成树的树冠下更新较为困难。
     运用Lundqvist提出的基于幼树高度级生长建模方法建立了长白山云冷杉林天然更新幼树基于高度级的生长模型。根据每个高度级幼树的株数和高生长量,计算了每个高度级幼树的进级株数和任意两个相邻的高度级幼树的枯损率,从而计算出了所有幼树的平均枯损率和进入最小高度级的株数,并以五年为一个间隔,模拟了50年中每个高度级的幼树数量变化。
     运用广义线性混合模型和线性混合模型方法建立了长白山云冷杉林天然更新幼树单木生长模型。该模型包括幼苗更新概率和条件株数密度模型和高分布模型、幼树枯损、胸径和高度、地径和冠幅生长模型。验证结果显示,除了更新概率模型以外,其它模型拟合的精度均较好,从而说明在中国东北地区结构异质的天然林中,建立单株幼树的更新模型可以更好地模拟幼树短期的生长动态。更新的概率和数量主要与上层木的密度和组成有关,幼树的枯损和生长与自身大小和竞争程度有关。
     根据60株云冷杉解析木数据,分别运用逻辑斯蒂(Logistic)模型、严格苏马克(Schumacher)模型、理查德(Richards)模型、坎派兹(Compertz)模型、莱瓦科威克2(Levakovic2)模型、莱瓦科威克3(Levakovic3)模型、豪斯费尔德(Hossefld)模型、平移Allometric对数解法模型分析了云杉和冷杉的地径、胸径、材积和树高的生长过程。结果显示,冷杉的胸径和树高的生长方程均以理查德模型为佳,材积和胸径的生长过程模型以坎派兹为佳;云杉的胸径和树高生长过程模型以逻辑斯蒂为佳,材积生长过程模型以坎派兹为佳,地径的生长过程模型以理查德为佳。
Based on the data coming from 60 analytic trees and 70 10 m×10 m square plots of region I at Jingouling Experimental Forest Farm, Wangqing Forestry Bureau, Jilin Province, the structure and growth dynamics of saplings were studied in spruce-fir forest. Based on the methods of quantitative ecology, forest management and statistics, ground diameter distribution, the relationship between ground diameter and tree height, species structure, horizontal spatial structure, vertical spatial structure, single tree growh models and growth process models were studied, and then sapling growth simulation system was established with computer technology. The main conclusions were as follow:
     (1) In spruce-fir forest, the number of saplings decreased with the increasment of ground diameter. The distribution shows the shape of inverse "J". The number of saplings of spruce, fir, Korean pine and maple decreased with increasment of ground diameter, whose distribution was also inverse "J". However, the number of saplings was decreased when ground diameter increased. The Weibull distribution function was the optimal equation which express the distribution of ground diameter grades for all species and species-specific.
     (2) Importance value, diversity and interspecific associations of upper tree species and lower layer tree species were analyzed. According to the analysis of importance value, the upper dominant species were spruce, fir, Korean pine and lime and the lower dominant species were maple, fir, spruce, Korean pine and lime. The diversity index of tree species of upper layer was bigger than the lower. Positive interspecific association among five tree species shows that fir, spruce, Korean pine, maple, lime can steadily coexistence.
     (3) The horizontal spatial structure of saplings was studied through calculating the ratio of variance/mean, mean crowded index and aggregation index, index of clumping, negative binomial parameters (K) and Cassie index (CA). The results indicated that the saplings fell under the pattern of the aggregated distribution and aggregation degree increased with height. Nearest neighbor analysis showed that saplings of spruce, fir, lime and Korean pine are most likely to regenerate under the canopy of fir adult trees and are least likely to establish under lime adult trees.
     (4)The height class-based model of saplings was established by using the method of height class-based modeling firstly proposed by Lundqvist in uneven-aged spruce-fir forest in Northeastern China. According to the number and height increment of saplings in each height class, the number of saplings growing out of the size stratum in each height classes and mortality rate in two adjacent size classes can be calculated, and then mean mortality rate and mean annual recruitment number of all height classes also computed. Finally, the number of saplings in each height class was predicted with 5 years for an interval in the following fifty years.
     (5) Based on generalized linear models and mixed linear models method, recruitment probability and density, and individual tree survival and growth of understory saplings in uneven-aged spruce-fir forest in Northeastern China were studied for all species. According to the test data, most of models for simulation systems were successfully established, though recruitment probability models do not have sound precision. Recruitment probability and density grew in direct proportion to upper tree density and composition. The size of saplings and competition among saplings had a significant effect on its mortality and increment.
     (6) Based on 60 fir-spruce analytic trees data, applied Logistic model, Schumacher model, Richards model, Compertz model, Levakovic2 model, Levakovic3 model, Hossefld model and Allometric logarithmic model, the ground diameter, DBH, tree volume and growth process of fir and spruce were analyzed. The results showed that the optimal diameter and tree height growth model for spruce was Richards model; its optimal diameter and tree volume growth model was Compertz model. The optimal diameter and tree height growth model for fir was Logistic model; its optimal diameter and tree volume growth model and ground diameter model were separately Compertz model and Richards model.
引文
[1]班勇,徐化成.兴安落叶松老龄林落叶松林木死亡格局以及倒木对更新的影响[J].应用生态学报,1997,8(5):449-454.
    [2]查同刚,阎海平等.北京西山地区人工侧柏林种子雨的研究[J].北京林业大学学报,2003,25(1):28-31.
    [3]陈迪马,潘存德,刘翠玲等.影响天山云杉天然更新与幼苗存活的微生境变量分析[J].新疆农业大学学报,2005,28(3):35-39.
    [4]陈动.介绍一种评估森林火灾预防效果的方法[J].森林防火,1992,(4):44.
    [5]费世民,彭镇华,杨冬生等.川西南山地高山栲种群种子雨和地表种子库研究[J].林业科学,2006,42(2):49-55.
    [6]龚直文.长白山退化云冷杉林演替动态及恢复研究[D].北京:北京林业大学博士学位论文,2009.
    [7]关玉秀,张守攻.样方法及其在林分空间格局研究中的应用[J].北京林业大学学报,1992,14(02):1-10.
    [8]郭晋平,李海波,刘宁等.华北落叶松和白杆幼苗对光照和竞争响应的差异比较[J].林业科学,2009,45(2):53-59.
    [9]郭泉水.油松天然更新的数量化分析[J].河北林学院学报,1992,7(2):99-106.
    [10]国家林业局.中国森林资源报告[M].北京:中国林业出版社,2010.
    [11]韩景军,郑维列等.西藏林芝县林芝云杉幼林更新与树种多样性指数研究[J].林业科学,2002,38(5):166-168.
    [12]韩文衡,李先琨,叶铎等.桂西北喀斯特区常绿落叶阔叶混交林种群种间联结性与相关性[J].山地学报,2009,27(6):719-726.
    [13]韩有志,程志枫,常洁等.水曲柳人工林下天然更新幼苗的空间格局[J].山西农业大学学报,2000,20(4):335-338.
    [14]洪伟等.广义Schumacher模型的改进及应用[J].应用生态学报,2004,15(2):241-244.
    [15]胡云云,亢新刚,赵俊卉.长白山地区天然林林木年龄与胸径的变动关系[J].东北林业大学学报,2009,37(11):38-42
    [16]胡云云.基于择伐的长白山地区天然云冷杉针阔混交林生长和结构动态的研究[D].北京:北京林业大学硕士学位文,2010
    [17]黄宝强,罗毅波,于飞海等.四川黄龙沟森林植被中兰科植物群落优势种种间联结和相关分析[J].植物生态学报,2007,31(5):865-872.
    [18]黄新峰,亢新刚,林田苗等.云冷杉针阔混交林天然更新的灰色分析[J].林业资源管理,2004,(4):28-30.
    [19]黄新峰,亢新刚.我国天然云冷杉针阔混交林更新研究进展[J].世界林业研 究,2004,17(5):34-38
    [20]黄新峰.长白山林区天然云冷杉林更新及幼树特征分析[D].北京:北京林业大学硕士学位论文,2004.
    [21]惠刚盈,Gadow K.v.,Albert M角尺度-一个描述林木个体分布格局的结构参数[J].林业科学,1999,35(1):37-42.
    [22]金永焕,李敦求,姜好相等.长白山区次生林恢复过程中天然更新的动态[J].南京林业大学学报,2005,29(5):65-68.
    [23]亢新刚.森林资源经营管理[M].北京:中国林业出版社,2001.
    [24]李盾,黄楠,王强等.天然次生林林木空间格局及更新格局[J].东北林业大学学报,2004,32(5):4-9.
    [25]李法胜,于政中,刘建国.矩阵模型在最优树种组成研究中的应用[J].北京林业大学学报,1992,14(2):29-30.
    [26]李刚,朱志红,王孝安等.子午岭辽东栎群落乔木种间联结与取样面积[J].生态学杂志,2008,27(5):689-696.
    [27]李俊清,刘传照.林冠下红松幼树叶绿素含量与生长关系的研究[J].东北林业大学学报,1990,18(2):21-26.
    [28]李俊清.阔叶红松林中红松的分布格局及其动态[J].东北林业大学学报,1986,14(1).33-38.
    [29]李凌浩,史世斌.长芒草草原群落种间关联与种群联合格局的初步研究[J].生态学杂志,1994,13(3):62-67.
    [30]李婷婷,王俊峰,郑小贤.金沟岭林场主要森林类型林分更新比较研究[J].林业资源管理,2009,(3):81-84.
    [31]李为海,刘萍.火烧迹地次生林天然更新株数模型的建立[J].内蒙古林业调查设计,2000,23(2):28-30.
    [32]李鲜花,韩有志,刘永华.不同干扰强度林分云杉幼苗更新空间格局研究[J].湖北农业科学,2008,47(8):927-929.
    [33]李晓亮,王洪,郑征等.西双版纳热带森林树种幼苗的组成、空间分布和旱季存活[J].植物生态学报,2009,33(4):658-671.
    [34]林金叶.不同郁闭度福建柏林下天然更新研究[J].林业勘察设计,2005,(1):17-18.
    [35]林全业.赤松次生林天然更新主成分分析与因子分析[J].山东农业大学学报(自然科学版),1996,27(4):445-450.
    [36]林勇明,吴承祯,洪伟等.长苞铁杉林乔木层优势种群种间关联及尺度效应研究[J].广西植物,2005,25(6):526-532.
    [37]刘传照,李俊清.林下光照条件与红松幼树生长的相关性研究[J].东北林业大学学报,1991,19(3):103-108.
    [38]刘济明,钟章成.梵净山栲树群落的种子雨、种子库及更新[J].植物生态 报,2000,24(4):402-407.
    [39]刘双.小兴安岭阔叶红松林种子雨及幼苗更新[D].哈尔滨:东北林业大学硕士学位论文,2009.
    [40]刘彤,赵新俊,贾亚敏等.古尔班通古特沙漠南缘心叶驼绒藜种群更新的空间格局[J].中国沙漠,2008,28(2):258-264.
    [41]鲁长虎,常家传,许青.黄檗的更新特点及食果实鸟类对其种子的传播[J].生态学杂志,2004,23(1):24-29.
    [42]吕康梅.长白山过伐林区云冷杉针阔混交林最优林分结构和最优生长动态的研究[D].北京林业大学硕士论文,2006.
    [43]孟宪宇,俞宁.兴安落叶松天然林枯立木年龄结构的研究[J].河北林学院学报,1992,7(1):19-26.
    [44]M.H.ПрокоnъеB,翟汝康.林冠下云杉更新状况[J].林业实用技术,1964,(19):7-8.
    [45]彭少麟,周厚诚,郭少聪等.鼎湖山地带性植被种间联结变化研究[J].植物学报,1999,41(11):1239-1244.
    [46]孙志虎,张彦东.长白落叶松人工林天然更新幼苗分布格局及其研究方法的比较[J].生物数学学报,2009,(3):556-566.
    [47]汤景明,石冰天,杜超群.不同更新方式对常绿落叶阔叶混交林物种多样性的影响[J].湖北林业科技,2007,(147):2-5.
    [48]田松岩,宋国华,宋存彦等.东北林区天然林林分结构及林分生产力的研究[J].林业科技,2005,30(4):21-22.
    [49]王伯荪,彭少麟.南亚热带常绿阔叶林种间联结计测技术的研究.Ⅰ.种间联结计测公式的探讨和修订[J].植物生态学与地植物学丛刊,1985,9(4):274-285.
    [50]王俊峰.长白山过伐林区主要森林类型空间分布格局与林分更新研究[D].北京:北京林业大学硕士学位文,2005.
    [51]王骞等.云南松优势木胸径生长模型研究[J].林业调查规划,2011,36,(2):12-18.
    [52]王树力,武敬辉.红松种群天然更新及幼年生长与林分结构关系的研究[J].吉林林学院学报,1998,14(1):6-10.
    [53]王育松,上官铁梁.关于重要值计算方法的若干问题[J].山西大学学报(自然科学版),2010,33(2):312-316.
    [54]乌吉斯古楞,王俊峰,郑小贤等.金沟岭林场过伐林史新幼苗空间结构分析[J].中南林业科技大学学报,2009,29(4):21-25.
    [55]向玮.落叶松云冷杉林矩阵生长模型及多目标经营模拟[D].北京:北京林业大学硕士学位文,2009.
    [56]谢春平,方彦,方炎明.乌冈栎群落垂直结构与重要值分析[J].安徽农业大学学报,2011,38(2):176-184
    [57]谢佳彦,邓志平.杭州五云山米槠种群幼苗大小结构及空间分布格局研究[J].生态学杂志,2003,22(5):35-39.
    [58]徐化成,杜亚娟.兴安落叶松落叶量和幼苗发生动态的研究[J].林业科学,1993,29(4):298-306.
    [59]徐庆祥,孔祥文,胡万良等.不同间伐强度对蒙古栎林下乔木幼树更新及多样性的影响[J].辽宁林业科技,2010,(1):16-17.
    [60]徐振邦,陈涛.促进兴安落叶松天然更新的出苗条件研究[J].应用生态学报,1994,5(2):120-125.
    [61]徐振邦,代力民等.长白山红松阔叶混交林森林天然更新条件的研究[J].生态学报,2001,21(9):1413-1420.
    [62]杨君珑,王辉,王彬等.子午岭油松林灌木层主要树种的空间分布格局和种间关联性研究[J].西北植物学报,2007,27(4):0791-0796.
    [63]杨秀清,韩有志,李乐等.华北山地典型天然次生林土壤氮素空间异质性对落叶松幼苗更新的影响[J].生态学报,2009,29(9):4656-4664.
    [64]殷东生,张凤海,山永清等.色木槭次生林种群结构动态分析[J].林业科技,2011,36(6):19-22.
    [65]曾德慧,尤文忠等.樟子松人工固沙林天然更新障碍因子分析[J].应用生态学报,2002,13(3):257-261.
    [66]张会儒.落叶松云冷杉林生长模拟及生态采伐更新技术体系研究[D].北京:中国林业院博士论文,2006.
    [67]张金屯.数量生态学[M].北京:科学出版社,2004.
    [68]张金屯,孟东平.芦芽山华北落叶松林不同龄级立木的点格局分析[J].生态学报,2004,24(1):35-44.
    [69]张丽珍,牛伟,郭晋平等.关帝山寒温性针叶林土壤营养状况与林下更新关系研究[J].西北植物学报,2005,25(7):1329-1334.
    [70]张志勇,陶德定,李德铢.五针白皮松在群落演替过程中的种间联结性分析[J].生物多样性,2003,11(2):125-131.
    [71]赵俊卉.长白山云冷杉混交林生长模型的研究[D].北京:北京林业大学博士学位文,2010.
    [72]赵晓英,任继周.食种子动物对三种锦鸡儿属植物繁殖更新的影响[J].生物多样性,2005,13(6):514-519.
    [73]赵则海,祖元刚,杨逢建等.东灵山辽东栎林木本植物种间联结取样技术的研究.植物生态学报,2003,27(3):396-403.
    [74]Agresti A. An Introduction to Categorical Data Analysis[M]. New York:John Wiley & Sons, Inc.,1996.
    [75]Akaike H. A new look at the statistical model identification[C]. In, IEEE Transaction on Automatic Control,1974,19(6):716-723.
    [76]Alcorn P J, Pyttel P, Bauhus J, et al. Effects of initial planting density on branch development in 4-year-old plantation grown Eucalyptus pilularis and Eucalyptus cloeziana trees[J]. Forest Ecology and Management,2007,252(1-3):41-51.
    [77]Alimi R J, Barrett, J. Computer and tabular growth simulation of mixed conifer-hardwood stands in the North-East[R]. New Hampshire Agr.Exp. Stat.,1977,61:56.
    [78]Barrio-Anta M, Sixto-Blanco H, De Vinas I C R, Castedo-Dorado F. Dynamic growth model for 1-214 poplar plantations in the northern and central plateaux in Spain[J]. Forest ecology and management.2008,255:1167-1178.
    [79]Bartelink, H.H., Landbouwuniversiteit Wageningen[D]. Wageningen, Netherlands: Wageningen Agricultural University Ph.D.Thesis,1998.
    [80]Biging G S, Dobbertin M. Evaluation of competition indices in individual tree growth models[J]. Forest Ecology and Management,1995,41:360-377.
    [81]Brooker R W, Maestre FT, Callaway R M. Facilitation in plant communities:The past, the present, and the future[J]. Journal of Ecology,2008,96:18-34.
    [82]Callaway R M. Positive interactions among plants[J]. Botanical Review,1995,61:306-349.
    [83]Callaway R M, Brooker R W, Choler P, Kikvidze Z, Lortie C J, Michalet R, Paolini L, Pugnaire F I, Newingham B, Aschehoug E T, Armas C, Kikodze D, Cook B J. Positive interactions among alpine plants increase with stress[J]. Nature,2002,417:844-848.
    [84]Castedo-Dorado F, Dieguez-Aranda U, Alvarez-Gonzalez J G. A growth model for Pinus radiata D. Don stands in north-western Spain[J]. Annals of forest science,2007a,64: 453-465.
    [85]Castedo-Dorado F, Dieguez-Aranda U, Barrio-Anta M, Alvarez-Gonzalez J G. Modelling stand basal area growth for radiata pine plantations in Northwestern Spain using the GADA[J]. Annals of Forest Science,2007b,64:609-619.
    [86]Cavlovic J, Bozic M, Boncina A. Stand structure of an uneven-aged fir-beech forest with an I rregular diameter structure:modeling the development of the Belevine forest, Croatia[J]. European Journal of Forest Research,2006,125:325-333.
    [87]Collet C, Le Moguedec, G. Individual seedling mortality as a function of size, growth and competition in naturally regenerated beech seedlings[J]. Forestry,2007,80:359-370.
    [88]Consul P C, Famoye F. Generalized Poisson regression model [J]. Communications in Statistics:Theory and Methods,1992,21:89-99.
    [89]Cox G W. Experiment Handbook for General Ecology[M]. Jiang YX, Translated. Beijing: Science Press,1979:106-109 (in Chinese).
    [90]Deb P, Sundriyal R C. Tree regeneration and seedling survival patterns in old-growth lowland tropical rainforest in Namdapha National Park, north-east India [J]. Forest Ecology and Management,2008,255:3995-4006.
    [91]Deusen, P.C., Biging, G.S. A Stand Generator For Mixed Species Stands, Northern California Forest Yield Cooperative[R]. Department of Forestry and Resource Management, Univisity California, Berkeley,1985:25.
    [92]Du D L, Liu Y C, Li R. Studies on the interspecific association of dominant species in a subtropical Catanopsis fargesii forest of Jinyun Mountain, China[J]. Acta Phytoecologica Sinica,1995,19:149-157.
    [93]Eerikainen K, Miina J, Valkonen S. Models for the regeneration establishment and the development of established seedlings in uneven-aged, Norway spruce dominated forest stands of southern Finland[J]. Forest Ecology and Management,2007,242:444-461.
    [94]Esawi E K. TerCharts:A VBA-MS Excel multiternary and multipurpose charting utility for data analysis, presentation, and modeling in environmental and earth sciences[J]. Environmental Geology,2009,111-117.
    [95]Famoye F. Restricted generalized Poisson regression model[J]. Communications in Statistics: Theory and Methods,1993,22:1335-1354.
    [96]Ferguson D E. Regeneration models for FVS variants, in:Teck R., Moeur M., and Adams J. (eds.), Proceedings:Forest Vegetation Simulator Conference. Fort Collins, CO, USDA Forest Service Intermountain Research Station, Intermountain Research Station INT-GTR-373,1997, 43-49.
    [97]Ferguson D E, Carlson C E.. Predicting Regeneration Establishment with the Prognosis Model[R]. USDA Forest Service, Intermountain Research Station,1993:54.
    [98]Ferguson, D.E., Stage, A.R., Boyd, R.J.. Predicting Regeneration in the Grand Fir-Cedar-Hemlock Ecosystem of the Northern Rocky Mountains. For. Sci. Monograph,1986, 26:41.
    [99]Foster S A. On the adaptive value of large seeds for tropical moist forest trees:A review and synthesis[J].Botanical Review,1986,52:260-299.
    [100]Fox J. Linear Statistical Models and Related Methods[M]. New York:John Wiley & Sons,1984.
    [101]Graff P, Aguiar MR, Chaneton E. Shifts in positive and negative plant interactions along a grazing intensity gradient[J]. Ecology,2007,88:188-199.
    [102]Guo Z H, Zhuo Z D,Chen J. Interspecific association of trees in mixed evergreen and deciduous broad leaved forest in Lushan Mountian[J]. Acta Phytoecologica Sinica,1997, 21(5):424-432(in Chinese).
    [103]Hamback PA, Agren J, Ericson L. Associational resistance:insect damage to purple loosestrife reduced in thickets of sweet gale[J]. Ecology,2000,81:1784-1794.
    [104]Hanssen K H. Effects of seedbed substrates on regeneration of Picea abies from seeds[J]. Scandinavian Journal of Forest Research,2002,17:511-521.
    [105]Harper J L. The Population Biology of Plants[M]. New York:Academic Press,1977.
    [106]Hendry G A F, Thompson K, Band S R. Seed survival and persistence on a calcareous land surface after a 32-year burial[J].Journal of Vegetation Science,1995,6:153-156.
    [107]Hertz M. Tutkimuksia aluskasvillisuuden merkityksesta kuusen uudistumiselle Etela-Suomen kangasmailla. Commun[J]. Inst. For. Fenn.17,1932, (4)(in Finnish with German summary).
    [108]Huang S N, Li Z D, Luo T S, et al. Dynamics of association between tree species in secondary tropical mountain rain forest at Jianfengling on Hainan island[J]. Acta Phytoecologica Sinica,2000,24 (5):569-574.
    [109]Huuskonen S, Miina J. Stand-level growth models for young Scots pine stands in Finland[J]. Forest Ecology and Management,2007,241:49-61.
    [110]Hynynen J, Ojansuu R, Hokka H, Siipilehto J, Salminen H, Haapala P. Models for predicting stand development in MELA System[R]. Finnish Forest Research Institute,2002:116.
    [111]Kienast F., Kuhn N. Computer-aided simulation of forest developments[J]. Schweiz. Z. Forstw.,1989,140:189-201.
    [112]Kramer K. Modelling comparison to evaluate the importance of phenology for the effects of climate change on growth of temperate-zone deciduous trees[J]. Climate Research,1995, 5:119-130.
    [113]Kuuluvainen T. Forest Management and Biodiversity Conservation Based on Natural Ecosystem Dynamics in Northern Europe:The Complexity Challenge[J]. Ambio,2009,38: 309-315.
    [114]Levey D J, Byrne M M. Complex ant-plant interactions:Rainforest ants as secondary dispersers and post-dispersal seed predators[J].Ecology,2007,74:1802-1812.
    [115]Lexerod N L. Recruitment models for different tree species in Norway[J]. Forest ecology and management,2005,206:91-108.
    [116]Lexerod N, Eid T. Recruitment models for Norway spruce, Scots pine, birch and other broadleaves in young growth forests in Norway[J]. Silva Fennica,2005,39:391-406.
    [117]Liu J G, Ashton P S. Individual-based simulation models for forest succession and management [J]. Forest Ecology and Management,1995,73:157-175.
    [118]Lu Y C, Yang Y M, Du F, Jiang L, Xu Y H. Modeling growth dynamics and simulation of forest management in tropical forests of southwestern China[J]. Journal of Beijing Forestry University,2002,24(5-6):139-146.
    [119]Lundqvist L. Simulation of sapling population dynamics in uneven-aged Picea abies forests[J]. Annals of Botany,1995,76:371-380.
    [120]Lundqvist L. Some notes on the regeneration of Norway spruce on six permanent plots managed Zwith single-tree selection[J]. Forest Ecology and management,1991,46:49-57.
    [121]Maina K., Robert M, Kooyman,R.G.B., Smith, et al. Regeneration changes in tree species abundance, diversity and structure in logged and unlogged subtropical rainforest over a 36-year period[J]. Forest Ecology and Management,2006,236:162-176.
    [122]Makela A. Process-based modelling of tree and stand growth:towards a hierarchical t reatment of multiscale processes[J]. Canadian Journal of Forest Research,2003, 33:398-409.
    [123]Marks C O, Lechowicz M J. A holistic tree seedling model for the investigation of functional trait diversity[J]. Ecological Modeling,2006,193(3-4):141-181.
    [124]Mielikainen K. Effect of an admixture of birch on the structure and development of Norway spruce stands[J]. Communicationes Instituti Forestalis Fenniae,1985,133 (in Finnish with English summary).
    [125]Milberg P, Persson T S. Soil seed bank and species recruitment in road verge grassland vegetation[J].Annales Botanici Fennici,1994,31:155-162.
    [126]Miller T E. Direct and indirect species interactions in an early old-field plant community[J]. American Naturalist,1994,143:1007-1025.
    [127]Moeller D A. Facilitative interactions among plants via shared pollinators[J]. Ecology,2004, 85:3289-3301.
    [128]Moeur, M. Characterrizing spatial patterns of trees using stem mapped data[J]. Forest Science,1993,39(4):756-775.
    [129]Mori A S, Fukasawa Y, Takeda H. Tree mortality and habitat shifts in the regeneration trajectory underneath canopy of an old-growth subalpine forest[J]. Forest Ecology and Management,2008,255:3758-3767.
    [130]Murray D R. Seed Dispersal[M]. Sydney:Academic Press,1986.
    [131]Oleskog G. The effect of seedbed substrate on moisture conditions,germination and seedling survival of Scots pine[M]. Silvestria:Acta Universitatis Agriculturae Sueciae,1999.
    [132]Palmer T M, Stanton M L,Young T P. Competition and coexistence:exploring mechanisms that restrict and maintain diversity within mutualist guilds[J]. American Naturalist,2003, 162:63-79.
    [133]Palocsay S W, Markham I S, Markham S E. Utilizing and teaching data tools in Excel for exploratory analysis[J], Journal of Business Research,2010,63(2):191-206.
    [134]Porte A, Bartelink H H. Modelling mixed forest growth:a review of models for forest management[J]. Ecological Modelling,2002,150:141-188.
    [135]Qin J, Cao Q V. Using disaggregation to link individual-tree and whole-stand growth models[J]. Canadian Journal of Forest research,2006,36:953-960.
    [136]Rammig A, Bebi P, Bugmann H, Fahse L. Adapting a growth equation to model tree regeneration in mountain forests[J]. European Journal of Forest Research,2007,126:49-57.
    [137]Ripley B D. Medleling spatial pattern.Journal of Royal Stastical Society[J]. Series B,1997, 39:178-212.
    [138]Rodriguez-Garcia E, Ordonez C, Bravo F. Effects of shrub and canopy cover on the relative growth rate of Pinus pinaster Ait. seedlings of different sizes[J]. Annals of Forest Science, 2011,68:337-346.
    [139]Rousset O, Lepart J. Positive and negative interactions at different life stages of a colonizing species (Quercus humilis)[J]. Journal of Ecology,2000,88:401-412.
    [140]Rudnicki M, Silins U, Lieffers V J. Crown cover is correlated with relative density, tree slenderness, and tree height in lodgepole pine[J]. Forest Science,2004,50:356-363.
    [141]SAS Institute Inc. SAS OnlineDOC, Version 8[R]. North Carolina:SAS Institute Inc., Cary, 1999:956.
    [142]Schwarz G. Estimating the dimension of a model[J]. Annals of Statistics,1978,6:461-464. Schweiger J, Sterba H. A model describing natural regeneration recruitment of Norway spruce (Picea abies (L.) Karst.) in Austria[J]. Forest Ecology and Management,1997,97: 107-118.
    [143]Shater Z, De-Miguel S, Kraid B, Pukkala T, Palahi M. A growth and yield model for even-aged Pinus brutia Ten. stands in Syria[J]. Annals of Forest Science,2011,68:149-157.
    [144]Shibu J, Sara M, Craig L R. Growth, nutrition, photosynthesis and transpiration responses of longleaf pine seedlings to light, water and nitrogen[J].Forest Ecology and Management,2003,80:335-344.
    [145]Shugart H H. A Theory of Forest Dynamics:the Ecological Implications of Forest Succession Models[M]. New York:Springer,1984.
    [146]Sipe T W, Bazzaz F A. Gap partitioning among maples(Acer) in central New England:Survival and growth[J].Ecology,1995,76(5):1587-1602.
    [147]Siren G. The development of spruce forest on raw humus sites in northern Finland and its ecology[J]. Acta Forestalia Fennica,1955,62 (4):363.
    [148]Stiff C T. Modeling the growth dynamics of natural mixed-species Appalachian hardwood stands[D]. Virginia:Virginia Polytechnic Institute and State University Ph.D. Thesis,1979.
    [149]Swamy V. Terborgh J.Distance-responsive natural enemies strongly influence seedling establishment patterns of multiple species in an Amazonian rain forest[J]. Journal of Ecology,2010,98(5):1096-1107.
    [150]Szwagrzyk J. Department of Forest Botany and Nature Conservation[D]. Poland: Agricultural University of Cracow Ph.D. Thesis,1997.
    [151]Tang Y, Zhao K, Xu W B. Development of VBA for pump performance experimental data based on Excel[J], Paiguan Jixie Xuebao,2011,29 (2):123-126.
    [152]Trasobares A, Pukkala T, Muna J. Growth and yield model for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain[J]. Annals of Forest Science,2004,61:9-24.
    [153]Vickers A D, Palmer S C F. The influence of canopy cover and other factors upon the regeneration of Scots pine and its associated ground flora within Glen Tanar National Nature Reserve[J]. Forestry,2000,73:37-49.
    [154]Wang G H. Plant important value in subalpine spruce and fir forest in the north slope of changbai mountain[J]. Forestry Science and Technology Information,2009,41:8-9 (in Chinese).
    [155]Wang J C, Xie H Y, Xie H Y. Multilevel models:methods and applications[M]. Beijing: Beijing Higher Education Press,2008 (in Chinese).
    [156]Wang Q G, Xing Y J, Zhou X F, Han S J. Ecological and Biological Characteristics of Spruce in Low-lying Land in Eastern Mountain Area of Heilongjiang Province[J]. Journal of Northeast Forestry University,2007, (3):4-6 (in Chinese).
    [157]Wang Y M. The calculation of urban gini coefficient in China by excel VBA[C]. In Proceeding(s) of the 2009 ETP/IITA World Congress in Applied Computing, Computer Science, and Computer Engineering, ACC 2009,2009,.267-270.
    [158]Wang, G.H. Plant important value in subalpine spruce and fir forest in the north slope of changbai mountain[J]. Forestry Science and Technology Information,2009,41:8-9 (in Chinese).
    [159]Wang, Q.G., Xing, Y.J., Zhou, X.F., Han, S.J. (2007). Ecological and Biological Characteristics of Spruce in Low-lying Land in Eastern Mountain Area of Heilongjiang Province[J]. Journal of Northeast Forestry University, (3):4-6 (in Chinese).
    [160]Wikberg P-E. Occurrence, morphology and growth of understory saplings in Swedish forests[D]. The swedish university of agricultural sciences Ph.D. Thesis., Department of Silviculture,2004.
    [161]Wootton JT. The nature and consequences of indirect effects in ecological communities[J]. Annual Review of Ecology and Systematics,1994,25:443-466.
    [162]Xiao Z S, Zhang Z B, Wang Y S. Dispersal and germination of big and small nuts of Quercus serrata in a subtropical broad-leaved evergreen forest[J].Forest Ecology and Management,2004,195:141-150.
    [163]Yang G T, Erich H, Sun B, Zhang J. Picea-abies Forests of the Northeast China[J]. Bulletin of Botanical Research,1994,14:313-328 (in Chinese).
    [164]Zhao H Y, Kang X G, et al. A kind of algorithm estimating parameters of unitary non-linearity regression model[C]. In Proceeding(s) of the 2011 3rd International Conference on Machine Learning and Computing,2011, V317-V319.
    [165]Zhao H Y, Kang X G, et al. Design and development of a tool for fitting Weibull distribution function based on EXCEL VBA[C]. In Proceeding(s) of the 2011 International Conference on Information and Computer Applications,2011,396-399.
    [166]Zhao H Y, Kang X G, et al. Design and development of trees' spatial distribution charting tool[C].In Proceeding(s) of the 2010 International Conference on Computer Applications and System Modeling,2010, V5645-V5649.
    [167]Zhao H Y, Kang X G, Yang H, Lu Y C, Gong Z W, Ning J K. Excel VBA algorithm and implement of program estimating parameters of unitary non-linearity regress equation[J]. Journal of Northwest Forestry University,2011,26:147-151 (in Chinese)
    [168]Zhao H Y, Lu Y C, et al. Design and development of supporting tool for target-tree-operation management[C], In Proceeding(s) of the 2011 International Conference on Computer and Communication Devices,2011, Ⅵ40-Ⅵ43.
    [169]Zhou J B, Li X H. GeoPlot:An Excel VBA program for geochemical data plotting[J]. Computers & Geosciences,2006,32(4):554-560.
    [170]Zhou X Y, Wang B X, Li M G. An analysis of interspecific association in secondery succession forest communities in Heishiding natural reserve, Guangdong province[J]. Acta Phytoecologica Sinica,2000,24(3):332-339 (inChinese).
    [171]Zutter B R, Oderwald R G, Murphy P A, Farrar Jr. R M. Characterizing diameter distributions with modified data types and forms of the Weibull distribution[J]. Forestry Science,1986,32:37-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700