用户名: 密码: 验证码:
微型精密压电泵设计理论及其应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体的高精度输送和分配是现代科技领域重要的试验手段,在生物医学、精细化工、医药研究等领域有着广泛应用,如实验室的药液配比系统、生物分析技术和高通量筛选技术等。现有的流体输送和分配系统通常体积较大、造价昂贵,使用上受到较多的限制,通常只能在实验室的环境当中使用。近年国内外开展了小型与微型流体输送和分配系统的研究。
     流体泵与流量传感器是流体输送和分配系统的主要部件,起着对流体的微量输送与精确检测并控制的重要作用,是系统中不可或缺的。在体积较大的传统型电磁泵的基础上,是无法制造出小型或微型流体输送和分配系统的,因此该系统的关键是如何设计制造小型化或微型化的流体泵。
     近年来,采用压电元件作为换能器的压电泵,成为微小型流体泵研究领域的热点。因为压电泵具有无电磁干扰、耗能低、结构紧凑、易于微小型化等特点,同时便于控制,可根据施加电压或频率精确控制压电泵的输出,所以压电泵比较适宜作为微型或小型流体输送和分配系统的流体泵。
     本文结合两个国家高技术研究发展项目“具有自检测功能的微型精密压电泵研究”(项目编号:2007AA04Z336)和“血糖检测与胰岛素注射微系统”(项目编号:2011AA040406)、国家自然科学基金重点项目“压电精密致动技术的基础研究”(项目编号:50735002)开展研究。以研发微型精密压电泵和用于胰岛素推注的压电微泵为目标,开展了关于精密压电泵的理论分析、有限元仿真、设计加工、试验测试等方面的研究。具体内容如下:
     1、压电驱动理论及压电振子振动分析
     压电振子是压电泵的换能器,其性能很大程度上决定了压电泵的输出能力。通过分析压电陶瓷材料的特性,选择与压电泵结构匹配的压电振子参数,对构建输出性能稳定的压电泵具有重要意义。
     在了解压电陶瓷基本性能参数的基础上,结合层合板理论,应用Hamilton原理,采用改变支撑边界的扭簧、弹簧和阻尼的方法模拟压电振子的真实工作边界条件,建立了压电振子在外力和外加电场作用下的振动方程,通过进一步的推导,得到了压电振子挠度的表达式,根据这个表达式分析了振子变形的影响因素,利用有限元软件对压电振子的变形进行了仿真。在不同的边界条件下,利用激光测微仪测试了双晶片压电振子的中心点的变形量,通过对比分析,测试结果能够验证有限元模型的正确性。
     2、压电泵用单向截止阀研究
     对于被动截止阀压电泵来说,其采用的单向截止阀的性能(工作中的阻尼,单向阀的刚度,开启压力,开启和关闭的滞后性)直接影响着压电泵的输出性能,比如自吸性、截止性、输出流量的精密性。
     对压电泵中单向截止阀的工作机理、工作方式及节流特性进行了分析。建立了单向截止阀的动力学模型,对动力学方程进行了仿真求解,验证了主要参数对单向截止阀运动规律的影响趋势。针对所采用的双腔体压电泵设计了悬臂梁式截止阀和盘式整体开启阀两种被动截止阀,分析了它们的过流特性,进行了相应的实验测试。应用有限元工程分析软件对悬臂梁式单向阀和盘式整体开启阀进行了设计和相关实验。
     3、双腔体精密压电泵的设计
     对现有的多振子压电泵设计方案进行分析,研究其工作特性,讨论了压电振子个数、腔体间的联接形式与输出能力的关系。
     针对精密输出的目的,给出了采用悬臂梁式单向截止阀和盘式整体开启阀构建双腔体精密压电泵的两种方案,设计并制作了不同结构的压电泵。分析了泵腔初始容积对压电泵工作的影响,提出了提高压电泵输出能力的方法。通过实验分析了悬臂梁式单向截止阀和盘式整体开启式单向截止阀对双腔体压电泵的性能影响,对压电泵的压力、流量-频率特性及精密输出特性进行了实验,验证了压电泵具有精密输出的能力。
     4、微型精密压电泵系统的应用研究
     提出了两种不同的实现流体精密输送的方案。
     方案一:后推式压电驱动型胰岛素泵的研究方案。提出把压电泵作为动力源,从注射器后面推动活塞注射药物的结构,通过试验研究表明:具有良好的截止性,可以避免药物的回流现象,压电泵不必与输药管一起频繁更换,可以重复使用,该系统的输出具有很好的稳定性。
     方案二:具有自检测功能的压电泵。提出将微型流量传感器和微型压电泵结合成为具有自检测功能的压电泵。研制了自检测功能压电泵及其实验装置,利用开环控制、最优线性二次型控制及模糊PID控制方法分别输送目标体积100μl,对输出重复性误差进行了分析,利用BP神经网络对压电泵的输出进行了辨识。
     5、自检测压电泵电控单元的研制
     根据压电泵的工作特点,针对不同应用场合,设计制作了压电泵专用电源控制器。进行了模糊自整定PID控制方法研究,根据输入、输出特性建立隶属函数和模糊控制规则,对比例因子进行自适应调整,以提高模糊控制精度,为掌握微流量控制规律提供了重要的设备和技术保障。
     本文的研究内容涉及压电学、机械学、流体力学、振动分析、控制学等多学科交叉的知识。论文的研究工作为精密压电泵的研究提供了新的思路,为小型或微型流体输送和分配系统提供了研究基础,对相近流体驱动装置的研制具有借鉴参考意义。
The high precision delivery and distribution of reagent is a very important test means inthe mordern science and technology field. It is widly used in the fields of biomedicine, finechemical engineering and medical research, such as Liquid medicine proportion system,biological analysis technology and high throughput screening technology. The existingreagent delivery and distribution system usually features large volume and high cost. It isalso limited in the laboratory environment. In recent years, more and more small and microreagent delivery and distribution systems are developed at home and abroad.
     The pump and flow sensor is the main part of reagent delivery and distribution systemwhich is ndispensible part with the function of micro delivery, accurate detection and controlin this system. It can not be produced small and micro reagent delivery and distributionsystem based on a large volume fluid pump. The key point of this system is how to designand manufacture small and micro fluid pump.
     In recent years, adopting piezoelectric pump has been a focal point in the area of smalland micro fluid pump. The piezoelectric pump has the characteristics of no electromagneticinterference, low power consumption, compact structure, easy micro-miniaturization andgood controllability. The output of piezoelectric pump can be controlled by applied voltageor frequency precisely. So the piezoelectric pump is suitable for the adoption of fluid pumpin the small and micro delivery and distribution system of reagent.
     Funded by the two863programs of “Micro precision piezoelectric pump with thefunction of self-detection” and “Blood glucose test and insulin injection system”, Chinesenature science foundation key project of “Foundation research of piezoelectric precisionactuation technologies”, this dissertation aims to the development of micro precisionpiezoelectric pump and insulin injection micro piezoelectric pump. The theoretical analysis,FEM simulation, prototyping and experimental test are conducted for the precisionpiezoelectric pump. The specific contents are as follows.
     1. Piezoelectric actuation theory and vibration analysis of piezoelectric vibrator
     Piezoelectric vibrator is the transducer of piezoelectric pump. It’s performance determines the output abilities of piezoelectric pump. The matching piezoelectric vibrator forthe pump structure is chosen by analyzing the characteristics of piezoelectric material for theconstruction of piezoelectric pump with stable output performance.
     Combined with laminated plate theory and Hamilton principle, the vibration equationunder the external force and electric field is established and the deflection equation ofvibrator is derived based on comprehending performance parameters of piezoelectricceramic. The real working boundary conditions of vibrator are simulated by method ofchanging the torsional spring and damping. The influencing factors of vibrator deformationare analyzed by the equations. The deformation of piezoelectric vibrator is simulated by theFEM software. The central deformation of vibrator is tested by laser micrometer under thedifferent boundary conditions. The test results verify the correctness of FEM model throughthe comparative analysis.
     2. Study on the check valve of piezoelectric pump
     For passive valve piezoelectric pump, the performance of check valve, such as damping,stiffness of check valve, opening pressure and on/off hysteresis, influences the abilities ofself priming, cuting-off and accuration.
     The working principle, working mode and restriction characteristics of check valve inthe piezoelectric pump are analyzed.The dynamic model of check valve is established andthe main parameters for the influencing trend of check valve movement are verified bysolving and simulating the dynamic equations. The two type passive valves of cantilevercheck valve and disc holistic opening valve are designed for the twin vibrator pump. Theflow characteristic is analyzed and the corresponding performances are tested. The two typecheck valves are designed optimally by using the FEM software and the correspondingexperiments are conducted.
     3. The design theory of twin vibrator precision piezoelectric pump
     The existing design proposals of multi-vibrator piezoelectric pump are analyzed and theworking characteristics are studied. The relation of the vibrator number, the chamberconnection format and output abilities is discussed.
     The two type piezoelectric pumps with cantilever valve and disc holistic opening valveare designed according to the precise flow output. The prototypes of piezoelectric pumps aremanufactured. The influence of piezoelectric pump performance by the chamber initialvolume is analyzed and the method for improving the pumping abilities is presented. Theinfluence of pump performances by the two type check valves is tested. The precision output performance of piezoelectric pump is verified by the experiments of pressure, flow rate,frequency and precision
     4. The design of micro precision piezoelectric pump system and experimentalstudy
     The two designs of fluid precision delivery are presented.
     Design1, back-push piezoelectric insulin pump. The piston of injector is pushed by thepower source of piezoelectric pump for the injection of fluid medicine. The results show thesystem has good cutting-off ability and can avoid the back flow of medicine. Thepiezoelectric pump is unnecessary to be replaced with the medicine pipe frequently. It is alsocan be re-used andthis system has a good continuity.
     Design2, the piezoelectric pump with the function of self detection. The piezoelectricpump with the function of self detection which is a combination of micro flow sensor andmicro pump structure is proposed. The pump system and experimental apparatus aredeveloped. The100μL fluid is delivered by the control methods of open loop, the optimallinear quadratic control and fuzzy PID. The output repeatability error is analyzed. The outputof piezoelectric pump system is identified by BP neural network.
     5. The development of control unit for the piezoelectric pump with self detection
     The power source controller for the piezoelectric pump is designed according to theoperating features of piezoelectric pump and different application occasions. The controlmethod of fuzzy self-tuning PID for the piezoelectric pump, control law of micro flow andthe abilities of precision delivery are studied. The membership function and fuzzy controllaw are established according to the input/output characteristics. The proportion factor isadjusted adaptively to improve the fuzzy control accuracy.
     The content of this dissertation relates to the piezoelectricity, mechanology, fluidmechanics, vibration analysis and contrology. The paper work provides a new idea for theresearch of precision piezoelectric pump and research foundation for the application of smalland micro reagent delivery and distribution system.
     It has the reference significance for the similar development of fluid delivery apparatus.
引文
[1] Linnemann, R., P. Woias, C.-D. Senfft, et al. A Self-Priming and Bubble-Tolerant PiezoelectricSilicon Micropump for Liquid and Gases. Proc. of the11th IEEE MEMS1998Technical Digest,Heidelberg, Germany,1/25-29/98:532-537.
    [2] Nguyen, N.T., S. Schubert, S. richter, et al. Hybrid-assembled micro dosing system usingsilicon-based micropump/valve and mass flow sensor[J]. Sensors and Actuators A69,1998,85-91.
    [3] Park, J., K. Yoshida, S. Yokota. Resonantly driven piezoelectric micropump Fabrication of amicropump having high power density[J]. Mechatronics9,1999,687-702.
    [4] Bohm, S., W. Olthuis, P. Bergveld. A plastic micropump constructed with conventional techniquesand materials[J]. Sensors and Actuators77,1999,223-228.
    [5] Koch, M., N. Harris, A. G.R.Evans, et al. A novel micromachined pump based on thick-filmpiezoelectric actuation[J]. Sensors and Actuators A70,1998,98-103.
    [6] Li, H.Q., D.C. Roberts, J.L. Steyn, et al. A high frequency high flow rate piezoelectrically drivenMEMS micropump[J]. Proceeding IEEE Solid State Sensors and Actuators Workshop, Hilton Head.June,2000.
    [7] Andersson, H., W. Wijngaart, P. Nilsson, et al. A valve-less diffuser micropump for microfluidicanalytical systems[J]. Sensors and Actuators B72,2001,259-265.
    [8] Matsumoto, S., A. Klein, R. Maeda. Development of Bi-directional valve-less micropump forliquid[C]. Proc.IEEE MEMS LJAN.1999,141-146.
    [9] K.Forster, F., R. L.Bardell, M.A. Afromowitz, et al. Design,fabrication and testing of fixed-valvemicro-pumps[J]. Proceedings of the ASME Fluids Engineering Division,1995,39-44.
    [10] Meng, A.H., N.T. Nguyen, R.M. White. Focused flow micropump using ultrasonic flexural platewaves[J]. Biomedical Microdevices2:3,2000,169-174.
    [11] Rife, J.C., M.I. Bell, J.S. Horwitz, et al. Miniature valveless ultrasonic pumps and mixers[J].Sensors and Actuators86,2000,135-140.
    [12] Richter, M., R. Linnemann, P. Woias. Robust design of gas and liquid micropumps[J]. Sensors andActuators A68,1998,480-486.
    [13] Kojima, Y., T. Okusawa, K. Tsubouchi, et al. Fundamental investigation of a piezoelectric pumpfor a trace liquid feed. JSME International Journal. Series C. Vol.38. No.3,1995,531-537.
    [14]胡敏,周兆英,李勇等.微小型单杆螺旋泵[J].机械设计与研究,1997,(4):27-28.
    [15]张湘,赵艳,段咏梅等.微型CO2激光手术排污泵的研制[J].医疗卫生设备,2001,(4):53.
    [16]董晓东.微型碱液输送泵的改进[J].湖南林业科技,1998,25(4):44-46.
    [17]蔺嫦燕,孙衍庆,董培青等.微型血泵的研制及其模拟实验研究[J].中国生物医学工程学报,1997,16(1):65-70.
    [18]周兴汉,张迎新,杜小兵.一种微型输液泵的硬件设计[J].计算机与现代化,2000,(4):61-63+76.
    [19]侯晓丹,蔺嫦燕,孙衍庆.自制微型轴流血泵对缺血后心脏左心辅助机制的实验研究[J].中华实验外科杂志,2001,18(5):10-12.
    [20]王福海,刘新平.医用微型灌注泵的修复[J].医疗装备,1999,12(5):42.
    [21]杨岳,周兆英,叶雄英.微型热致动泵[J].半导体技术,1999,24(6):37-41.
    [22]崔天宏,周兆英,王晓浩等.硅微热致动泵的关键加工工艺[J].机械工程学报,1999,35(1):40-43.
    [23]尹执中,庞江涛,刘理天等.热驱动薄膜式微型泵[J].清华大学学报(自然科学版),2000,40(6):36-38.
    [24]谢海波,陈远玲,傅新等.微型无阀泵的数值仿真与参数设计[J].流体机械,2002,30(1):11-14.
    [25]陈坚美,应济.压电微泵性能的终端特性分析及其模拟研究[J].工程设计学报,2003,(4):179-182.
    [26]焦小卫,黄卫清,赵淳生.压电泵技术的发展及其应用[J].微电机(伺服技术),2005,(5):66-69.
    [27]夏齐霄,张建辉,王大康.压电泵振动放射噪声的两种理论模型[J].现代制造工程,2003,(S1):8-9.
    [28]张建辉,王大康,夏齐霄等.压电泵振动放射噪声的研究[J].压电与声光,2005,(1):37-39+49.
    [29]张建辉,寇杰,夏齐霄等.压电泵立体阻网法的研究[J].机械工程学报,2006,(5):55-59.
    [30]张建辉,路计庄,夏齐霄等.压电振子及流体对泵近场噪声的影响[J].光学精密工程,2006,(4):628-634.
    [31]夏齐霄,张建辉,李洪.非对称坡面腔底无阀压电泵[J].光学精密工程,2006,(4):641-647.
    [32]王蔚,田丽,鲍志勇等.一种新型压电式双向无阀微泵的研制[J].传感技术学报,2006,(5):2018-2021.
    [33]刘晓为,王蔚,田丽等.集成微流体测控芯片的研制[J].传感技术学报,2006,(5):1970-1973.
    [34]王蔚,刘晓为,陈伟平等.压电膜片的优化设计及在微泵中的应用[J].压电与声光,2006,(2):153-155+158.
    [35]崔琦峰,刘成良, Xuan F等.串联压电微泵特性研究[J].传感技术学报,2006,(5):1974-1977+1982.
    [36]鲁立君,吴健康.压电微流体泵液-固耦合系统流动特性[J].水动力学研究与进展A辑,2006,(4):512-518.
    [37]鲁立君,吴健康.生物芯片压电微流体泵液-固耦合系统模态分析[J].固体力学学报,2005,(4):459-465.
    [38]张永立,吴健康.生物芯片无阀压电微流体泵流场数值研究[J].应用数学和力学,2005,(8):937-944.
    [39]张保柱,张永立,吴建康.生物芯片压电微流体泵扩散管液体流量效率分析[J].机械科学与技术,2004,(7):802-804.
    [40]刘收,姚立强,王益红等.一种医用微型同心压电薄膜泵[J].压电与声光,2005,(6):651-654.
    [41]刘收,姚立强,姜兴刚等.压电微型泵的制造新工艺[J].新技术新工艺,2004,(7):19-21.
    [42]臧庆,王琪民,厉玉康.考虑流固耦合的压电微小泵的有限元运动分析[J].中国机械工程,2006,(6):583-586.
    [43]臧庆,张万德,薛路.压电微小泵的参数优化[J].机械研究与应用,2005,(3):29-32.
    [44]王立文,高殿荣,杨林杰等.压电驱动微泵泵膜振动有限元分析[J].机械工程学报,2006,(4):230-235.
    [45]王立文,高殿荣,杨林杰.压电驱动无阀微泵泵腔流场分析[J].机床与液压,2005,(12):89-92.
    [46]王皓,姚汉民,杜春雷.一种基于惯性动量作用的微压电泵[J].压电与声光,2006,(1):43-45.
    [47]王海宁,崔大付,耿照新等.一种基于MEMS技术的压电微泵的研究[J].传感器与微系统,2006,(8):82-84+88.
    [48]耿照新,崔大付,王海宁.往复式压电微型泵的研究进展[J].仪表技术与传感器,2006,(2):49-51+54.
    [49]赵强,崔大付,王利等.无阀压电微泵的动态特性研究[J].压电与声光,2005,(6):631-633.
    [50]郑堤,李国平,潘晓彬.压电陶瓷泵研究[J].机床与液压,2003,(1):147-148+204.
    [51]朴林华,栾桂冬,张福学.压电泵振动模态的有限元分析[J].压电与声光,2004,(6):503-505.
    [52] Shoji, S., S. Nakagawa, M. Esashi. Micropump and sample-injector for integrated chemicalanalyzing systems[J]. Sensors and Actuators A21-A23,1990,189-192.
    [53] Bar-Cohen, Y., Z. Chang. Piezoelectrically actuated miniature peristaltic pump. Proceedings ofSPIE's8th Annual International Symposium on Smart Structures and Materials,5-8March,2001,Newport, CA. Paper No.4327-52.
    [54] Cao, L., S. Mantell, D. Polla. Design and simulation of an implantable medical drug deliverysystem using microelectromechanical systems technology[J]. Sensors and Actuators A94,2001,117-125.
    [55]周德俭.智能控制[M].重庆:重庆大学出版社.2005.
    [56] Cunneen, J., Y.C. Lin, S. Caraffini, et al. A positive displacement micropump for microdialysis[J].Mechatronics8,1998,561-583.
    [57] Spencer, W.J., W.T. Corbett, L.R. Dominguez, et al. An electronically controlled piezoelectricinsulin pump and valves[J]. IEEE Trans. Sonics Ultrasonbics, Vol.SU-25, No.3,1978,153-156.
    [58] Stemme, E., G. Stemme. A valveless diffuser/nozzle-based fluid pump[J]. Sensors and ActuatorsA39,1993,159-167.
    [59] Dinh, T.X., Y.O. gami. A dynamic model of valveless micropumps with a fluid damping effects[J].J. Micromech. Microeng.21,2011.
    [60] Eastman, A., M. Kimber, A. Hirata, et al. Thermal analysis of a low flow piezoelectric air pump[J].International Journal of Heat and Mass Transfer55,2012,2461-2471.
    [61] Ham, Y.B., W.S. Seo, W.Y. Cho, et al. Development of a piezoelectric pump using hinge-leveramplification mechanism[J]. J Electroceram,2009,(23):346-350.
    [62] Vatanabe, S.L., A. Choi, C.R.de Lima, et al. Design and Characterization of a BiomimeticPiezoelectric Pump Inspired on Group Fish Swimming Effect[J]. Journal of Intelligent MaterialSystems and Structures,2010,(21):133.
    [63] Kang, H.J., B. Choi. Development of the MHD micropump with mixing function[J]. Sensors andActuators A165,2011,439-445.
    [64] Zhu, M.L., P. Kirbya, M. Wacklerle, et al. Optimization design of multi-material micropump usingfinite element method[J]. Sensors and Actuators A149,2009,130-135.
    [65] Shena, M., L. Dovatb, M.A.M. Gijs. Magnetic active-valve micropump actuated by a rotatingmagnetic assembly[J]. Sensors and Actuators B154,2011,52-58.
    [66] Kima, J.W., T. Suzukib, S. Yokotaa, et al. Tube-type micropump by using electro-conjugated fluid(ECF)[J]. Sensors and Actuators A174,2012,155-161.
    [67] Van Lintel, H.T.C., F.C.M. van de Pol, S. Bouwstra. A piezoelectric micropump based onmicromachining of silicon [J]. Sensors and Actuators,1988,15:153-167.
    [68] Bar-Cohen, Y., Z. Chang. Piezoelectrically actuated miniature peristaltic pump[J]. Proceedings ofthe SPIE Smart Structures Conference, SPIE,2001,4327:425-432.
    [69] Diaphragm Pump With Resonant Piezoelectric Drive[J/OL]. Houston: Mechanics&Machinery,2007[2012-09-09]. http://www.techbriefs.com/component/content/article/2182?start=1.
    [70] Hasegawa, T., D. Koyama, K. Nakamura, et al. A design of a miniature ultrasonic pump using abending disk transducer[J]. J Electroceram,2008,(20):145–151.
    [71] Chung-Shao Chao, Pao-Cheng Huang, Ming-Kun Chen, et al. Design and analysis ofcharge-recovery driving circuits for portable peristaltic micropumps with piezoelectric actuators[J].Sensors and Actuators A: Physical168,2011,313–319.
    [72] Trenklea, F., S. Haeberleb, R. Zengerle. Normally-closed peristaltic micropump with re-usableactuator and disposable fluidic chip[J]. Sensors and Actuators B154,2011,137-141.
    [73] Ma, H.K., H.C. Su, J.Y. Wu. Study of an innovative one-sided actuating piezoelectric valvelessmicropump with a secondary chamber[J]. Sensors and Actuators A171,2011,297-305.
    [74] Aizawa, E., K. Tsuchiya, Y. Uetsuji. Design of high functional ring type PZT for micropump byusing FEM analysis[J]. Micro-NanoMechatronics and Human Science,2011,279-284.
    [75] Anis,Y., D. Meldrum. Static and Transient Response Analysis of a Piezoelectric Actuator drivenDiaphragm Pico-liter Pump[C]. The Fourth IEEE RAS/EMBS International Conference,2012.
    [76] Doll, A., M. Heinrichs, F. Goldschmidtboeing, et al. A high performance bidirectional micropumpfor a novel artificial sphincter system[J]. Sensors and Actuators A130–131,2006,445–453.
    [77] Ma, H.K., S.H. Huang, B.R. Chen, et al. Numerical study of a novel micro-diaphragm flow channelwith piezoelectric device for proton exchange membrane fuel cells[J]. Journal of Power Sources180,2008,402-409.
    [78] Liu GuoJun, Shen ChuanLiang, Yang ZhiGang. A disposable piezoelectric micropump with highperformance for closed-loop insulin therapy system[J]. Sensors and Actuators A163,2010,291-296.
    [79] Kan JunWu, Wang ShuYun, Zhang ZhongHua, et al. Development of piezohydraulic actuatordriven by piezomembrane pump [J]. Journal of Intelligent Material Systems and Structures,2011.
    [80] Cadou, C., B. Zhang. Performance Modeling of a Piezo-Hydraulic Actuator [J]. Journal ofIntelligent Material Systems and Structures,2003,149-160.
    [81]张福学,王丽坤.现代压电学(上册)[M].北京:科学技术出版社,2002,84-91.
    [82]范兰德拉特, J., R.塞德林顿主编,彭浩波等译.压电陶瓷[M].北京:北京科学出版社,1980.
    [83]中国科学院有机化学研究所.压电高聚物[M].上海:上海科学技术文献出版社,1980,1-2.
    [84]胡仁喜,王庆五,闫石. ANSYS8.2机械设计高级应用实例[M].北京:机械工业出版社,2005.
    [85]白葳,喻海良.通用有限元分析ANSYS8.0基础教程[M].北京:清华大学出版社,2005.
    [86]朴林华,栾桂冬,张福学.压电泵振动模态的有限元分析[J].压电与声光,2004,(6):503-505.
    [87]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京:北京大学出版社,2005.
    [88]李鹏.主动阀压电泵的理论与实验研究[D].吉林:吉林大学,2007.
    [89]温建明,程光明,阚君武,曾平,程明辉.主动阀压电泵阀体分析[J].排灌机械工程学报,2010,(3):224-227+237.
    [90] Huff, M.A., J.R. Gilbert, M.A. Schmidt. Flow characteristics of apressure-balanced microvalve.Tech, Dig. of Transducers'93,1993:98-101.
    [91] Esashi, M. Integrated microflow control systems[J]. Sensors and ActuatorsA21-23,1990:161-167.
    [92] Yanagisawa, K., H.Kuwano, A.Tapo. An electromagneticall driven microvalve. Tech.Dig.Transducers'93,1993:102-105.
    [93] Cheng Guangming, He Lieng, Zeng Ping, et al. Design and performance test on circular twopiezoelectric pump with active valve[J]. Transactions of the Chinese Society for AgriculturalMachinery,2010,(5):204-208.
    [94] Spencer, W.J., W.T. Corbett, L.R. Dominguez, et al. An electronically controlled piezoelectricinsulin pump and valves[J]. IEEE Trans. Sonics Ultrasonbics,1978, SU_25,(3):153-156.
    [95] Bar-Cohen, Y., Z. Chang. Piezoelectrically actuated miniature peristaltic pump[C]. Proceedings ofthe SPIE Smart Structures Conference, SPIE,2001,4327:425-432.
    [96] Stemme, E., G. Stemme. A valveless diffuser/nozzle-based fluid pump[J]. Sensors and ActuatorsA,1993,39(2):159-167.
    [97] Tesla, N. Valvular Conduit: USA,1329559[P],1920.
    [98] Shoji, S., M. Esashi. Microflow devices and systems[J]. Journal of Micromechanics andMicroengineering,1994,4(4):157-171.
    [99]尹执中,胡桅林,过增元.微流动系统的发展概况[J].流体机械,2000,04:33-36+3.
    [100]许本文,焦群英.机械振动与模态分析基础[M].北京:机械工业出版社,1998.
    [101]张培强. MATLAB语言[M].北京:中国科学技术出版社,2003.
    [102]张也影.流体力学[M].北京:高等教育出版社,1999.
    [103]林建忠,阮晓东等.流体力学[M].北京:清华大学出版社,2005.
    [104]闫国军,赵军明,董泳.往复泵阀运动规律的研究[J].中国机械工程,2004,18:21-23.
    [105]张慢来,冯进,周志宏.往复泵汲液过程的动态数值模拟研究[J].石油机械,2009,11:42-45.
    [106]张克危.流体机械原理[M].北京:机械工业出版社,2001.
    [107]张也影.流体力学[M].北京:高等教育出版社,1999.
    [108] Kim, J.H., C.J. Kang, Y.S. Kim. A disposable polydimethylsiloxane-based diffuser micropumpactuated by piezoelectric-disc[J]. Microelectronic Engineering,2004,71(22):119–124.
    [109] Ullmann, A. The piezoelectric valve-less pump—performance enhancement analysis[J]. Sensorsand Actuators A,1998,69(1):97–105.
    [110]曾平,程光明,刘九龙等.双腔薄膜阀压电泵的实验研究[J].光学精密工程,2005,(03):311-317.
    [111]彭太江,杨志刚,程光明等.双腔体压电泵的设计[J].光学精密工程,2009,(05):1078-1085.
    [112]《往复泵设计》编写组.往复泵设计[M].北京:机械工业出版社,1987.
    [113]刘国君,程光明,杨志刚等.微型压电泵的实验研究[J].仪器仪表学报,2006,(4):336-340.
    [114] Nguyen, N.T., T.Q. Truong. A fully polymeric micropump with piezoelectric actuator[J]. Sensorsand Actuators B,2004,97(1):137-143.
    [115] Bohm, S., W. Olthuis, P. Bergveld. A plastic micropump constructed with conventional techniquesand materials[J]. Sensors and Actuators,1999,77(3):223-228.
    [116] Truong,T.Q. A polymeric piezoelectric micropump based on lamination technology[J]. Journal ofMicromechanics and Microengineering,2004,14(6):632-638.
    [117] Matteucci, M., F. Perennes. Compact micropumping system based on LIGA fabricatedmicroparts[J]. Microelectronic Engineering,2006,83(4):1288–1290.
    [118]许耀铭.轴向柱塞泵柱塞副设计中的几个问题[J].机床与液压,1982,(1):26-29.
    [119]梅里特H·E.液压控制系统[M].北京:科学出版社,1976.
    [120]盛敬超.液压流体力学[M].北京:机械工业出版社,1980.
    [121] Laser, D.J., J.G. Santiago. A review of micropumps[J]. Journal of Micromechanics andMicroengineering,2004,14(6):35-64.
    [122]臧庆,王琪民.胰岛素泵的研究及对人工胰腺发展的展望[J].国外医学、生物医学工程分册,2005,(2):98-101+127.
    [123] Schetky, L. McD., P. Jardine, F. Moussy. A closed loop implantable artificial pancreas using thinfilm nitinol MEMS pumps[A]. Int conf Shape Menory and Superelastictechnologies(SMST2003)[C]. California: Pacifec grove,2003.
    [124]沈阳安姆医疗技术发展有限责任公司.智能型胰岛素泵的传动机构[P].中国专利CN00210385.0.2001-08-01.
    [125]董景石,程光明,杨志刚等.压电驱动型胰岛素泵的研究[J].西安交通大学学报,2007,41(5):602-605.
    [126]阚君武,杨志刚,程光明等.压电泵的现状与发展[J].光学精密工程,2002,10(6):619-625.
    [127]程光明,杨志刚,曾平等.压电薄膜流体泵的初步研究[J].压电与声光,1998,20(4):233-236.
    [128]阚君武,杨志刚,唐可洪.新结构药品输送压电泵的泵送特性[J].生物医学工程学杂志,2004,21(2):297-301.
    [129]沈传亮,刘国君,董景石等.压电型多振子单腔精密药物输送泵[J].吉林大学学报(工学版),2007,37(1):89-94.
    [130]刘国君,范尊强,董景石等.用于胰岛素推注的压电微泵[J].吉林大学学报(工学版),2007,37(2):372-376.
    [131]魏列江.液体微小流量的非定常流测量原理与方法的研究[J].兰州理工大学,2009.
    [132]徐丽娜.神经网络控制[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [133]李士勇.模糊控制和智能控制理论与应用[M].哈尔滨:哈尔滨工业大学出版社,1990,100-150.
    [134]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2007.
    [135]葛哲学,孙志强.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2007.
    [136]程光明,朱志伟,曾平.压电泵自适应神经网络预测控制的仿真研究[J].压电与声光,2010,32(5):870-873.
    [137]董长虹. Matlab神经网络与应用[M].北京:国防工业出版社.2005.
    [138]任子武.基于神经网络的参数自整定PID控制算法研究[D].哈尔滨:哈尔滨理工大学.2004:12-13.
    [139]董长虹. Matlab神经网络与应用[M].北京:国防工业出版社.2005.
    [140]侯媛彬,杜京义等.神经网络[M].西安:西安电子科技大学出版社.2007.
    [141]刘金琨.智能控制[M].北京:电子工业出版社.2005.
    [142] Maillefer, D., H. van Lintel, G. Rey-Mermet, et al. A High-Performance silicon micropump for animplantable drug delivery system. Technical Digest. IEEE International MEMS’99Conference,1999,541-546.
    [143]潘琢金. C8051F02x混合信号ISP FLASH微控制器数据手册[R].广东:新华龙电子有限公司,2005:8-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700