用户名: 密码: 验证码:
稀土掺杂材料的光特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将光学高科技应用于防伪及激光防护领域一直是国际上的热点,基于稀土掺杂的特殊光吸收与频率变换材料就极具代表性。随着我国市场经济及各项技术的发展,各种假冒伪劣现象层出不穷,这对防伪技术的发展带来了机遇与挑战。稀土掺杂材料因其具有其他材料无法比拟的光学特性,在光学、工业加工、通信、传感等领域都已有广泛的应用,若能把此种材料与光学防伪相结合,制成特殊光谱防伪材料,并配套出一种新型的防伪检测仪器,将会对我国经济发展及稳定具有十分重要的意义。另一方面,随着现代化激光武器与激光侦测技术的普遍应用,信息战已是决定战场甚至战争胜负的关键。在现代和未来战场的发现、瞄准、锁定和摧毁四大环节中,信息战举足轻重。对前三个环节的应对即反发现、反瞄准、反锁定是防摧毁的先决条件。因此,掌握新型的激光防护材料已经迫在眉睫。稀土掺杂材料在其丰富的跃迁能级作用下,能吸收多种波长的激光能量,大幅度降低激光反射率,因而是一种十分具有发展潜力的激光防护材料。
     本文首先介绍了稀土掺杂材料的主要合成方法,着重介绍了高温固相合成与微波合成新方法。根据微波与介质相互作用的关系,通过石墨与微波的良耦合性质,利用微波能量实现了小介电常数的稀土掺杂材料简便快捷地合成,克服了其他方法合成时间长、对设备要求高等缺点,并设计了一套具有混合加热、保温、隔热、改善加热均匀性等多重作用的微波耦合合成装置。
     通过高温固相反应法分别合成了Er~(3+)/Yb~(3+)共掺和掺Nd~(3+)的频率下转换防伪涂料,分析了涂料的结构、发光原理并用自制的新型光谱防伪系统检验了其防伪特性。结果表明该涂料激发光和发射光均在人眼不可见的近红外区,比其它防伪涂料更具隐蔽性,而且具有多重防伪能力,使用方便,是十分实用的新型防伪产品。
     在微波合成新方法中,将微波法应用于防伪材料的研究,首次用微波法合成了CaF_2:Er~(3+)/Yb~(3+)粉末,通过XRD测试证实Er~(3+)/Yb~(3+)已经进入基质晶体,并用有质动力理论解释了其形成原理。分析了材料的上转换发光谱以及红光发射较强的原因,最后讨论了该材料以及此种制备方法在防伪领域的应用潜力。
     在微波合成新方法中,将微波法应用于激光防护材料的研究,首次用微波法合成了稀土掺杂的激光防护涂料,讨论了其反射率与热处理时间及掺杂浓度的关系,确定了最佳合成条件,并用反射光谱、温度、激光测距等实验证明该涂料能很好的对目标实现激光伪装防护。
The application of optical high-tech to security and laser protection fields hasalways being a hot topic. Frequency conversion and laser absorption materials dopedwith rare-earth ions are the most promising candidates for applications in such fields.With the development of our market economy, newly forgery techniques have beenproducing kinds of counterfeits. However, these situations bring opportunities andchallenges to the progress of anti-counterfeiting technology. Rare-earth dopedmaterials have more superior optical properties comparing with other materials. Itwould be very important to the stability and development of our economy, if we couldcombine these materials with optical anti-counterfeiting technologies and develop anew kind of detection equipment. Furthermore, with the universal application ofmodern laser weapons and laser detection technologies, information war is key to thediscovery, aim, lock and destruction areas of modern war. Anti-discovery, anti-aimand anti-lock are the preerquisites of anti-destruction. Consequently, the developmentof novel laser protection materials is a pressing issue. Rare-earth doped materials thatcan absorb lasers of various wavelengths and dramatically reduce reflectance with thehelp of their abundant energy levels would have great potential applications in laserprotection.
     In this thesis, several synthesis methods of rare-earth ions doped material arefirstly introduced with an emphasis on the high-temperature solid-state reaction andnew microwave heating process methods. Based on the microwave heating theory andthe coupling effects between graphite and microwaves, the rare-earth doped materialswith low dielectric loss were synthesized. A microwave coupling insulation apparatusis designed to realize microwave-conventional hybrid heating. It can also improve theheating uniformity while keeping insulation.
     By conventional high-temperature solid-state reaction, two anti-counterfeitcoatings doped with Nd~(3+)and co-doped with Er~(3+)/Yb~(3+), respectively, weresynthesized. Their structure and photoluminescence mechanisms were analyzed, andthe anti-counterfeiting features were also verified by a new security instrument madeby ourselves. The results indicated that these coatings were more covert than others,because their exciting and emitting lights were both in the near infrared (NIR) region,which were invisible to by human eyes. Besides, they were also a kind of multiple anti-forgery coatings very convenient for use as well. These make them a kind of veryuseful and novel anti-counterfeit product.
     The new microwave heating method is applied to synthesize anti-counterfeitmaterials. Using the self-made instrument mentioned above, CaF2: Er~(3+)/Yb~(3+)wassynthesized for the first time in a microwave furnace. The X-ray diffraction (XRD)test results verified that RE~(3+)ions have been successfully doped into CaF2lattice. Theformation mechanism was explained by ponderomotive theory and the up-conversionemission spectrum was analyzed in detail as well. We found that its red emission ismuch stronger then the green and explained the reason of it. Afterwards, potentialapplications of the synthesis method and as-prepared material in anti-counterfeitingfield are discussed.
     The new microwave heating meathod is applied to synthesize laser protectionmaterials. Rare-earth doped ultra-fine powders with low reflectance at several wavenumbers were synthesized in our microwave heating apparatus. Relationships amongreflectance, RE~(3+)concentration and hearting time were discussed. By mixing thepowders with coatings, the property of strong absorption could be transplanted tothem. Experiments of spectral reflectance, temperature and laser ranging wereperformed. The results verifed that these coatings could achieve excellent laserprotection. These findings may have potential applications in the fields of laserprotection and camouflage.
引文
[1]孙建新,新型紫外荧光防伪油墨的研制及其印刷适性的研究,[硕士学位论文],河南:解放军信息工程大学,2001
    [2] J. Guajardo, B. kori, P. Tuyls, et al, Anti-counterfeiting, key distribution, andkey storage in an ambient world via physical unclonable functions, InformationSystems Frontiers,2009,11(1).19-41.
    [3] B. Hardwick, W. Jackson, G. Wilson, et al, Advanced materials for banknoteapplications, Advanced Materials,2001,13(12‐13).980-984.
    [4]曹汉强,张肇群,激光全息技术的发展与应用,激光杂志,2001,22(006).19-21.
    [5]王凯,光学防伪油墨的印刷特性研究——同色异谱油墨及其程度评价,[硕士学位论文],江苏:江南大学,2008
    [6] Z. Siyuan, Spectroscopy of rare earth ions, Beijing:Science,2008.1-286
    [7]江祖成,蔡汝秀,张华山,稀土元素分析化学,北京:科学出版社,2000
    [8] E.Sintzer, Optical maser action in Nd~(3+)in a Barium crown glass, Physical ReviewLetters,1961,7(12).444-447.
    [9] G.V. P., M.S. M., I.A. A., et al, Erbium glass lasers and their applications, Opticsand Laser Technology,1982,14(4).189-196.
    [10] M. Nakazawa, Y. Kimura, K. Suzuki, Efficient Er~(3+)‐doped optical fiberamplifier pumped by a1.48μm InGaAsP laser diode, Applied Physics Letters,1989,54(4).295-297.
    [11] M. Ohashi, Design considerations for an Er~(3+)-doped fiber amplifier, Jorunal ofLightwave Technology,1991,9(9).1099-1104.
    [12] D.L. Veasey, D.S. Funk, N.A. Sanford, et al, Arrays ofdistributed-Bragg-reflector waveguide lasers at1536nm in Yb/Er codoped phosphateglass, Applied Physics Letters,1999,74(6).789-791.
    [13] A. Speghini, R. Francini, A. Martinez, et al, Spectroscopic properties of Er~(3+),Yb~(3+) and Er~(3+)/Yb~(3+) doped metaphosphate glasses, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2001,57(10).2001-2008.
    [14] G. Jose, S. Taccheo, G. Sorbello, et al, Multiwavelength waveguide laser array inC-band, Electronics Letters,2002,38(21).1275-1276.
    [15] S. Blaize, L. Bastard, C. Cassagnètes, et al, Multiwavelengths DFB waveguidelaser arrays in Yb-Er codoped phosphate glass substrate, Photonics TechnologyLetters, IEEE,2003,15(4).516-518.
    [16]胡和方,张龙,一种新的微型激光器材料-稀土掺杂玻璃,硅酸盐学报,2001,29(5).460-465.
    [17]陈海燕,刘永智,戴基智, et al,980nm波段泵浦的掺铒硅酸盐玻璃光波导放大器的增益特性,半导体光电,2001,22(6).405-407.
    [18]杨建虎,戴世勋,李顺光等,掺铒碲酸盐玻璃的光谱性质和能量传递,发光学报,2002,23(5).487-490.
    [19]饶文雄,宋昌烈,李成仁等,铒镱共掺杂玻璃样品的荧光谱特性,光电子.激光,2003,14(4).380-382.
    [20]达宁,杨旅云,彭明营等,掺铒高硅氧玻璃光谱特性的研究,物理学报,2006,55(6).2771-2776.
    [21]周亚训,黄尚廉,周灵等,不同铒离子浓度下碲酸盐玻璃荧光特性研究,无机材料学报,2007,22(4).671-676.
    [22] G. Sun, D.S. Moon, A. Lin, et al, Tunable multiwavelength fiber laser using acomb filter based on erbium-ytterbium co-doped polarization maintaining fiber loopmirror, Optics Express,2008,16(6).3652-3658.
    [23] C. Jiang, L. Jin, Numerical model of an Er~(3+)-Tm~(3+)-Pr~(3+)-codoped fiber amplifierpumped with an800nm laser diode, Applied Optics,2009,48(12).2220-2227.
    [24] R. Zhao, W. Liu, J. Zhang, et al, Optical path design and evaluation in Tm~(3+)doped glass channel waveguide for S-band amplification, Optics and Lasers InEngineering,2011,49(1).52-56.
    [25] A. A., Materials and devices using double-pumped phosphous with energytransfer, Porceedings of Ieeee,1973,62(6).758-786.
    [26] L. Johnson, H. Guggenheim, Infrared‐Pumped Visible Laser, Applied PhysicsLetters,1971,19(2).44-47.
    [27] T. Miyakawa, D. Dexter, Phonon sidebands, multiphonon relaxation of excitedstates, and phonon-assisted energy transfer between ions in solids, Physical Review B,1970,1(7).2961-2969.
    [28] D. Moore, J. Wright, Laser spectroscopy of defect chemistry in CaF2: Er~(3+), TheJournal of Chemical Physics,1981,74(3).1626-1636.
    [29] E.A. Watson, G.M. Morris, Comparison of infrared upconversion methods forphoton‐limited imaging, Journal of Applied Physics,1990,67(10).6075-6084.
    [30] K. Hirao, S. Kishimoto, K. Tanaka, et al, Upconversion fluorescence of Ho~(3+)inTeO2-based glasses, Journal of Non-crystalline Solids,1992,139(2).151-156.
    [31] B. Scott, F. Zhao, R. Chang, et al, Upconversion-pumped blue laser in Tm: YAG,Optics Letters,1993,18(2).113-115.
    [32] Z. Pan, S. Morgan, A. Loper, et al, Infrared to visible upconversion inEr~(3+)-doped-lead-germanate glass: Effects of Er~(3+) ion concentration, Journal ofApplied Physics,1995,77(9).4688-4692.
    [33] B. Peng, T. Izumitani, Blue, green and0.8um Tm~(3+), Ho~(3+)doped upconversionlaser glasses, sensitized by Yb~(3+), Optical Materials,1995,4(6).701-711.
    [34] A.S. Barriere, T. Cesaire, L. Hirsch, et al, Low temperature luminescence studiesof Ca1-xErxF2+xthin films epitaxially grown on silicon substrates, Journal of AppliedPhysics,1996,80(1).494-498.
    [35] Y. Kawamoto, R. Kanno, J. Qiu, Upconversion luminescence of Er~(3+) intransparent SiO2-PbF2-ErF3glass ceramics, Journal of Materials Science,1998,33(1).63-67.
    [36] R.H. Page, K.I. Schaffers, P.A. Waide, et al, Upconversion-pumpedluminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium,Journal of the Optical Societyc of America B,1998,15(3).996-1008.
    [37] M. Takahashi, M. Izuki, R. Kanno, et al, Up-conversion characteristics of Er intransparent oxyfluoride glass-ceramics, Journal of Applied Physics,1998,83(7).3920-3922.
    [38] M. Pollnau, D. Gamelin, S. Lüthi, et al, Power dependence of upconversionluminescence in lanthanide and transition-metal-ion systems, Physical Review B,2000,61(5).3337.
    [39] A. Biswas, G. Maciel, C. Friend, et al, Upconversion properties of a transparentEr~(3+)-Yb~(3+)co-doped LaF3-SiO2glass-ceramics prepared by sol-gel method, Journal ofNon-crystalline Solids,2003,316(2).393-397.
    [40] G.-N. A.S, D.C. E.B, B. L.A, et al, Intense red upconversion emission in infraredexcited holmium-doped PbGeO3-PbF2-CdF2transparent glass ceramic, Journal ofLuminescence,2004,110(1-2).79-84.
    [41] R. Balda, A. Garcia-Adeva, M. Voda, et al, Upconversion processes inEr~(3+)-doped KPb2Cl5, Physical Review B,2004,69(20).205203.
    [42] Y. Kishi, S. Tanabe, S. Tochino, et al, Fabrication and EfficientInfrared-to-Visible Upconversion in Transparent Glass Ceramics of Er-Yb Co-DopedCaF2Nano-Crystals, Journal of the American Ceramic Society,2005,88(12).3423-3426.
    [43] A. Bensalah, M. Mortier, G. Patriarche, et al, Synthesis and opticalcharacterizations of undoped and rare-earth-doped CaF2nanoparticles, Journal ofSolid State Chemistry,2006,179(8).2636-2644.
    [44] K. Kumar, S. Rai, D. Rai, Upconversion studies in Er~(3+)doped TeO2-M2O (M=Li,Na and K) binary glasses, Solid State Communications,2006,139(7).363-369.
    [45] Z. Chouahda, J.P. Jouart, T. Duvaut, et al, The use of the green emission inEr~(3+)-doped CaF2crystals for thermometry application, Journal of Physics: CondensedMatter,2009,21(24).245504-254408.
    [46] Y. Dwivedi, D. Rai, S. Rai, Stokes and anti-Stokes luminescence from Eu~(3+)/Yb~(3+):BaB4O7nanocrystals, Optical Materials,2010,32(9).913-919.
    [47] I. Leonidov, V. Zubkov, A. Tyutyunnik, et al, Upconversion luminescence inEr~(3+)/Yb~(3+)codoped Y2CaGe4O, Journal of Alloys and Compounds,2011,509(5).1339-1346.
    [48]张光寅,赵丽娟,侯延冰等,氟氧化物玻璃陶瓷中Yb~(3+)和Er~(3+)的强交叉弛豫过程,科学通报,1999,44(23).2489-2492.
    [49]赵丽娟,孙聆东,许京军等,用转移函数方法研究铒离子上转换发光与抽运功率的关系,物理学报,2001,50(1).63-67.
    [50] H. Lihui, L. Xingren, X. Wu, et al, Infrared and visible luminescence propertiesof Er~(3+)and Yb~(3+)ions codoped Ca3Al2Ge3O12glass under978nm diode laserexcitation, Journal of Applied Physics,2001,90(11).5550-5553.
    [51]林葵,赵谡玲,侯延冰等, Er~(3+),Yb~(3+)掺杂氟氧化物微晶玻璃上转换发光的研究,光电子2激光,2001,12(5).484-487.
    [52]吴长峰,秦冠仕,秦伟平等, Er~(3+)/Yb~(3+)共掺杂AlF3基氟化物玻璃材料的频率上转换,中国稀土学报,2001,19(6).522-525.
    [53]赵谡玲,徐征,侯延冰等,两种基质中Er~(3+)的上转换发光特性,中国稀土学报,2001,19(6).518-521.
    [54]赵谡玲,徐征,侯延冰等,温度对YLiF: Er~(3+)上转换发光的影响,中国稀土学报,2002,20(6).637-640.
    [55] S. Xu, Z. Yang, G. Wang, et al, Upconversion fluorescence spectroscopy ofEr~(3+)-doped lead oxyfluorosilicate glass, Chinese Optics Letters,2003,1(9).544-546.
    [56] Y. Zhong-Min, X. Shi-Qing, H. Li-Li, et al, Visible Upconversion Emission inEr~(3+)-Doped GeO2-PbO-PbF2Glass, Chinese Physics Letters,2003,20(8).1347-1349.
    [57]文尚胜,玻璃荧光寿命测试系统的原理与设计,光学技术,2003,29(2).166-168.
    [58]杨魁胜,张希艳,梁海莲, Yb~(3+)/Er~(3+)双掺上转换玻璃陶瓷,中国激光,2003,30(增刊).100-102.
    [59] X. S., Y. Z., Z. J., et al, Upconversion fluorescence spectroscopy ofEr~(3+)/Yb~(3+)-codoped lead oxyfluorosilicate glass, Chemical Physics Letters,2004,385(3-4).263-267.
    [60] Z. Yang, S. Xu, L. Hu, et al, Thermal analysis and optical properties ofYb~(3+)/Er~(3+)-codoped oxyfluoride germanate glasses, Journal of the Optical Society ofAmerica B: Optical Physics,2004,21(5).951-957.
    [61]杨林梅,宋宏伟,于立新等, Y2O3: Ho/Yb纳米晶的上转换发光性质,发光学报,2004,25(6).710-713.
    [62]袁放成,稀土Er掺杂ZnF2:PbF4的能量上转换,光谱学与光谱分析,2005,25(8).1187-1189.
    [63] F. Liu, E. Ma, D. Chen, et al, Tunable red-green upconversion luminescence innovel transparent glass ceramics containing Er: NaYF4nanocrystals, The Journal ofPhysical Chemistry B,2006,110(42).20843-20846.
    [64] H. Ma, S. Xu, Effect of GeO2content on upconversion luminescence ofEr~(3+)-doped PbF2-SiO2-GeO2glasses, Journal of Materials Science,2006,41(10).3155-3157.
    [65] S. Zhou, C. Li, Z. Liu, et al, Thermal effect on up-conversion in Er~(3+)/Yb~(3+)co-doped silicate glass, Optical Materials,2007,30(4).513-516.
    [66]周松强,李成仁,刘中凡等, Er~(3+)/Yb~(3+)共掺硅酸盐玻璃样品的多波段光谱特性,光子学报,2008,37(4).813-813.
    [67] Z. Xia, P. Du, Synthesis and upconversion luminescence properties ofCaF2:Yb~(3+),Er~(3+)nanoparticles obtained from SBA-15template, Journal of MaterialsResearch,2010,25(10).2035-2041.
    [68]尹民,闻军,段昌奎,稀土离子激活发光材料中能级跃迁的选择定则,发光学报,2011,32(7).643-649.
    [69]何春凤,赵丹,秦冠仕等, Tm~(3+)/Yb~(3+)共掺杂ZBLAN玻璃的多光子紫外上转换发光,光子学报,2011,40(1).61-63.
    [70] G. Li, H. Gill, R. Varin, Magnesium silicide intermetallic alloys, Metallurgicaland Materials Transactions A,1993,24(11).2383-2391.
    [71] T. Peters, J. Baglio, Luminescence and Structural Properties of ThiogallatePhosphors Ce~(3+)and Eu2+‐Activated Phosphors. Part I, Journal of TheElectrochemical Society,1972,119(2).230.
    [72] H.G. Karge, H.K. Beyer, Introduction of cations into zeolites by solid-statereaction, Studies In Surface Science and Catalysis,1991,69,43-64.
    [73] L. Siwen, Synthesis, Structure, Electrical and Magnetic Properties of NdSrMχNiO4(M=Ca, Ba), Chinese Journal of Applied Chemistry,1994,4,50-53.
    [74]林元华,长余辉蓄光陶瓷的合成、性能及机理的研究,[博士学位论文],北京:清华大学材料科学与工程系,2001
    [75] T. Aitasalo, P. Deren, J. H ls, et al, Persistent luminescence phenomena inmaterials doped with rare earth ions, Journal of Solid State Chemistry,2003,171(1-2).114-122.
    [76] Y.Q. Li, A. Delsing, a. G. de With, et al, Luminescence properties ofEu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ(M=Ca, Sr, Ba): Apromising class of novel LED conversion phosphors, Chemistry of Materials,2005,17(12).3242-3248.
    [77] T.W. R., V.W.A. G., Microwave power enineering, New York:Academic Press,1968.73-80
    [78] J.H. Booske, R.F. Cooper, I. Dobson, Mechanisms for nonthermal effects onionic mobility during microwave processing of crystalline solids, Journal of MaterialsResearch,1992,7(2).495-501.
    [79] C.C. Landry, A.R. Barron, Synthesis of polycrystalline chalcopyritesemiconductors by microwave irradiation, Science,1993,260(5114).1653-1655.
    [80] P. Ramesh, B. Vaidhyanathan, M. Ganguli, et al, Synthesis of beta–SiCpowder by use of microwave radiation, Journal of Materials Research,1994,9(12).3025-3027.
    [81] S. Freeman, J. Booske, R. Cooper, Microwave field enhancement of chargetransport in sodium chloride, Physical Review Letters,1995,74(11).2042-2045.
    [82] J. Calame, A. Birman, Y. Carmel, et al, A dielectric mixing law for porousceramics based on fractal boundaries, Journal of Applied Physics,1996,80(7).3992-4000.
    [83] J. Ostoréro, M. Gasgnier, A. Petit, Yttrium iron garnet and Y, Fe binary oxidessynthesized by microwave monomode energy transfer, Journal of Alloys andCompounds,1997,262(2).275-280.
    [84] P. Boch, N. Lequeux, Do microwaves increase the sinterability of ceramics?,Solid State Ionics,1997,101(103).1229-1233.
    [85] J.H. Booske, R.F. Cooper, S. Freeman, et al, Microwave ponderomotive forces insolid-state ionic plasmas, Physics of Plasmas,1998,5(5).1664-1670.
    [86] R. Roy, D. Agrawal, J. Cheng, et al, Full sintering of powdered-metal bodies in amicrowave field, Nature,1999,399(6737).668-669.
    [87] A. Birnboim, J. Calame, Y. Carmel, Microfocusing and polarization effects inspherical neck ceramic microstructures during microwave processing, Journal ofApplied Physics,1999,85(1).478-482.
    [88]张迈生,王立格,杨燕生, SrS:CE3+,K+荧光体的微波辐射合成法及对发光特性的影响, Chinese Rare Earths,1999,20(3).31-33.
    [89] D.E. Clark, D.C. Folz, J.K. West, Processing materials with microwave energy,Materials Science and Engineering A,2000,287(2).153-158.
    [90] C. Siligardi, M.C. D'Arrigo, C. Leonelli, et al, Bulk Crystallization of GlassesBelonging to the Calcia-Zirconia-Silica System by Microwave Energy, Journal of theAmerican Ceramic Society,2000,83(4).1001-1003.
    [91] C. Siligardi, C. Leonelli, F. Bondioli, et al, Densification of glass powdersbelonging to the CaO-ZrO2-SiO2system by microwave heating, Journal of theEuropean Ceramic Society,2000,20(2).177-183.
    [92] A.R. Boccaccini, P. Veronesi, C. Leonelli, Microwave processing of glass matrixcomposites containing controlled isolated porosity, Journal of the European CeramicSociety,2001,21(8).1073-1080.
    [93] E. Minay, A. Boccaccini, P. Veronesi, et al, Processing of novel glass matrixcomposites by microwave heating, Journal of Materials Processing Technology,2004,155(56).1749-1755.
    [94] A. Whittaker, Diffusion in microwave-heated ceramics, Chemistry of Materials,2005,17(13).3426-3432.
    [95] P. Bergese, Specific heat, polarization and heat conduction in microwave heatingsystems: A nonequilibrium thermodynamic point of view, Acta Materialia,2006,54(7).1843-1849.
    [96] J. Wang, J. Binner, B. Vaidhyanathan, et al, Evidence for the microwave effectduring hybrid sintering, Journal of the American Ceramic Society,2006,89(6).1977-1984.
    [97] C.Y. Fang, D.K. Agrawal, M. Fu, et al, Synthesizing Phosphors ThroughMicrowave Process, in, Warrendale, Pa.; Materials Research Society, U. S.A,2007,pp.56-62.
    [98] M. Iwasaki, T. Kubota, Ultrafine-grain silver halide emulsions for colorholography: preparation and spectral characterization, in: Sixth InternationalSymposium on Display Holography, SPIE, Kyoto,1998, pp.54-63.
    [99]倪星元,邓忠生,魏建东等,溶胶——凝胶TiO2制备透明激光全息薄膜的研究,材料科学与工程,2002,20(2).217-219.
    [100]汤建新,池宏勋,谢勇等,水性纸基激光全息图像成像涂料研究及其防伪应用,光电子.激光,2004,15(2).178-181.
    [101]郝晓秀,光(温)致变色材料的合成及其在防伪纸中的应用研究,[博士学位论文],天津:天津科技大学,2004
    [102]刘颖洁,刘铁根,陈亚雄等,用于光学频率转换防伪检测的光电接法集成器件研究,科学技术与工程,2007,7(18).4591-4596.
    [103]杜晶晶,纸基承印激光全息图文纳米SiO2改性丙烯酸涂料的研究,[硕士学位论文],湖南:湖南工业大学,2007
    [104]孙云峰,翟宏琛,杨晓苹等,傅里叶计算全息数字水印在彩色图像印刷防伪中的应用,光电子.激光,2008,19(7).952-955.
    [105]马超杰,吴丹,王科伟,激光隐身技术的现状及发展,光电技术应用,2005,20(3).36-40.
    [106]周建勋,刘世才,红外与激光复合隐身涂料的性能研究,红外与激光技术,19922).30-32.
    [107]张卫东,冯小云,孟秀兰,国外隐身材料研究进展,宇航材料工艺,20003).1-10.
    [108]张永进,赵石林,许仲梓,激光隐身涂料的应用研究进展,涂料工业,2008,38(9).62-66.
    [109]杨小兵,丁松涛,杨裕生等,近红外激光防护染料,有机化学,2002,22(1).33-41.
    [110]於定华,叶熙源, ITO作填料的涂层光谱特性研究,功能材料,1999,30(6).660-662.
    [111]王春秀,李福利,纳米晶La2O3的制备及其红外吸收特性的研究,光谱学与光谱分析,2006,26(5).846-849.
    [112] G. Raju, S. Buddhudu, Emission analysis of Tb~(3+): MgLaLiSi2O7powderphosphor, Materials Letters,2008,62(8-9).1259-1262.
    [113] W.J. Li, S.M. Zhou, N. Liu, et al, Synthesis and spectral properties of Yb~(3+)/Ho~(3+)co-doped yttria2μm transparent ceramics, Materials Letters,2010,64(12).1344-1346.
    [114] J. Sokolnicki, Enhanced luminescence of Tb~(3+)due to efficient energy transferfrom Ce~(3+)in a nanocrystalline Lu2Si2O7host lattice, Journal of Physics: CondensedMatter,2010,22(27).275301-275308.
    [115] C. Zhang, S. Huang, D. Yang, et al, Tunable luminescence in Ce~(3+),Mn2+-codoped calcium fluorapatite through combining emissions and modulation ofexcitation: a novel strategy to white light emission, Journal of Materials Chemistry,2010,20(32).6674-6680.
    [116] N. Bogdan, F. Vetrone, G.A. Ozin, et al, Synthesis of ligand-free colloidallystable water dispersible brightly luminescent lanthanide-doped upconvertingnanoparticles, Nano Letters,2011,11(2).835-840.
    [117] Y. Chen, J. Wang, C. Liu, et al, A host sensitized reddish-orange Gd2MoO6:Sm~(3+)phosphor for light emitting diodes, Applied Physics Letters,2011,98(8).081917.
    [118] J. Pichaandi, J.C. Boyer, K.R. Delaney, et al, Two-photon Upconversion Laser(Scanning and Wide Field) Microscopy using Ln~(3+)-doped NaYF4UpconvertingNanocrystals A Critical Evaluation of their Performance and Potential in Bio-imaging,The Journal of Physical Chemistry C,2011,115(39).19054-19064.
    [119] K. Wu, J. Cui, X. Kong, et al, Temperature dependent upconversionluminescence of Yb/Er codoped NaYF4nanocrystals, Journal of Applied Physics,2011,110(5).053510-053515.
    [120]明成国,掺稀土磷酸盐玻璃陶瓷的微观机理和发光特性的研究,[博士学位论文],天津:南开大学,2011
    [121]梁海莲,双掺稀土离子的上转换氟氧玻璃的制备与表征,[硕士学位论文],吉林:长春理工大学,2003
    [122]宋昭远,稀土掺杂特种激光玻璃的相关特性研究,[博士学位论文],河北:燕山大学,2009
    [123]靳正国,郭瑞松,师春生等,材料科学基础,天津:天津大学出版社,2008.68-114
    [124] J. Philibert, One and a half century of diffusion: Fick, Einstein, before andbeyond, Diffusion Fundamentals,2005,2(1).1-10.
    [125]李洁,张哲夫,稀土发光材料研究与发展方向,稀有金属与硬质合金,2002,30(2).37-40.
    [126]潘远凤,胡福增,郑安呐等,稀土高分子发光材料研究的新进展,功能高分子学报,2004,16(4).570-574.
    [127]石士考,霍庆,无机粉末发光材料合成的新方法,无机盐工业,1999,31(3).20-22.
    [128]燕来,赵永亮,稀土配合的发光材料的研究及应用,内蒙古石油化工,2002,28(2).5-8.
    [129]张中太,张俊英,无机光致发光材料及应用,北京:化学工业出版社,2005.1-156
    [130]明成国,掺稀土磷酸盐玻璃陶瓷的微观机理和发光特性的研究,[博士学位论文],天津:南开大学,2011
    [131]蒋洪川,杨仕清,张文旭等,溶胶-凝胶法合成Y3Al5O12:Ce~(3+),Tb~(3+),无机材料学报,2001,16(4).720-722.
    [132] Y. M, Z. W, X. S, et al, Luminescence of nanometric scale Y2SiO5:Eu, Journalof Luminescence,1996,68(6).335-339.
    [133] Z. W, Z. W, Y. K, et al, Luminescent properties and concentration quenching ofnanocrystalline Y2-xSi2O7:Eux, Chinese journal of Luminescence,1999,20(3).97-101.
    [134]石士考,王继业,李玮杰等,铝酸盐绿色荧光粉的快速合成及发光性质,中国稀土学报(专辑),1999,17,673-675.
    [135] S.L. E, M. J, L.O. A, Synthesis of red-emitting small particle size luminescentoxides using and optimized combusiton process, Journal of American CeramicSociety,1996,79(12).3257-3265.
    [136] X. P, Z. G, Z. W, et al, Preparation of nanocrystalline Ln2O3:Eu(Ln=Gd, Y) bycombustion synthesis and photoluminescence Journal of Inorganic Materials,1998,13(1).53-58.
    [137]孙彦彬,邱关明,陈永杰等,稀土发光材料的合成方法,稀土,2003,24(1).43-47.
    [138]马龙,谢宜华,刘行仁等,(Y,Gd)2O3:Eu红色荧光体阴极射线管CRT的发光特性,中国稀土学报(专辑),1999,17,643-644.
    [139]尤洪鹏,洪广言,曾小青, YAl3B4O12:RE~(3+)(RE=Eu,Tb)的真空紫外光谱特性,中国稀土学报(专辑),1999,17,656-658.
    [140]唐明道,李长宽,高志武等, SrAl2O4:Eu2+的长余辉发光特性的研究,发光学报,1995,16(1).51-56.
    [141]孙巍巍,谢平波,张慰萍等,稀土正硼酸盐Ln1-xBO3:Eux(Ln=Y,Gd)的结构与发光特性,无机材料学报,2001,16(1).9-15.
    [142]张俊英,张中太,发光材料的微波合成方法,材料导报,2001,15(5).21-22.
    [143]张秀凤,涂华民,无机发光材料的微波合成,河北师范大学学报(自然科学版),2002,26(6).609-612.
    [144]钱鸿森,微波加热技术及应用,黑龙江:黑龙江科学技术出版社,1985.49-69
    [145]黄铭,微波与颗粒物质相互作用的机理及应用研究,[博士学位论文],昆明:昆明理工大学,2003
    [146] K.J. Rao, B. Vaidhyanathan, M. Ganguli, et al, Synthesis of Inorganic SolidsUsing Microwaves, Chemistry of Materials,1999,11(4).882-895.
    [147] W.C. Sun, P.M. Guy, J.H. Jahngen, et al, Microwave-induced hydrolysis ofphospho anhydride bonds in nucleotide triphosphates, The Journal of OrganicChemistry,1988,53(18).4414-4416.
    [148] E.G.E. Jahngen, R.R. Lentz, P.S. Pesheck, et al, Hydrolysis of adenosinetriphosphate by conventional or microwave heating, The Journal of OrganicChemistry,1990,55(10).3406-3409.
    [149] K.D. Raner, C.R. Strauss, Influence of microwaves on the rate of esterificationof2,4,6-trimethylbenzoic acid with2-propanol, The Journal of Organic Chemistry,1992,57(23).6231-6234.
    [150] K.D. Raner, C.R. Strauss, F. Vyskoc, et al, A comparison of reaction kineticsobserved under microwave irradiation and conventional heating, The Journal ofOrganic Chemistry,1993,58(4).950-953.
    [151]张先如,徐政,微波技术在材料化学中的原理及其应用进展,辐射研究与辐射工艺学报,2005,23(4).196-200.
    [152]马双忱,姚娟娟,金鑫等,微波化学中微波的热与非热效应研究进展,化学通报,2011,74(1).41-46.
    [153] M.A. Janney, H.D. Kimrey, M.A. Schmidt, et al, Grain Growth in Microwave‐Annealed Alumina, Journal of the American Ceramic Society,1991,74(7).1675-1681.
    [154]黄卡玛,刘永清,电磁对化学反应的非热作用及其在电磁生物非热效应机理研究中的意义,微波学报,1996,12(2).126-132.
    [155]黄卡玛,刘永清,唐敬贤等,电磁波对化学反应非致热作用的实验研究,高等学校化学学报,1996,17(5).764-768.
    [156]常爱民,氧化物电子陶瓷材料的微波处理研究,[博士学位论文],四川:电子科技大学,2002
    [157] Y. Bykov, K. Rybakov, High-temperature microwave processing of materials,Journal of Physics D: Applied Physics,2001,34(1).55-75.
    [158] M. Takahashi, R. Kanno, Y. Kawamoto, et al, Compositional dependence ofEr~(3+)upconversion luminescence in MF---LiF---ZrF4glasses (M: alkali metals),Journal of Non-crystalline Solids,1994,168(1-2).137-143.
    [159] F. Auzel, Upconversion processes in coupled ion systems, Journal ofLuminescence,1990,45(1-6).341-345.
    [160]张其土,付振晓,陆春华等,铒硼硅酸盐玻璃形成性能的研究,中国稀土学报,2003,21(2).147-150.
    [161]邓文渊,张家骅,孙江亭等, Er~(3+)掺杂硼硅酸盐玻璃的近红外发射特性研究,中国稀土学报,2003,21(2).230-232.
    [162]张其土,沐磊,黄强等,掺Er~(3+)硼硅酸盐玻璃的吸收光谱与JO理论分析,光学技术,2008,34(3).365-367.
    [163]孙江亭,张家骅,陈宝玖等,新型掺铒钆硼硅酸盐玻璃的制备和光学性质的研究,中国稀土学报,2005,22(6).832-836.
    [164] F. Wang, X. Liu, Recent advances in the chemistry of lanthanide-dopedupconversion nanocrystals, Chemical Society Reviews,2009,38(4).976-989.
    [165] J.H. Zeng, Z.H. Li, J. Su, et al, Synthesis of complex rare earth fluoridenanocrystal phosphors, Nanotechnology,2006,17(14).3549-3556.
    [166] J.L. Doualan, P. Camy, R. Moncorgé, et al, Latest developments of bulkcrystals and thin films of rare-earth doped CaF2for laser applications, Journal ofFluorine Chemistry,2007,128(4).459-464.
    [167] C. Cao, W. Qin, J. Zhang, et al, Up-conversion white light of Tm~(3+)/Er~(3+)/Yb~(3+)tri-doped CaF2phosphors, Optics Communications,2008,281(6).1716-1719.
    [168] C. Feldmann, M. Roming, K. Trampert, Polyol‐Mediated Synthesis ofNanoscale CaF2and CaF2: Ce, Tb, Small,2006,2(11).1248-1250.
    [169] G. Kumar, C. Chen, R. Riman, Optical spectroscopy and confocal fluorescenceimaging of upconverting Er~(3+)-doped CaF2nanocrystals, Applied Physics Letters,2007,90(9).0931231-0931233.
    [170] G. Wang, Q. Peng, Y. Li, Upconversion luminescence of monodisperse CaF2:Yb~(3+)/Er~(3+)nanocrystals, Journal of The American Chemical Society,2009,131(40).14200-14201.
    [171] W.S. Wang, L. Zhen, C.Y. Xu, et al, Aqueous Solution Synthesis of CaF2Hollow Microspheres via the Ostwald Ripening Process at Room Temperature, ACSApplied Materials&Interfaces,2009,1(4).780-788.
    [172] M. Kusatsugu, M. Kanno, T. Honma, et al, Spatially selected synthesis of LaF3and Er~(3+)-doped CaF2crystals in oxyfluoride glasses by laser-induced crystallization,Journal of Solid State Chemistry,2008,181(5).1176-1183.
    [173] P. Aubry, A. Bensalah, P. Gredin, et al, Synthesis and optical characterizationsof Yb-doped CaF2ceramics, Optical Materials,2009,31(5).750-753.
    [174] A.S. Barrie`re, T. Ce′saire, L.Hirsch, et al, Low temperature lumiescencestudies of Ca1-xErxF2+xthim films epitaxially grown on silicon substrates, Journal ofApplied Physics,1996,80(1).494-498.
    [175] X. Sun, Y. Li, Size-controllable luminescent single crystal CaF2nanocubes,Chemical Communications,2003,34(14).1768-1769.
    [176] Y. Bykov, A. Eremeev, V. Holoptsev, Experimental study of the nonthermaleffect in microwave sintering of piezoceramics, Materials Research SocietySymposium Proceedings,1994,347,585-590.
    [177] S. Freeman, J.H. Booske, R.F. Cooper, Modeling and numerical simulations ofmicrowave-induced ionic transport, Journal of Applied Physics,1998,83(11).5761-5772.
    [178] S.J. P., Solid State Diffusion, New York:Wiley,1976
    [179]毛艳丽,赵志伟,邓佩珍等, Yb: FAP和Yb: C3S2-FAP晶体光谱的温度特性和选择激发,物理学报,2004,53(5).1524-1528.
    [180] R.W. Boyd, Nonlinear Optics, San Diego:Academic Press,2003.410-420
    [181]程珑,谭俊峤,我国防伪技术发展迅速,中国印刷物资商情,2003,79(10).9-13.
    [182]马建新,新世纪的趋势性防伪课题,中国防伪,2002006).56-57.
    [183]姜晶,方志良,林列等,光学防伪技术,光电子.激光,1998,9(2).170-171.
    [184]郝晓秀,杨淑惠,冯群策等,防伪技术在造纸工业的应用与研究进展,中国造纸学报,2003,(增刊)16-20.
    [185]刘仁庆,防伪纸的现状及展望,印刷杂志,2004,12(225).21-23.
    [186]张传香,稀土防伪油墨及其性能研究,[硕士学位论文],陕西:西安理工大学,2005
    [187]刘昕,防伪油墨的最新研究进展,今日印刷,2006,1(7).21-22.
    [188]蒲东华,胶印荧光防伪油墨印刷适性的研究,[硕士学位论文],陕西:西安理工大学,2008
    [189]王宇,小型光纤光谱仪的研究,[硕士学位论文],天津:天津大学,2006
    [190]冯衍,宋峰,赵丽娟等, LD抽运Nd:YVO4晶体中的上转换及其影响,物理学报,2001,50(2).335-340.
    [191] B.M. Tissue, J.C. Wright, Site-selective laser spectroscopy of CaF2: Pr3andCaF2: Pr3, R3(R3=Y3, Gd3, Nd3), Physical Review B,1987,36(18).9781-9789.
    [192]徐叙瑢,苏勉曾,发光学与发光材料,北京:化学工业出版社,2004.7-193
    [193]胡传炘,隐身涂层技术,北京:化学工业出版社,2004.86-120
    [194]马成勇,程海峰,唐耿平等,吸波涂层的制备及其与红外隐身涂料的兼容性研究,涂料工业,2007,37(1).8-10.
    [195]丘贞慧,彭著良,孙元宝等,现代伪装涂料的研究进展,表面技术,2005,34(1).5-8.
    [196]王自荣,余大斌,孙晓泉等,激光与红外复合隐身涂料初步研究,激光与红外,2001,31(5).301-303.
    [197]许国根,贾瑛,张剑,隐身伪装技术与化工新型材料的应用,化工新型材料,2001,29(11).1-5.
    [198]宣兆龙,易建政,地面军事目标伪装材料的研究进展,兵器材料科学与工程,2000,23(2).51-55.
    [199] J.-P. Wells, R. Reeves, Polarized laser selective excitation and Zeeman infraredabsorption of C4vand C3vsymmetry centers in Eu~(3+)-doped CaF2, SrF2, and BaF2crystals, Physical Review B,2001,64(3).035102.
    [200] J. H ls, E. S ilynoja, P. Ylh, et al, Analysis of the Crystal Structure andOptical Spectra of Stoichiometric SmOF, The Journal of Physical Chemistry,1996,100(35).14736-14744.
    [201] L. Brus, Electronic wave functions in semiconductor clusters: experiment andtheory, The Journal of Physical Chemistry,1986,90(12).2555-2560.
    [202]谭显裕,脉冲激光测距仪测距方程和测距性能分析,激光与光电子学进展,2006,35(3).22.
    [203]田铁印,激光测距跟踪系统作用距离方程的探讨[J],光学精密工程,1996,4(4).33-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700