用户名: 密码: 验证码:
糠醛生产工艺研究及糠醛废渣的综合利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今社会,人们极大的开发和利用化石燃料资源,整个世界经济的发展都是建立在石油和煤炭等化石资源的过度消耗上。由于煤炭和石油等是不可再生资源,因此可再生资源就进入了人们的视野。生物质是目前认为最可能取代石油等化石燃料来生产化工产品的材料,生物质资源的开发和利用也越来越受到人们的重视。
     生物质(狭义)主要是由半纤维素、木质素和纤维素这三种有机组分构成。其中半纤维素水解后可生产木糖,木糖再进一步脱水就可制得糠醛。糠醛的分子结构比较特殊,有不饱和双键、氧醚键、二烯等官能团,因此性质比较活泼,可以发生氢化、氧化、氯化、硝化和缩聚等反应,可以生产大量的下游衍生品,在医药、食品、合成树脂、石油精炼、农药、合成纤维等领域有着广泛的应用。糠醛经过一系列的加氢和还原反应还可以制得烃类,可见在燃料领域有着潜在的价值。糠醛的工业生产是生物质资源利用的一个非常成功的范例。早在20世纪20年代,糠醛的生产就已经实现了工业化。我国是目前世界上糠醛生产和出口量最大的国家,在我国分布着几百家大大小小的糠醛厂。但是目前糠醛行业存在着很多的问题急需解决。原料利用率低,糠醛的产率低,能耗大,环境污染严重等都极大制约了糠醛企业的发展,甚至已经使我国的糠醛行业处于半瘫痪状态。本论文正是以改善甚至解决这些行业现状与问题为目的进行了大量的实验研究。
     本论文首先用木糖为原料,研究糠醛生产两步法的第二步,木糖脱水环化制备糠醛。在常压条件下对木糖脱水制备糠醛进行了研究,最佳实验条件是:硫酸浓度10%,木糖浓度10%,甲苯用量150mL,水10mL,氯化钠用量2.4g,糠醛产率达到82%。证明了两步法提高糠醛的产率是可行的。DMSO(二甲基亚砜)、NaCl和FeCl_3对糠醛的产率提高也有着明显的促进作用,根据Cl-对木糖脱水生成糠醛的作用提出了催化过程的机理。本论文还研究了用市售固体酸催化剂生产糠醛,实验的最佳条件是催化剂2.5g,木糖2g,DMSO30mL,反应温度160℃。此方法的优点是固体酸可重复利用,分离容易,对环境污染小。对解决糠醛行业产品产率低及环境污染严重等问题有重要的指导意义。
     然后用玉米芯为原料,在用水量很少的情况下,以有机溶剂甲苯做萃取剂,同步萃取糠醛。在低压条件(反应釜)下制得了糠醛,此方法用水量极少。最佳反应条件是温度140℃,甲苯用量25mL,玉米芯1g,硫酸浓度6%,反应时间3.5h。在此最佳条件下糠醛的产率为44%.其中反应温度和酸浓度是反应的主要影响因素。之后在常压下用近无水法以玉米芯为原料生产糠醛,最佳实验条件玉米芯2g,DMSO5mL,15%的硫酸5mL,反应时间5h,甲苯萃取剂用量为50mL,最佳糠醛产率为45%。在常压下引入DMSO做溶剂,提高了糠醛的产率,使常压的产率接近低压产率。此外在常压下反应温度低,硫酸浓度也比较大。实验证明此方法虽然加入了有机溶剂同步萃取,但糠醛的产率相对于目前工业的收率提高不大。
     糠醛工业生产中,玉米芯提取糠醛之后的残渣就是糠醛渣,其中含有大量的木质素和纤维素,是极好的碳源。生产上多把糠醛渣直接回填锅炉燃烧,为反应提供热源,造成了极大的资源浪费和环境污染。本论文以糠醛渣为原料,磷酸做活化剂化学活化法制备了多孔活性炭。最佳制备条件是糠醛渣2g,浓磷酸(85%)6mL,在200℃炭化60min或300℃炭化30min,500℃活化105min。通过对活性炭的孔容和比表面积分析,确定活性炭孔以微孔为主,并含有一部分大孔。并分析了磷酸活化糠醛渣制备活性炭的机理。因为糠醛渣内含有纤维素,所以初步以糠醛渣为原料浓酸水解制备水热炭进行了分析,通过FTIR及TEM表征水热炭的形貌和表面官能团。综合以上两步处理,实现了对糠醛废渣的综合利用。
     糠醛废水含有大量有机物如果直接排放不仅浪费掉了大量重要的化工原料,而且对水体造成酸性污染,破坏了环境结构。因此本论文以各种生物质原料为吸附剂,对糠醛废水进行了初步的处理,考察了废水中醋酸和糠醛的含量变化。降低了废水的COD值,对糠醛废水的处理具有一定的指导意义。
     总之,本论文针对目前糠醛工业糠醛收率低和污染严重的问题展开研究,通过以木糖为原料制备糠醛,提高了糠醛的产率;以玉米芯为原料生产糠醛,减少水的用量避免向环境排放废水;用糠醛渣制备活性炭和水热碳实现了糠醛渣的综合利用;以生物质原料为吸附剂处理糠醛废水,为糠醛的生产及废水废渣处理提供可贵的参考意见。
In today's society, the entire world economy is built on the basis of fossilresources such as oil and coal. The great development and utilization of fossil fuelresources has accelerated the consumption of fossil resources. Because coal and oilare non-renewable resources,renewable resources come into the people's vision.Biomass is currently considered the most likely materials to replace oil and otherfossil fuels to produce chemical products. The development and utilization of biomassresources, more and more attention has been paid.
     Biomass is mainly composed of hemicellulose, lignin and cellulose.Hemicellulose is hydrolyzed to produce xylose, and xylose in further dehydration canbe prepared furfural. Furfural molecular structure, which has unsaturated double bond,oxygen ether bond, diene functional group, is rather special. Therefore, the Furfuralnature is much lively which can perform hydrogenation, oxidation, chlorination,nitration, and condensation and other reactions. Furfural can produce a large numberof derivatives and it has been widely applied in the field of medicine, food, syntheticresin, petroleum refining, pesticides and synthetic fibers. After a series ofhydrogenation and reduction reactions, furfural can also be prepared hydrocarbons,which has a potential value in the fuel sector. The furfural industrial production is theraw material resources to take advantage of a very successful example. As early as the1920s, the production of furfural has been achieved industrialization. China is thelargest country in the world on the furfural production and exports, and there arehundreds of large and small furfural plants in China. In furfural industry there aremany problems, such as low utilization of raw material, the low yield of furfural, energy consumption and serious environmental pollution, needed to be resolved. Thedevelopment of enterprises of furfural is so greatly restricted, and furfural industry inChina has been even in a semi-paralyzed.
     In this paper, xylose was used as the raw material to study the second step of thetwo-step method for the production of furfural. Xylose was dehydrated to producefurfural in the atmospheric conditions. The optimal reaction conditions: concentrationof sulfuric acid10%,10%of the xylose concentration, toluene amount of150mL,water10mLl, the amount of sodium chloride2.4g. The best yield of furfural was82%.DMSO (dimethyl sulfoxide), NaCl, and FeCl_3increased the yield of furfural. SingleFeCl_3without acid had poor advancement in xylose dehydration to furfural. We alsostudied the production of furfural using a commercially available solid acid catalyst.The best conditions of the experiment is the catalyst2.5g, the xylose2g, DMSO30mL,reaction temperature160℃.This method has the advantage of solid acid recycle, easyseparation, and a small pollution on the environment.
     Then the corn cob was used as the raw material. In the amount of water rarely,the organic solvent toluene was used as the extractant.Furfural was prepared underlow pressure conditions (reactor), and this method of water consumption is minimal.The optimal reaction conditions: the reaction temperature of140℃, toluene25ml,corncob1g,6%of the sulfuric acid concentration, reaction time of3.5h. Underoptimal conditions furfural yield was44%. The reaction temperature and acidconcentration is the main influencing factors of the reaction. The near anhydrousmethod was performed for production of furfural at atmospheric pressure usingcorncob as raw material. The optimal experimental conditions: corncob2g, DMSO5ml,15%sulfuric acid5mL, reaction time5h, extracted with toluene dosage of50mL, best furfural yield was45%. The introduction of DMSO as solvent atatmospheric pressure, improved the yield of furfural close to yield of low pressure.The amount of DMSO should not be too large, because extraction of organic solventswould result in the loss.
     The furfural residue was corncob residue after extraction of furfural. Furfuralresidue, which contains large amounts of lignin and cellulose, is an excellent carbon source. More production of furfural residue was burned to provide heat for thereaction, resulting in a tremendous waste of resources and environmental pollution. Inthis thesis, furfural residue was activated by phosphoric acid for preparation ofactivated carbon. Optimal preparation conditions: furfural residue2g, phosphoric acid(85%)6ml, carbonized at200℃for60min or300℃for30min, and activated at500℃for105min。 Pore volume and surface area of activated carbon weredetermined. Furfural residue contains cellulose, so furfural residue was used as rawmaterial to produce hydrothermal carbon.
     Furfural wastewater contains large amounts of organic, so it can not be directlydischarged.We take a variety of biomass materials as an adsorbent for furfuralwastewater preliminary treatment. The effects of the content of acetic acid andfurfural in wastewater were investigated.
     In summary, furfural was prepared from xylose. The yield of furfural reached83%. Corncob as raw material reduced the amount of water to avoid wastewaterdischarges to the environment. Preparation of activated carbon and hydrothermalcarbon from furfural residue was investigated. Furfural production and waste watertreatment to provide valuable suggestions for the development of furfural industry.
引文
[1] Lin L, He B and Sun R, et al. High value chemicals from lignocellulosicbiomass [J].Progress in Chemistry2007,19:1206–1216.
    [2] Wyman CE, Potential synergies and challenges in refining cellulosic biomassto fuels, chemicals and power [J].Biotechnology Progress2003,19(2):254–262.
    [3] Lynd LR, Wyman CE and Gerngross TU, Biocommodity engineering[J].Biotechnology Progress1999,15(5):777–793.
    [4] Lynd LR, Jin H, Michels JG, et al.Bioenergy: background, potential andpolicy. Source: http://i-farmtools.org/ref/Lynd_et_al_2002.pdf (June24,2005).
    [5] Wigley TML, The climate change commitment [J]. Science,2005,307:1766–1769.
    [6] Wigley TML, The Kyoto protocol: CO2, CH4and climate implications [J].Geophysical Research Letters,1998,25:2285–2288.
    [7] Lichtenthaler FW, Enantiopure building blocks from sugars, Part24, Towardsimproving the utility of ketoses as organic raw materials [J]. CarbohydrateResearch,1998,313:69–89.
    [8] Kamm B, Kamm M, Patrick RG et al. Biorefi neries-Industrial Process andProducts, Status Quo and Future Directions. Wiley-VCH Verlag&Co. KGaAVol.1(2005).
    [9] Lawford HG, Rousseau JD and Mcmillan JD, Optimization of seedproduction for a simultaneous saccharifi cation cofermentationbiomassto-ethanol process using recombinant Zymomonas [J]. AppliedBiochemistry and Biotechnology,1997,63–65:269–286.
    [10]Eva P, Barbel HH, Zsolt S et al. Simultaneous detoxification and enzymeproduction of hemicellulose hydrolyzates obtained after steam pretreatment[J]. Enzyme and Microbial Technology,1997,20:286–293.
    [11]Sampaio FC, Torre P, Passos FML, et al. Influence of inhibitory compoundsand minor sugars on xylitol production by Debaryomyces hansenii [J].Applied Biochemistry and Biotechnology,2007,136:165–181.
    [12]Zeittsch KJ. The Chemistry and Technology of Furfural and its ManyByproducts First Edition, SugarSeries. Elsevier Publications, the Netherlands,Vol.13(2000).
    [13]Lichtenthaler FW, The key sugars of biomass: availability, present non-fooduses and potential future development lines, inBiorefi neries-IndustrialProcesses and Products, ed by Kamm B, Grubber PR, Kamm M. Wiley-VCH:Weinheim2006,2:3.
    [14]韩长日,宋小平精细有机化工产品生产技术手册[M]北京:中国石化出版社,2010
    [15]南京林产工业学院,林产化学工业手册[M]北京:中国林业出版社,1980
    [16]王东,糠醛产业现状及其衍生物的生产与应用,化工中间体,2003,(21):19~22
    [17]梁少华,植物油料资源综合利用[M]南京:东南大学出版社,2010
    [18]傅建熙,有机化学,北京:高等教育出版社,2000.
    [19]Datta A, Walia S, Parmar B S. Some Furfural Derivatives as NitrificationInhibitors [J]. Journal of Agricultural and Food Chemistry,2001,49:4726-4731.
    [20]马奉奇,糠醛生产的发展方向及其系列产品,河北化工,1991,(1):47~51
    [21]许栓善,糠醛的系列衍生物,甘肃化工,1992,(2):28~32
    [22]Getman F H. the Molecular Association of Furfural [J]. Journal of PhysicalChemistry,1925,29(4):395-398
    [23]Cole F K, Brown L H. Solvent Extraction of Heavy Metal Chelates withFurfural [J].Industrial and Engineering Chemistry,1959,51(1):58~59
    [24]Henryg Ilman,Nathaniel O.Calloway,Robert R.Burtner,Orientation in theFuran Series.Ⅸ.The Friedel-Crafts Reaction with2-Furfural,Journal of theAmerican Chemical Society,1935,57:906
    [25]Sjostrom E, Wood Chemistry, Fundamental and Applications [M]. New York:Academic Press,1981.
    [26]www.fpl.fs.fed.us/documents/pdf1984/pette84a.pdf.
    [27]Torrie J. Extracellular β-D-mannase activity from Trichderma harzianum E58[M]. University of Ottawa: Ph.D. Thesis,1991.
    [28]Galbe M and Zacchi G. Pretreatment of lignocellulosic materials for efficientbioethanol production [J]. Advances in Biochemical Engineering/Biotechnology,2007,108:41–65.
    [29]Yang B and Wyman CE. Pretreatment: the key to unlocking low-costcellulosic ethanol [J]. Biofuels Bioproducts&Biorefining,2008,2:26–40.
    [30]Wyman CE, Dale B, Lee Y. Coordinated development of leading biomasspretreatment technologies [J]. Bioresource Technology,2005,96:1959–1966.
    [31]Ghosh P, Singh A. Physico-chemical and biological treatments forenzymatic/microbial conversion of lignocellulosic biomass [J]. Advances inApplied Microbiology,1993,39:295–333.
    [32]Saddler JN, Ramos LP, Breuil C. Bioconversion of Forest and AgriculturalPlant Wastes [M]. London: C. A. B. International,1993.
    [33]Ramos LP, Saddler JN, Bioconversion of food residues: mechanismsinvolved in pretreating and hydrolyzing lignocellulosic materials inEnzymatic Conversion of Biomass for Fuels Production ed. by Himmel ME,Baker JD, Overend RP [M]. Washington: ACS Symposium series566,1994:325.
    [34]Hu Z H, Wen Z Y. Enhancing enzymatic digestibility of switchgrass bymicrowave-assisted alkali pretreatment [J]. Biochemical Engineering Journal,2008,38(3):369–378.
    [35]Rivers D B, Emert G H. Lignocellulosic pretreatment: a comparison of wetand dry ball attrition [J]. Biotechnology Letter,1987,9:365–367.
    [36]Chundawat SPS, Balan V, Dale BE. High-throughput microplate techniquefor enzymatic hydroysis of lignocellulosic biomass [J]. Biotechnology andBioengineering,2008,99:1281–1294.
    [37]Cadoche L, Lopez G D. Assessment of size reduction as preliminary step inthe production of ethanol from lignocellulosic wastes [J]. Biological Wastes,1989,30:153–157.
    [38]Bousaid A, Robinson J, Cai Y J, et al. Fermentability of the hemi-cellulosederived sugars from steam-exploded softwood [J]. Biotechnology andBioengineering,1999,64:284–289.
    [39]Schwald W, Breuil C, Brownell H H, et al. Assessment of pretreatmentconditions to obtain fast complete hydrolysis on high substrate concentration[J]. Applied Biochemistry and Biotechnology,1989,20–21:29–44.
    [40]Ramos L P, Breuil C, Saddler, J N. Comparison of steam pretreatment ofEucalyptus, Aspen, and Spruce wood chips and their enzymatic hydrolysis[J].Applied Biochemistry and Biotechnology,1992,34–35:37–48.
    [41]Brownell H H, Saddler J N. Steam pretreatment of lignocellulosic materialfor enhanced enzymatic hydrolysis [J]. Biotechnology and Bioengineering,1987,29:228–235.
    [42]Carrasco F, Roy C. Kinetic study of dilute-acid prehydrolysis of xylancontaining biomass [J]. Wood Science and Technology,1992,26:189–208.
    [43]Schaffeld G. Pretratamiento del material lignocelulosico, in Ethanol delignocelulosicos technologia; perspectives. Servicio de publicacions eintercambio cientifico da Universidade de Santiago de Compostela,1994:35–60.
    [44]Rijkens B A. Hydrolysis process for lignocellulosic materials CECDworkshop cellulose programme. Braunschweig, Germany,1984.
    [45]Heitz M, Capek-Menard E, Koeberele PG et al. Fractionation of populustremuloides at the pilot plant scale: optimization of steam pretreatmentconditions using STAKE II technology [J]. Bioresource Technology,1991,35:23–32.
    [46]Biermann CJ, Schultz TP, Mcginnis GD. Rapid steam hydrolysis/extractionof mixed hardwood as a biomass pretreatment [J]. Journal of WoodChemistry and Technology,1984,4:111–128.
    [47]Zimbardi F, Ricci E, Braccio G. Technoeconomic study on steam explosionapplication in biomass processing [J]. Applied Biochemistry andBiotechnology,2002,98–100:89–99.
    [48]Duff S J B, Murray W D. Bioconversion of forest products industry wastecellulosics to fuel ethanol [J]. Bioresource Technology,1996,55:1–33.
    [49]Wright J D, Ethanol from biomass by enzymatic hydrolysis [J]. ChemicalEngineering Progress,1996,84:62–74.
    [50]Morjanoff P J, Gray P P. Optimization of steam explosion as method forincreasing susceptibility of sugarcane baggasse to enzymatic saccharifi cation[J]. Biotechnology and Bioengineering,1987,29:733–741.
    [51]Ohgren K, Galbe M, Zacchi G. Optimization of steam pretreatment ofSO2-impregnated corn stover for ethanol production [J]. AppliedBiochemistry and Biotechnology,2005,121-124:1055–1067.
    [52]Evanick S M, Bura R, Saddler J N. Acid-catalysed steam pretreatment ofLodgepole pine and subsequent enzymatic hydrolysis and fermentation toethanol [J]. Biotechnology and Bioengineering,2007,98:737–746.
    [53]Murnen H K, Balan V, Chundawat SPS, et al. Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of miscanthusx gigantius to fermentable sugars [J]. Biotechnology Progress,2007,23:846–850.
    [54]Mett H T, Andres T, Hewnning J, et al. Preliminary results on optimization ofpilot scale pretreatment of wheat straw used in coproduction of bioethanoland electricity [J]. Applied Biochemistry and Biotechnology,2007,130:448–460.
    [55]Zheng Y, Lin H M, Tsao G T. Pretreatment of cellulose hydrolysis by CO2explosion [J]. Biotechnology Progress,1998,14:890–896.
    [56]Pan X, Xie D, Yu R W, et al. Pretreatment of lodgepole pine killed bymountain pine beetle using ethanol organosolv process: fractionation andprocess optimization [J]. Industrial&Engineering Chemistry Research,2007,46:2609–2617.
    [57]Ropars M, Marchal R, Pourquie J, et al. Large scale enzymatic hydrolysis ofagricultural lignocellulosic biomass. Part1: Pretreatment procedures [J].Bioresource Technology,1992,42:197–204.
    [58]Fontana JD, Ramos LP,Deschamps FC. Pretreated sugarcane bagasse as amodel for cattle feeding [J]. Applied Biochemistry and Biotechnology,1995,51–52:105–116.
    [59]Tsuda M, Aoyama M, Cho N S. Steaming as pre-treatment for the enzymatichydrolysis of bamboo grass culms [J]. Bioresource Technology,1995,64:241–243.
    [60]Sudo K, Shimizu K, Ishii T, et al. Enzymatic hydrolysis of woods, Part IX.Catalyzed steam explosion of softwood [J]. Holzforschung,1986,40:339–345.
    [61]Brennan A H, Hoagland W, Schell D J. High temperature acid hydrolysis ofbiomass using engineering–scale plug flow reactor: result of low solidtesting [J]. Biotechnology and Bioengineering Symposium,1986,17:53–70.
    [62]Hinman N D, Schell D J, Riley C J, et al. Preliminary estimate of the cost ofethanol production for SSF technology [J]. Applied Biochemistry andBiotechnology,1992,34–35:639–649.
    [63]Kim S B, Lee Y Y. Kinetics in acid-catalyzed hydrolysis of hardwoodhemicellulose [J]. Biotechnology and Bioengineering Symposium,1987,17:71–84.
    [64]Pessoa Jr A, Mancilha I M, Sato S. Acid hydrolysis of hemicellulose fromsugarcane bagasse [J]. Brazilian Journal of Chemical Engineering1997,14:291–297.
    [65]Rahman SHA, Choudhary JP, Ahmad AL, et al. Optimization studies on acidhydrolysis of oil palm empty fruit bunch fiber for production of xylose [J].Bioresource Technology,2007,98:554–559.
    [66]Karimi K, Kheradmandinia S, Taherzadeh MJ. Conversion of rice straw tosugars by dilute-acid hydrolysis [J]. Biomass and Bioenergy,2006,30:247–253.
    [67]Grohmann K, Torget R and Himmel M. Optimization of dilute acid treatmentof biomass [J]. Biotechnology and Bioengineering Symposium,1985,15:59–80.
    [68]Torget R, Weredene P, Himmel M, et al. Dilute acid pretreatment of shortrotation woody and herbaceous crops [J]. Applied Biochemistry andBiotechnology,1990,24–25:115–126.
    [69]Torget R, Hsu T A. Two temperature dilute-acid prehydrolysis of hardwoodxylan using a percolation process. Applied Biochemistry and Biotechnology,1994,45–46:5–22.
    [70]Saha B C, Bothast R J. Pretreatment and enzymatic saccharification of cornfiber [J]. Applied Biochemistry and Biotechnology,1999,76:65–77.
    [71]Zeitsch KJ. Furfural production needs chemical innovation [J]. ChemicalInnovation,2000,30(4):29.
    [72]Zeitsch KJ. Gaseous acid catalysis: An intriguing new process [J]. ChemicalInnovation,2001,31:40–44.
    [73]Dias AS, Pillinger M, Valente AA. Dehydration of xylose in to furfural overmicro-mesoporous sulphonic acid catalysts [J]. Journal of Catalysis,2005,229:414–423.
    [74]Corma A. Inorganic sold acids and their use in acid-catalyzed hydrocarbonreactions [J]. Chemical Reviews,1995,95:559–614.
    [75]Okuhara T. Water-tolerant solid acid catalysts [J]. Chemical Reviews,2002,102:3641–3666.
    [76]Dias AS, Lima S, Pillinger M et al. Modified versions of sulfated zirconia ascatalysts for the conversion of xylose to furfural [J]. Catalysis Letters2007,114:151–160.
    [77]Potapov GP, Krupenskii VI, Alieva MI. Metalloporphyrins anchored topolymeric supports as new catalysts for aldose dehydration [J]. ReactionKinetics and Catalysis Letters,1985,28:331–337.
    [78]Moreau C, Durand R, Peyron D, et al. Selective preparation of furfural fromxylose over microporus solid acid catalysts [J]. Industrial Crops and Products,1998,7:95–99.
    [79]Dias AS, Pillinger M, Valente AA. Liquid phase dehydration of D-xylose inthe presence of Keggin-type heteropolyacids [J]. Applied Catalysis A,2005,285:126–131.
    [80]Dias AS, Pillinger M, Valente AA. Mesoporous silica-supported12-tungstophosphoric acid catalysts for the liquid phase dehydration ofD-xylose [J]. Microporous and Mesoporous Materials,2006,94:214–225.
    [81]Harris J F, Saeman J F, Locke E G. Chemical conversion of wood residues.Part I. Separation and utilization of hardwood hemicellulos [J]. ForestProducts Journal,1958,8:248.
    [82]Kobayashi T, Sakai Y. Hydrolysis rate of pentosan of hardwood in dilutesulphuric acid [J]. Bull Agric Chem Soc Japan,1956,20:1–7.
    [83]Lee Y Y, Lin C M, Johnson T, et al. Selective hydrolysis of hardwoodhemicellulose by acids [J]. Biotechnology and Bioengineering Symposium,1979,8:75–88.
    [84]Springer EL, PhD, Thesis. University of Vinconsin-Madison,1961.
    [85]Marton G, Dencs J, Szokonya L. Principles of biomass refining In: Handbookof Heat and Mass Transfer. Houston [M]. Gulf Publishing,1989:609–652.
    [86]Conner A. Kinetic modeling of hardwood prehydrolysis Part I: xylan removalby water prehydrolysis [J]. Wood and Fiber Science,1984,16(2):268–277.
    [87]Kamiyama Y, Sakai Y. Rate of hydrolysis of xylo-oligosaccharides in dilutesulphuric acid. Carbohydrate Research,1979,73:151–158.
    [88]Conner AH and Lorenz LF, Kinetic modeling of hardwood prehydrolysis.Part-III. Water and dilute acetic acid prehydrolysis of southern red oak [J].Wood and Fiber Science,1986,18:248–256.
    [89]Carrasco F, Roy C. Kinetic study of dilute-acid prehydrolysis ofxylancontaining biomass [J]. Wood Science and Technology,1992,26:189–208.
    [90]Maloney M T, Chapman T W. An engineering analysis of the production ofxylose by dilute acid hydrolysis of hardwood hemicellulose. BiotechnologyProgress,1986,2(4):192–202.
    [91]李淑君,植物纤维水解技术[M],北京:化学工业出版社,2009
    [92]Roy MSK, Khandelwal PK. Recovery of furfural from the prehydrolysisvapor vent condensate from a dissolving pulp plant [J]. Res Ind,1989,34:205.
    [93]Gamse T, Marr R, Froshl F, et al. Extraction of furfural with carbon dioxide[J]. Separation Science and Technology,1997,32:355–371.
    [94]Jerabek K, Hankova L, Prokop Z. Post-cross linked polymer adsorbents andtheir properties for separation of furfural from aqueous solutions [J].Reactive Polymer,1994,23:107–117.
    [95]Win D T. Furfural-gold from garbage [J]. Australia Journal Technology,2005,8:185–190.
    [96]Arnold D R and Buzzard J L. A novel process for furfural production [M].Sun City, South Africa: Proceedings of South African Chemical EngineeringCongress, September2003:3–5.
    [97]IFT (2001) SA Patent (2001/6721) and International Patent Application dueto PCT/ZA00/00024.
    [98]Kwarteng I K, Kinetics of acid hydrolysis of hardwood in continuous plugflow reactor [D]. Hanover: Dartmouth College,1983.
    [99]Abatzoglu N, Koeberle P G, Chornet E, et al. Dilute acid hydrolysis oflignocellulosics: an application to medium consistency suspensions ofhardwoods using a plug fl ow reactor [D]. The Canadian Journal of ChemicalEngineering,1990,68:627–638.
    [100] Montane D, Salvado J, Torras C, et al. High temperature diluteacidhydrolysis of olive stones for furfural production [J]. Biomass and Bioenergy,2002,22:295–304.
    [101] Tao H L. Furfural and Furfuryl alcohol capacity expands unduly [J].China Chemical Reporter, Market Report,2007,18..
    [1] Facing the Hard Truths about Energy [M], Washington DC: US NationalPetroleum Council,2007.
    [2] Polysaccharides: Structural Diversity and Functional Versatility [M].2nd Ed (Ed.:S. Dumitriu), Marcel Dekker, New York,2005.
    [3] Zeitsch K J. The Chemistry and Technology of Furfural and Its ManyBy-Products [M], Amsterdam: Elsevier,2000.
    [4] J.-M. Lee, Y.-C. Kim, I. T.Hwang, et al, Furfural: Hemicellulose/xylose derivedbiochemical [J]. Biofuels, Bioproducts and Biorefining,2008,2:438-454.
    [5] Brownlee H J, Miner C S. Industrial Development of Furfural [J]. Industrial&Engineering Chemistry1948,40(2):201-204.
    [6] Dunlop A P, Peters F N. The Furans [M]. New York: ACS Monograph Series,Reinhold Publishing Corporation,1953.
    [7] Liu C, Wyman C E. The enhancement of xylose monomer and xylotriosedegradation by inorganic salts in aqueous solutions at180°C [J]. CarbohydrateResearch,2006,341:2550-2556.
    [8] Liu L, Sun J, Li M, et al. Enhanced enzymatic hydrolysis and structural featuresof corn stover by FeCl3pretreatment [J]. Bioresource Technology,2009,100:5853-5858.
    [9] Liu L, Sun J, Cai C Y,et al. Corn stover pretreatment by inorganic salts and itseffects on hemicellulose and cellulose degradation [J]. Bioresource Technology,2009,100:5865-5871.
    [10]O'Neill R, Ahmad M N, Vanoye L, et al. Kinetics of Aqueous PhaseDehydration of Xylose into Furfural Catalyzed by ZSM-5Zeolite [J] Industrialand Engineering Chemistry Research,2009,48:4300-4306.
    [11]Moreau C, Durand R, Peyron D, et al. Selective preparation of furfural fromxylose over microporous solid acid catalysts [J]. Industrial Crops and Products1998,7:95–99.
    [12]K ldstr M, Kumar N, Heikkil T, et al. Formation of Furfural in CatalyticTransformation of Levoglucosan over Mesoporous Materials [J]. ChemCatChem,2010,2:539–546.
    [13]Dias AS, Lima S, Pillinger M, et al. Acidic cesium salts of12-tungstophosphoricacid as catalysts for the dehydration of xylose into furfural [J]. CarbohydrateResearch,2006,341:2946–2953.
    [14]Dias AS, Lima S, Brandao P, et al. Liquid-phase dehydration of D-xylose overmicroporous and mesoporous niobium silicates [J]. Catalysis Letters,2006,108:179-186.
    [15]Shi X J, Wu Y, Li P, et al. Catalytic conversion of xylose to furfural over thesolid acid SO42-/ZrO2--Al2O3/SBA-15catalysts [J]. Carbohydrate Research,2011,346:480–487.
    [16]Lam E, Chong J H, Majid E, et al. Carbocatalytic dehydration of xylose tofurfural in water [J]. Carbon,2012,50:1033–1043.
    [17]杜海波,赵杰,熊俊丽.废水中糠醛测定方法的探讨[J].干旱环境监测,2003,17(3):137-138
    [18]北京大学生物系生物化学教研室[M].生物化学实验指导,高等教育出版社,1985
    [19]Watanabe M, Aizawa Y, Iida T, et al. Glucose reactions with acid and basecatalysts in hot compressed water at473K [J]. Carbohydrate Research,2005,340:1925-1930.
    [20]Ahmad T, Kenne L, Olsson K, et al. The formation of2-furaldehyde and formicacid from pentoses in slightly acidic deuterium oxide studied by1H NMRspectroscopy [J]. Carbohydrate Research,1995,276:309-320.
    [1] Zhuang J P, Lin L, Liu J, et al. Preparation of Xylose and Kraft Pulp from PoplarBased on Formic/Acetic Acid/Water System Hydrolysis [J].Bioresources,2009,4(3):1147-1157.
    [2] Pumiput P, Chuntranuluck S, Punsuvon V, et al. Preparation of xylose solutionfrom steam explosion of oil palm trunk chip [C]. Proceedings of44th KasetsartUniversity Annual Conference,2006,669-676.
    [3] Ogaki Y, Shinozuka Y, Hatakeyama M, et al. Selective Production of Xylose andXylo-oligosaccharides from Bamboo Biomass by Sulfonated Allophane SolidAcid Catalyst [J].Chemistry Letters,2009,38(12):1176-1177.
    [4] Guerfali M, Maalej I, Gargouri A, et al. Catalytic properties of the immobilizedTalaromyces thermophilus β-xylosidase and its use for xylose andxylooligosaccharides production [J]. Journal of Molecular Catalysis B: Enzymatic,2009,57(1-4):242-249.
    [5] Weingarten R, Cho J, Conner W C, et al. Kinetics of furfural production bydehydration of xylose in a biphasic reactor with microwave heating [J]. GreenChemistry,2010,12(8):1423-1429.
    [6] Takagaki A, Ohara M, Nishimura S et al. One-pot Formation of Furfural fromXylose via Isomerization and Successive Dehydration Reactions overHeterogeneous Acid and Base Catalysts [J]. Chemistry Letters,2010,39(8):838-840.
    [7] Marcotullio G, De Jong W. Chloride ions enhance furfural formation fromD-xylose in dilute aqueous acidic solutions [J]. Green Chemistry,2010,12(10):1739-1746.
    [8] Lima S, Fernandes A, Antunes M M et al, Dehydration of Xylose into Furfural inthe Presence of Crystalline Microporous Silicoaluminophosphates[J]. CatalysisLetters,2010,135(1-2):41-47.
    [9] Lima S, Antunes M M, Fernandes A, et al. Catalytic cyclodehydration of xyloseto furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1composite material [J]. Applied Catalysis A: General,2010,388(1-2):141-148.
    [10]Olofsson K, Wiman M, Liden G. Controlled feeding of cellulases improvesconversion of xylose in simultaneous saccharification and co-fermentation forbioethanol production [J]. Journal of Biotechnology,2010,145(2):168-175.
    [11]Zhao L, Yu J L, Zhang X, et al. The Ethanol Tolerance of Pachysolen tannophilusin Fermentation on Xylose [J]. Applied Biochemistry and Biotechnology,2010,160(2):378-385.
    [12]Zhao C X, Karakashev D, Lu W J, et al. Xylose fermentation to biofuels(hydrogen and ethanol) by extreme thermophilic mixed culture [J]. InternationalJournal of Hydrogen Energy,2010,35(8):3415-3422.
    [13]张烨,王平,余波,等.用玉米芯、稻壳混合原料生产糠醛的中试工艺研究[J]中南林业科技大学学报,2011,31(7):160-164.
    [14]高礼芳,徐红彬,张懿.玉米芯水解生产糠醛清洁工艺[J].环境科学研究2010,23(7):924-929.
    [15]李志松,易卫国.玉米芯制备糠醛的研究[J]精细化工中间体,2010,40(4):53-55.
    [16]高礼芳,徐红彬,张懿,等,高温稀酸催化玉米芯水解生产糠醛工艺优化[J]过程工程学报,2010,10(2):292-297
    [17]任素霞,雷廷宙,朱金陵等,玉米芯中木聚糖水解制备D-木糖的试验研究[J]河南科学,2012,30(1):51-54
    [18]朱浩拥,王俊丽,吴春等,酶法制备玉米芯低聚木糖工艺条件的研究[J]粮食与饲料工业,2011(12):54-57
    [19] Vegas R, Alonso J L, Doninguez H, et al. Processing of rice huskautohydrolysis liquors for obtaining food ingredients [J]. Journal of Agriculturaland Food Chemistry,2004,52(24):7311-7317.
    [20]杜海波,赵杰,熊俊丽.废水中糠醛测定方法的探讨[J].干旱环境监测,2003,17(3):137-138
    [1]王素芬,苏东海,周凌云.废物糠醛渣的农业利用研究进展[J].河北农业科学,2009,13(11):97-99.
    [2]苑美荣,基于硅灰石的TiO_2复合多孔材料以及糠醛渣制备活性炭的研究[D]长春:吉林大学化学学院,2007.
    [3] Kirk T K, Farrell R C. Enzymatic combustion: the microbial degradation of lignin[J]. Annual Review of Microbiology,1987,41:465-505.
    [4] Bobleter O, Concin R. Degradation of poplar lignin by hydrothermal treatment [J].Cellulose Chemistry And Technology,1979,13:583-593.
    [5] Chen C L, Chang H M, Kirk T. Aromatic acids produced during degradation oflignin in spruce wood by Phanerochaete chrysosporium [J]. Holzforschung,1982,36:3-9.
    [6] Lapierre C, Pollet B, Rolando C. New insights into the molecular architecture ofhardwood lignins by chemical degradative methods [J]. Research on ChemicalIntermediates,1995,21(3–5):397-412.
    [7] Cazacu G, Mihaies M, Pascu C, et al. Polyolefin/lignosulfonate blends [J].Macromolecular Materials and Engineering,2004a,289:880-889.
    [8] Lapierre C, Pollet B, Ralet M C, et al. The phenolic fraction of maize bran:evidence for lignin–heteroxylan association [J]. Phytochemistry,2001,57(5):765-772.
    [9] Pouteau C, Baumberger S, Cathala B, et al. Lignin–polymer blends: evaluation ofcompatibility by image analysis [J]. Comptes Rendus Biologies,2004,327:935-943.
    [10]Kumar M N S, Mohanty A K, Erickson L, et al. Lignin and Its ApplicationswithPolymers [J]. Journal of Biobased Materials and Bioenergy,2009,3(1):21-24.
    [11]Stewart D. Lignin as a base material for materials applications: Chemistry,application and economics [J]. Industrial Crops and Products,2008,27:202-207.
    [12]Shulga G., Betkers T, Brovkina J, et al. New lignin-based polymers for ecologicalrehabilitation [J]. Molecular Crystals and Liquid Crystals,2008,486:1333-1347.
    [13]GOSSELINK RJA, SNIJDERM H B, KRANENBARG A, et a. Characterisationand application of nova fiber lignin [J]. Industrial Crops and Products,2004,20(2):191-203.
    [14] Liu M H, Huang J H. Removal and recovery of cationic dyes from aqueoussolutions using spherical sulfonic lignin adsorbent [J]. Journal of AppliedPolymer Science,2006,101(4):2284-2291.
    [15]Crist D R, Crist R H, Martin J R. A new process for toxic metal uptake by a kraftlignin [J]. Journal of Chemical Technology and Biotechnology,2003,78:199-202.
    [16]Dizhbite T, Zakis G, Kizima A, et al. Lignin-a useful bioresource for theproduction of sorption–active materials [J]. Bioresource Technology,1999,67:221-228.
    [17]王沁,赵学慧,微生物学杂志[J],1992,12(2):6-7
    [18]粟学俐,贺飞.纤维素酶水解纤维素还原糖的测定[J].湖北化工.1999,1:43-44.
    [19]熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业.2005,8:40-41.
    [20]Koksimovic, G., Markovic, Z., Investigation of the mechanism of acidichydrolysis of cellulose [J].Acta Agric. Serbia,2007,12,51–57.
    [21]Herrera, A., Tellez-Luis, S., Gonzalez-Cabriales, J.J., et al., Effect of hydrochloricacid concentration on the hydrolysis of sorghum straw at atmospheric pressure[J].Journal of Food Engineering.2004,63,103–109.
    [22]Kienle H,Bader E.活性炭材料及其工业应用[M].魏同成译.北京:中国环境科学出版社,1990:3-9
    [23]炭素材料学会主编.活性炭基础与应用[M].北京:中国林业出版社,1984:210.
    [24]蒋剑春等编著.活性炭应用理论与技术[M].化学工业出版社,2010.11.
    [25]Kierzek K, Lota E F G, Gryglewicz G, et al. Electrochemical capacitors based onhighly porous carbons prepared by KOH activation [J]. Electrochimica Acta,2004,49:515-523.
    [26]Castro M M, Martínez-Escandell M, Molina-Sabio M, et al Hydrogen adsorptionon KOH activated carbons from mesophase pitch containing Si, B, Ti or Fe [J].Carbon,2010,48:636-644.
    [27]Tseng R L, Tseng S K. Pore structure and adsorption performance of theKOH-activated carbons prepared from corncob [J]. Journal of Colloid andInterface Science,2005,287:428-437
    [28]杜伟光,康立娟,董宁,吉林省西部重度盐碱土糠醛渣复合改良剂配方研究[J]河南农业科学,2010(6):76-78
    [29]马万红,张宗培,毛陆原等,糠醛渣生产乙酰丙酸新工艺的研究[J]化工时刊,1994(3):28-31
    [30]盛楷,任广军,高晓荣,糠醛渣对染料甲基紫的吸附行为[J]沈阳理工大学学报,2010,29(5):82-85
    [31]Shin Y, Wang L, Bae I, et al. Hydrothermal Syntheses of Colloidal CarbonSpheres from Cyclodextrins [J]. Journal of Physical Chemistry,2008,112:14236-14240.
    [32]Sevilla M, Fuertes A B. The production of carbon materials by hydrothermalcarbonization of cellulose [J]. Carbon,2009,47:2281-2289.
    [1]孙继辉.世界糠醛生产与消费概况[J].化工设计,1995,6(4):52.-54
    [2]汪朝阳.国内呋喃环香料合成近况[J].广州化工,2001,9(1):13-15
    [3] Karl J.Zeitsch.The chemistry and technology of furfural and its manyby-products[J].Chemical Engineering Journal,2001,81(1-3):338-339
    [4] Li Zeng-Xin,Chen Dong-Hui.Recycling solid waste from production of furfurylalcohol by furfural hydrogenization[J].Xiandai Huagong/Modern ChemicalIndustry,2003,23(8):47-49
    [5] Singh M, Bhattacharya A K, Nair TVR, et al.Production of furfural from cornstoverhemicellulose[J].Biotechnology and Bioengineering Symposium,1986,15:561-567.
    [6]孙继辉.世界糠醛生产与消费概况[J].化工设计,1995,4:53-56
    [7]任鸿均.我国糠醛工业的未来[J].化工科技市场,2001,(11):12-15
    [8] Antal Jr M J, Leesomboon T, Mok W S. Mechanism of formation of2-furaldehyde from D-xylose [J]. Carbohydrate Research,1991,217:71-85.
    [9]陈玉莲,周广俊,张和.电渗析治理糠醛废水回收乙酸[J].水处理技术,1992,18(5):314-320
    [10]水志良.糠醛废水治理及回收糠醛和醋酸工艺[P].中华人民共和国国家知识产权局,2001.9.19
    [11]常贺英,李凭力,刘家祺等.从生产糠醛的废水中回收醋酸的方法[P].中华人民共和国国家知识产权局,2005.6.15
    [12]吴林友,曹中秋,韩光喜等.催化氧化处理糠醛废水[J].中国环境科学,1999,19(2):183-184
    [13]张春燕.费通法治理糠醛废水的研究[J].甘肃农业,1996,(12):37-39
    [14]兴雅娟,孙秀红,高兴春.糠醛生产废水治理[J].辽宁化工,2004,33(11):665-666
    [15]卢旭东,姜承志.多孔TiO2陶瓷光催化剂降解糠醛废水[J].辽宁化工,2002,31(4):139-140
    [16]姜承志,卢旭东.耐火砖附载TiO2光催化降解糠醛废水[J].辽宁化工,2001,30(11):503-504
    [17]闫秀丽,苏会东.厌氧生物法处理糠醛废水的研究[J].沈阳航空工业学院学报,2001,(3):90-91
    [18]张和,赵增国.糠醛废水综合治理技术[J].石油化工,1998,27(7):525-528
    [19]Randall A Wirtz, Richard R Dague.Anaerobic treatment of a furfural-productionwastewater [J].Waste Management,1993,13(4):309-315.
    [20]靳建龙.UASB处理木糖醇、糠醛废水中试研究[J].环境科学,16(增):67-69
    [21]邵东煜,任伟.内电解-厌氧-好氧工艺处理高浓度糠醛废水[J].环境污染治理技术与设备,2005,6(4):70-72
    [22]苏会东,孙玉凤,王艳君.微电解-两相厌氧处理糠醛废水研究[J].沈阳理工大学学报,2005,24(1):53-64
    [23]许海洲,乔鹏,李善评等.电解预处理糠醛废水对水样pH值和温度的影响[J].山东科学,2005,18(2):61-65
    [24]卢屿,康春莉,王玮瑜等.铁屑过滤/生化法处理糠醛废水[J].中国给水排水,2005,21(5):77-79
    [25]杨正学,蔡晶,柴社立等.在糠醛废水的生化处理方法中采用铸铁屑进行预处理的方法[P].中华人民共和国国家知识产权局,2005.3.2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700