用户名: 密码: 验证码:
蒙脱土有机化及其插层质子交换膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜是直接甲醇燃料电池(DMFC)的关键部件,不仅需要隔离燃料和氧化剂,而且是质子传递的唯一通道,其性能直接影响着DMFC的性能。非氟质子交换膜具有优异的阻醇性能,但存在质子传导率提高与溶胀增大的矛盾。针对这个难点问题,本文提出了采用蒙脱土(MMT)抑制膜溶胀,拓宽膜材料磺化度选择范围,增强膜性能。本文利用有机化蒙脱土的疏水性和钠基蒙脱土的亲水性,设计了聚合物/有机化蒙脱土质子交换膜体系和聚合物/水溶性聚合物/钠基蒙脱土质子交换膜体系,制备了磺化聚芳醚砜酮(SPPESK)/OMMT和磺化聚醚醚酮(SPEEK)/聚乙烯醇(PVA)/MMT复合质子交换膜并考察了其溶胀性能、机械性能、阻醇性能和质子传导性能。
     首先为了增强蒙脱土与聚合物的相容性,采用不同碳链长度季铵盐和不同离子类型季铵盐对蒙脱土进行有机化改性以增强蒙脱土的疏水性。提出了插层剂有机链在干态OMMT层间存在垂直双层构象,并对其进行了进一步证实,完善了有机链在干态OMMT层间构象模型。随着插层剂添加量的增加,插层剂有机链在层间分别呈1)平卧单层;2)平卧双层;3)倾斜单层;4)垂直双层;5)倾斜双层五种形态。采用十八烷基三甲基溴化铵(STAB)改性的干态蒙脱土最大层间距达到6.44nm。增加插层剂有机链长度和支链尺寸均有利于扩大OMMT层间距。
     其次为了增强OMMT在有机溶剂中的分散性,详细研究了有机化蒙脱土在溶剂中的微观和宏观溶胀行为,考察了溶剂汉森溶解度参数对有机链构象的影响。结果表明溶剂汉森溶解度参数是影响溶胀的重要因素,极性力δp是溶剂能否进入层间的决定性因素;色散力δd是湿态有机化蒙脱土层间距大小的决定性因素;氢键力δh对湿态有机化蒙脱土溶胀的影响弱于δd和δp,是影响大层间距蒙脱土是否剥离的重要因素。根据溶剂性质不同,提出了有机链在湿态OMMT层间构象的四种形态:1)倾斜单层;2)垂直单层;3)错位垂直双层;4)剥离状态。在不同类型溶剂中溶胀时,随着插层剂添加量的增加,插层剂有机链在层间构象的发展表现出不同的趋势。宏观溶胀研究结果表明,插层剂溶解度参数和插层剂添加量是影响湿态OMMT溶胀率的更重要因素。
     利用OMMT抑制膜溶胀,拓宽膜材料磺化度选择范围。选用中高磺化度(101%)SPPESK,制备了SPPESK/OMMT质子交换膜。研究结果表明,OMMT的加入很好的抑制了SPPESK膜的溶胀,随着OMMT含量增加,复合膜吸水率和溶胀率都显著下降,添加2%OMMT的复合质子交换膜质子传导率达到0.143S·cm-1,比具有相同溶胀率的SPPESK (82%)膜质子传导率高出近83%,室温甲醇渗透率为8.7×10-8cm2·s-1,仅为Nafion115膜的二十六分之一。
     为了进一步增加质子交换膜电导率,设计了聚合物/水溶性聚合物/钠基蒙脱土体系质子交换膜,利用MMT和PVA交联双重作用抑制膜溶胀。首先制备了SPEEK/PVA复合膜,利用PVA交联抑制膜溶胀,选用81%SPEEK为膜材料,添加30%PVA制备的复合膜质子传导率达到0.163S·cm-1(80℃),比具有相同溶胀率的SPEEK (DS51%)膜提高104%,接近相同条件下Nafion115膜质子传导率(0.186S.cm-1),且具有较低的溶胀率和甲醇渗透率;为了更进一步提高膜电导率,添加蒙脱土抑制溶胀,降低了PVA添加量。研究结果表明,添加20%PVA和1%MMT制备的SPEEK/PVA/MMT复合质子交换膜在保证低溶胀率的前提下,质子传导率高达0.185S·cm-1(80℃),比具有相同溶胀率的SPEEK (DS51%)膜提高131%,和Nafion115膜(0.186S.cm-1)相当,甲醇渗透率为1.50×10-7cm2.s-1,相当于Nafion115膜的十五分之一。
Proton exchange membrane (PEM) is the key part of direct methanol fuel cell (DMFC), which not only separates the fuel to avoid direct contact, but also transfers a proton from anode to cathode. Non-fluorosulfonic acid PEM has low methanol permeability, but the higher proton conductivity, the higher swelling ratio. In order to resolve the contradiction of conductivity and swelling ratio, montmorillonite (MMT) has been chosen to limit the swelling of membrane because of layer structure of MMT, the limit of swelling can improve the range of sulfonation degree of membrane, thus the conductivity of membrane can be improved. Based on this analysis, the polymer/OMMT PEM system and polymer/water soluble polymer/Na+-MMT PEM system have been designed, which can improve the dispersion of OMMT and Na+-MMT in polymer. The sulfonated poly (phthalazione ether sulfone ketone)(SPPESK), sulfonated polyetheretherketones (SPEEK), polyvinyl alcohol (PVA) and MMT have been used to prepare SPPESK/OMMT, SPEEK/PVA and SPEEK/PVA/MMT composite PEM, and the PEM has been characterized.
     Firstly, in order to improve the compatibility of MMT and polymer, surfactant with different alkyl chain length and different species ion have been used to modify MMT. In this paper, the arrangement of vertical paraffin-type bilayer has been proposed and confirmed, which improve the arrangement model of alkyl chain in MMT layer. With increasing of surfactant adding content, the alkyl chain take arrangement of1) lateral monolayer,2) lateral bilayer,2) tilt paraffin-type monolayer,4) vertical paraffin-type bilayer,5) tilt paraffin-type bilayer. The biggest d-spacing of STAB-MMT is6.44nm. Increasing the alkyl chain length and branch chain scale are of benefit to improve the d-spacing of OMMT.
     Secondly, in order to improve the dispersion of OMMT in solvent, the swelling behaviors of OMMT at the micrometer scale and macroscopic scale have been studied in this paper, effect of hansen solubility parameters on the arrangement alkyl chain has also studied. The results show that, the hansen solubility parameters of solvent is very important to the arrangement of alkyl chain,δp of solvent is the primary factor determining whether the solvent intercalated into MMT layer, δd of solvent is the factor determining the d-spacing of MMT, the effect of δh of solvent is lower δp and δd. Based on the properties of solvent, the arrangements of alkyl chain in swelling MMT layer have four forms:1) tilt paraffin-type monolayer,2) vertical paraffin-type monolayer,3) Staggered vertical paraffin-type bilayer,4) exfoliation. With increasing of surfactant adding content, the arrangement developments of alkyl chain in different solvent show the different form. The results of swelling at macroscopic scale show that the hansen solubility parameters of solvent and surfactant adding content are very important to improve the swelling ratio of OMMT.
     The OMMT have been chosen to prepare the polymer/MMT PEM, which can improve the range of sulfonation degree of membrane. In order to improve the conductivity of SPPESK membrane, higher DS (101%) SPPESK membrane and OMMT have been chosen to prepare SPPESK/OMMT PEM. The results show that the swelling of SPPESK membrane has been limited when the OMMT was added, the water uptake and swelling of membrane are decreased with increasing of OMMT content. The conductivity of SPPESK/OMMT membrane with2%OMMT is0.143S·cm-1, which is80%higher than SPPESK (82%) membrane with the same selling ratio and close to Nafion115membrane (0.186S-cm-1). The methanol permeability of PEM is8.7x10-8cm2·s-1, which is about1/26of the Nafion115.
     In order to improve the conductivity of PEM, the polymer/water soluble polymer/Na+-MMT PEM system has been designed in this paper. The conductivity of SPEEK/PVA composite membrane, which is prepared by SPEEK (81%) and30%PVA, is0.163S·cm-1(80℃) which is104%higher than SPEEK (51%) membrane with the same selling ratio and close to Nafion115membrane (0.186S·cm-1). The conductivity of SPEEK/PVAMMT composite membrane with20%PVA content and1%MMT is0.185S·cm-1(80℃), which is131%higher than SPEEK (51%) membrane and very close to Nafion115membrane (0.186S·cm-1). The methanol permeability of SPEEK/PVAMMT composite membrane is1.50×10-7cm2·s-1, which is about1/15of the Nafion115.
引文
[1]BEAUGER C, LAINE G, BURR A, et al. Nafion (R)-sepiolite composite membranes for improved proton exchange membrane fuel cell performance [J]. J Membrane Sci,2013,430:167-179.
    [2]CHIEN H C, TSAI L D, LAI C M, et al. Characteristics of high-water-uptake activated carbon/Nafion hybrid membranes for proton exchange membrane fuel cells [J]. J Power Sources, 2013,226:87-93.
    [3]SOUZY R, AMEDURI B, BOUTEVIN B, et al. Functional fluoropolymers for fuel cell membranes [J]. Solid State Ionics,2005,176(39-40):2839-2848.
    [4]BRANDELL D, KARO J, LIIVAT A, et al. Molecular dynamics studies of the Nafion (R), Dow (R) and Aciplex (R) fuel-cell polymer membrane systems [J]. J Mol Model,2007,13(10):1039-1046.
    [5]HATAKENAKA S, TAKATA H, MIZUNO N, et al. Adsorption of water vapor on a polymer electrolyte membrane [J]. Int J Hydrogen Energ,2008,33(13):3368-3372.
    [6]GIERKE T D, MUNN G E, WILSON F C. The Morphology in Nafion Perfluorinated Membrane Products, as Determined by Wide-Angle and Small-Angle X-Ray Studies [J]. J Polym Sci Pol Phys, 1981,19(11):1687-1704.
    [7]ZAWODZINSKI T A, NEEMAN M, SILLERUD L O, et al. Determination of Water Diffusion-Coefficients in Perfluorosulfonate Ionomeric Membranes [J]. J Phys Chem-Us,1991, 95(15):6040-6044.
    [8]KREUER K D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells [J]. J Membrane Sci,2001,185(1):29-39.
    [9]BAE B, KIM D. Sulfonated polystyrene grafted polypropylene composite electrolyte membranes for direct methanol fuel cells [J]. J Membrane Sci,2003,220(1-2):75-87.
    [10]SAUK J, BYUN J, KANG Y, et al. Preparation of laminated composite membranes by impregnation of polypropylene with styrene in supercritical CO2 for direct methanol fuel cells [J]. Korean J Chem Eng,2005,22(4):605-610.
    [II]BASHIR H, ACOSTA J L, LINARES A. New proton conducting polymer membranes based on EPDM and branched HPBS [J]. J Membrane Sci,2005,253(1-2):33-42.
    [12]SAHIN A, AKTAN H, AR I, et al. Synthesis and Characterization of Phosphonated Poly(Vinyl Alcohol) Based Membrane with Silica Support [J]. J Fac Eng Archit Gaz,2010,25(4):693-699.
    [13]LIN C W, THANGAMUTHU R, YANG C J. Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications [J]. J Membrane Sci, 2005,253(1-2):23-31.
    [14]ANIS A, AL-ZAHRANI S M. Sulfonated PVA/PBI Based Crosslinked Composites Towards Anhydrous Proton Conductive Polymer Electrolyte Membranes for Fuel Cells [J]. Int J Electrochem Sc,2012,7(10):9174-9185.
    [15]XU W L, LIU C P, XUE X Z, et al. New proton exchange membranes based on poly (vinyl alcohol) for DMFCs [J]. Solid State Ionics,2004,171(1-2):121-127.
    [16]MOHAMMADI T, SKYLLAS-KAZACOS M. Preparation of Sulfonated Composite Membrane for Vanadium Redox Flow Battery Applications [J]. J Membrane Sci,1995,107(1-2):35-45.
    [17]DEIMEDE V, KANDILIOTI G, KALLITSIS J K, et al. Blends of sulfonated polysulfone and poly(ethylene oxide)-grafted-polyethersulfone as proton exchange membranes for fuel cell applications [J]. Macromol Symp,2005,230:33-38.
    [18]FRUTSAERT G, DAVID G, AMEDURI B, et al. Synthesis and characterisation of novel fluorinated polymers bearing pendant imidazole groups and blend membranes:New materials for PEMFC operating at low relative humidity [J]. J Membrane Sci,2011,367(1-2):127-133.
    [19]QIAO J L, YOSHIMOTO N, MORITA M. Proton conducting behavior of a novel polymeric gel membrane based on poly(ethylene oxide)-grafted-poly (methacrylate) [J]. J Power Sources,2002, 105(1):45-51.
    [20]CHEN J H, LIU Q L, ZHU A M, et al. Dehydration of acetic acid by pervaporation using SPEK-C/PVA blend membranes [J]. J Membrane Sci,2008,320(1-2):416-422.
    [21]JORISSEN L, GOGEL V, KERRES J, et al. New membranes for direct methanol fuel cells [J]. J Power Sources,2002,105(2):267-273.
    [22]LI L, XU L, WANG Y X. Study on the preparation and properties of sulfonated polyether ether ketone membranes [J]. Acta Polym Sin,2003(3):452-455.
    [23]REGINA A, FONTANANOVA E, DRIOLI E, et al. Preparation and characterization of sulfonated PEEK-WC membranes for fuel cell applications-A comparison between polymeric and composite membranes [J]. J Power Sources,2006,160(1):139-147.
    [24]WU H L, MA C C M, KUAN H C, et al. Sulfonated poly(ether ether ketone)/poly(vinylpyrrolidone) acid-base polymer blends for direct methanol fuel cell application [J]. J Polym Sci Pol Phys,2006, 44(3):565-572.
    [25]ZHANG H W, FAN X H, ZHANG J, et al. Modification research of sulfonated PEEK membranes used in DMFC [J]. Solid State Ionics,2008,179(27-32):1409-1412.
    [26]FENG S G, SHANG Y M, LIU G S, et al. Novel modification method to prepare crosslinked sulfonated poly(ether ether ketone)/silica hybrid membranes for fuel cells [J]. J Power Sources, 2010,195(19):6450-6458.
    [27]XU D, WANG Y, ZHANG Y, et al. Hybird Membrane with High Proton Conductivity and Selectivity Based on SPEEK for Direct Methanol Fuel Cells [J]. Chem Res Chinese U,2010,26(6): 1031-1034.
    [28]TSAI J C, LIN C K. Acid-base blend membranes based on Nafion (R)/aminated SPEEK for reducing methanol permeability [J]. J Taiwan Inst Chem E,2011,42(2):281-285.
    [29]ABU-THABIT N Y, ALI S A, ZAIDI S M J, et al. Novel sulfonated poly(ether ether ketone)/phosphonated polysulfone polymer blends for proton conducting membranes [J]. J Mater Res,2012,27(15):1958-1968.
    [30]GUHAN S, MURUGANANTHAM R, SANGEETHA D. Development of a solid polymer electrolyte membrane based on sulfonated poly(ether ether) ketone and polysulfone for fuel cell applications [J]. Can J Chem,2012,90(2):205-213.
    [31]GU S, HE G H, WU X M, et al. Synthesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) for direct methanol fuel cell (DMFC) [J]. J Membrane Sci,2006, 281(1-2):121-129.
    [32]WU X M, HE G H, GAO L, et al. Synthesis and water uptake of sulfonated poly (phthalazinone ether sulfone ketone)/polyacrylic acid proton exchange membranes [J]. Chinese Chem Lett,2006, 17(7):965-968.
    [33]DENG H N, WANG Y X. Sulfonated poly(phthalazinones) membranes for direct methanol fuel cell [J]. Acta Phys-Chim Sin,2007,23(2):187-191.
    [34]WU X M, HE G H, GU S, et al. The state of water in the series of sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) proton exchange membranes [J]. Chem Eng J,2010,156(3): 578-581.
    [35]DONG F L, LI Z F, WANG S W, et al. Preparation and properties of sulfonated poly(phthalazinone ether sulfone ketone)/zirconium sulfophenylphosphate/PTFE composite membranes [J]. Int J Hydrogen Energ,2011,36(5):3681-3687.
    [36]SHI J J, GUO J S, JANG B. A new type of high temperature membrane for proton exchange membrane fuel cells [J]. Proceedings of the 4th International Conference on Fuel Cell Science, Engineering, and Technology, Pts A and B,2006:1019-1022.
    [37]FU R Q, JULIUS D, HONG L, et al. PPO-based acid-base polymer blend membranes for direct methanol fuel cells [J]. J Membrane Sci,2008,322(2):331-338.
    [38]HAGHIGHI A H, HASANI-SADRABADI M M, DASHTIMOGHADAM E, et al. Direct methanol fuel cell performance of sulfonated poly (2,6-dimethyl-1,4-phenylene oxide)-polybenzimidazole blend proton exchange membranes [J]. Int J Hydrogen Energ,2011,36(5):3688-3696.
    [39]XU T W, WU D, SEO S J, et al. Proton exchange composite membranes from blends of brominated and sulfonated poly(2,6-dimethyl-1,4-phenylcne oxide) [J]. J Appl Polym Sci,2012,124(4): 3511-3519.
    [40]ALIABADI M, EBADI M, DASHTIMOGHADAM E, et al. Nanocomposite Proton Exchange Membranes Based on Sulfonated Poly (2,6-Dimethyl-1,4-Phenylene Oxide) with Enhanced Performance for Fuel Cell Applications [J]. J Macromol Sci B,2011,50(6):1108-1120.
    [41]BARIQUE M A, SEESUKPHRONRARAK S, WU L B, et al. A Comparison Between Highly Crystalline and Low Crystalline Poly(phenylene sulfide) as Polymer Electrolyte Membranes for Fuel Cells [J]. J Phys Chem B,2011,115(1):27-33.
    [42]CHOI J M, PATEL R, HAN J, et al. Proton conducting composite membranes comprising sulfonated Poly(1,4-phenylene sulfide) and zeolite for fuel cell [J]. Ionics,2010,16(5):403-408.
    [43]JOO S H, PAK C, KIM E A, et al. Functionalized carbon nanotube-poly(arylene sulfone) composite membranes for direct methanol fuel cells with enhanced performance [J]. J Power Sources,2008, 180(1):63-70.
    [44]WEN S, GONG C L, SHU Y C, et al. Sulfonated Poly(ether sulfone)/Phosphotungstic Acid/Attapulgite Composite Membranes for Direct Methanol Fuel Cells [J]. J Appl Polym Sci,2012, 123(2):646-656.
    [45]GONG C L, ZHOU Y, YAN L C, et al. Properties of SPES/PWA/SiO2 Composite Proton Exchange Membranes [J]. Acta Phys-Chim Sin,2010,26(11):2967-2974.
    [46]LI L, WANG Y X. Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell [J]. J Membrane Sci,2005,246(2):167-172.
    [47]WANG L, YI B L, ZHANG H M, et al. Pt/SiO2 as addition to multilayer SPSU/PTFE composite membrane for fuel cells [J]. Polym Advan Technol,2008,19(12):1809-1815.
    [48]WANG L, Yl B L, ZHANG H M, et al. Sulfonated polyimide/PTFE reinforced membrane for PEMFCs [J]. J Power Sources,2007,167(1):47-52.
    [49]LEE C H, PARK C H, LEE Y M. Sulfonated polyimide membranes grafted with sulfoalkylated side chains for proton exchange membrane fuel cell (PEMFC) applications [J]. J Membrane Sci,2008, 313(1-2):199-206.
    [50]QING S B, HUANG W, YAN D Y. Synthesis and characterization of thermally stable sulforiated polybenzimidazoles [J]. Eur Polym J,2005,41 (7):1589-1595.
    [51]QIAN W, SHANG Y M, FANG M, et al. Sulfonated polybenzimidazole/zirconium phosphate composite membranes for high temperature applications [J]. Int J Hydrogen Energ,2012,37(17): 12919-12924.
    [52]NG F, JONES D J, ROZIERE J, et al. Novel sulfonated poly(arylene ether benzimidazole) Cardo proton conducting membranes for PEMFC [J]. J Membrane Sci,2010,362(1-2):184-191.
    [53]KANG S, ZHANG C J, XIAO G Y, et al. Synthesis and properties of soluble sulfonated polybenzimidazoles from 3,3'-disulfonate-4,4'-dicarboxylbiphenyl as proton exchange membranes [J]. J Membrane Sci,2009,334(1-2):91-100.
    [54]LI L, ZHANG J, WANG Y X. Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell [J]. J Membrane Sci,2003,226(1-2):159-167.
    [55]NOLTE R, LEDJEFF K, BAUER M, et al. Partially Sulfonated Poly(Arylene Ether Sulfone)-a Versatile Proton Conducting Membrane Material for Modern Energy-Conversion Technologies [J]. J Membrane Sci,1993,83(2):211-220.
    [56]LUFRANO F, GATTO I, STAITI P,et al. Sulfonated polysulfone ionomer membranes for fuel cells [J]. Solid State Ionics,2001,145(1-4):47-51.
    [57]GENIES C, MERCIER R, SILLION B, et al. Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes [J]. Polymer,2001,42(2):359-373.
    [58]GENIES C, MERCIER R, SILLION B, et al. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium [J]. Polymer,2001,42(12):5097-5105.
    [59]QING S B, HUANG W, YAN D Y. Synthesis and properties of soluble sulfonated polybenzimidazoles [J]. React Funct Polym,2006,66(2):219-227.
    [60]MIKHAILENKO S U D, WANG K P, KALIAGUINE S, et al. Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK) [J]. J Membrane Sci,2004, 233(1-2):93-99.
    [61]ZHAO C J, LIN H D, NA H. Novel cross-linked sulfonated poly (arylene ether ketone) membranes for direct methanol fuel cell [J]. Int J Hydrogen Energ,2010,35(5):2176-2182.
    [62]LI H T, ZHANG G, WU J, et al. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells [J]. J Power Sources,2010,195(19):6443-6449.
    [63]BHAT S D, SAHU A K, JALAJAKSHI A, et al. PVA-SSA-HPA Mixed-Matrix-Membrane Electrolytes for DMFCs [J]. J Electrochem Soc,2010,157(10):B1403-B1412.
    [64]YANG T. Preliminary study of SPEEK/PVA blend membranes for DMFC applications [J]. Int J Hydrogen Energ,2008,33(22):6772-6779.
    [65]XIONG Y, FANG J, ZENG Q H, et al. Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells [J]. J Membrane Sci,2008, 311(1-2):319-325.
    [66]LIN C W, HUANG Y F, KANNAN A M. Cross-linked poly(vinyl alcohol) and polystyrene sulfonic acid-co-maleic anhydride)-based semi-interpenetrating network as proton-conducting membranes for direct methanol fuel cells [J]. J Power Sources,2007,171(2):340-347.
    [67]BAE B, CHUN B H, HA H Y, et al. Preparation and characterization of plasma treated PP composite electrolyte membranes [J]. J Membrane Sci,2002,202(1-2):245-252.
    [68]WOOTTHIKANOKKHAN J, SEEPONKAI N. Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends [J]. J Appl Polym Sci,2006,102(6): 5941-5947.
    [69]SUBRAMANIAN M S, SASIKUMAR G. Sulfonated Polyether Sulfone-Poly(vinylidene fluoride) Blend Membrane for DMFC Applications [J]. J Appl Polym Sci,2010,117(2):801-808.
    [70]BHAVANI P, SANGEETHA D. Blend membranes for direct methanol and proton exchange membrane fuel cells [J]. Chinese J Polym Sci,2012,30(4):548-560.
    [71]CHO K Y, EOM J Y, JUNG H Y, et al. Characteristics of PVdF copolymer/Nafion blend membrane for direct methanol fuel cell (DMFC) [J]. Electrochim Acta,2004,50(2-3):583-588.
    [72]WU H, WANG Y X, WANG S C. Study on the preparation and properties of PVDF-blend-Nafion membranes [J]. Acta Polym Sin,2002(4):540-543.
    [73]GU S, HE G H, WU X M, et al. Preparation and characteristics of crosslinked sulfonated poly (phthalazinone ether sulfone ketone) with poly(vinyl alcohol) for proton exchange membrane [J]. J Membrane Sci,2008,312(1-2):48-58.
    [74]WU X M, HE G H, GU S, et al. Novel interpenetrating polymer network sulfonated poly (phthalazinone ether sulfone ketone)/polyacrylic acid proton exchange membranes for fuel cell [J]. J Membrane Sci,2007,295(1-2):80-87.
    [75]SU L J, LI L, LI H, et al. Preparation of polysiloxane modified perfluorosulfonic acid composite membranes assisted by supercritical carbon dioxide for direct methanol fuel cell [J]. J Power Sources,2009,194(1):220-225.
    [76]JUNG D H, MYOUNG Y B, CHO S Y, et al. A performance evaluation of direct methanol fuel cell using impregnated tetraethyl-orthosilicate in cross-linked polymer membrane [J]. Int J Hydrogen Energ,2001,26(12):1263-1269.
    [77]GABOUZE N. Effect of methanol concentration on flatband potential shift of n-type Si in CH3CN/CH3OH mixture containing a redox couple [J]. Vacuum,2002,67(1):75-80.
    [78]KE C C, LI X J, SHEN Q A, et al. Investigation on sulfuric acid sulfonation of in-situ sol-gel derived Nafion/SiO2 composite membrane [J]. Int J Hydrogen Energ,2011,36(5):3606-3613.
    [79]KUMAR G G, KIM A R, NAHM K S, et al. Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC [J]. Int J Hydrogen Energ, 2009,34(24):9788-9794.
    [80]SILVA V, RUFFMANN B, SILVA H, et al. Zirconium oxide modified sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell applications [J]. Advanced Materials Forum Ii, 2004,455-456:587-591.
    [81]SILVA V S, RUFFMANN B, SILVA H, et al. Zirconium oxide hybrid membranes for direct methanol fuel cells-Evaluation of transport properties [J]. J Membrane Sci,2006,284(1-2): 137-144.
    [82]GUZMAN C, ALVAREZ A, GODINEZ L A, et al. Evaluation of ZrO2 Composite Membrane Operating at High Temperature (100 degrees C) in Direct Methanol Fuel Cells. [J]. Int J Electrochem Sc,2012,7(7):6106-6117.
    [83]BAGLIO V, DI BLASI A, ARICO A S, et al. Influence of TiO2 nanometric filler on the behaviour of a composite membrane for applications in Direct Methanol Fuel Cells. [J]. J New Mat Electr Sys, 2004,7(4):275-280.
    [84]PROFETI L P R, SIMOES F C, OLIVI P, et al. Application of Pt+RuO2 catalysts prepared by thermal decomposition of polymeric precursors to DMFC [J]. J Power Sources,2006,158(2): 1195-1201.
    [85]YANG C C, CHIEN W C, LI Y J J. Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt-TiO2/PSSA) composite polymer membrane [J]. J Power Sources,2010,195(11):3407-3415.
    [86]LI L, XU L, WANG Y X. Proton conducting composite membranes from sulfonated polyether ether ketone and phosphotungstic acid [J]. Chem J Chinese U,2004,25(2):388-390.
    [87]GUHAN S, KUMAR N A, SANGEETHA D. Sulphonated Poly Ether Ether Ketone/Polyvinyl Alcohol/Phosphotungstic Acid Composite Membranes for Pem Fuel Cells [J]. Chinese J Polym Sci, 2009,27(2):157-164.
    [88]KIM Y S, WANG F, HICKNER M, et al. Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications [J]. J Membrane Sci,2003,212(1-2): 263-282.
    [89]YANG J S, LI Q F, JENSEN J O, et al. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells [J]. J Power Sources,2012, 205:114-121.
    [90]JIANG G P, QIAO J L, HONG F. Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC [J]. Int J Hydrogen Energ,2012, 37(11):9182-9192.
    [91]YAN S J, ZENG S J, SU X L, et al. H3PO4-doped 1,2,4-triazole-polysiloxane proton conducting membrane prepared by sol-gel method [J]. Solid State Ionics,2011,198(1):1-5.
    [92]BAUER F, WILLERT-PORADA A. Characterisation of zirconium and titanium phosphates and direct methanol fuel cell (DMFC) performance of functionally graded Nafion(R) composite membranes prepared out of them [J]. J Power Sources,2005,145(2):101-107.
    [93]SAHU A K, BHAT S D, PITCHUMANI S, et al. Novel organic-inorganic composite polymer-electrolyte membranes for DMFCs [J]. J Membrane Sci,2009,345(1-2):305-314.
    [94]THOMASSIN J M, KOLLAR J, CALDARELLA G, et al. Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications [J]. J Membrane Sci,2007, 303(1-2):252-257.
    [95]ZHANG G W, JIANG J X, LIU J N. High Proton Conducting SPEEK/SiO2/PWA Composite Membranes for Direct Methanol Fuel Cells [J]. J Wuhan Univ Technol,2011,26(3):417-421.
    [96]DU L, YAN X M, HE G H, et al. SPEEK proton exchange membranes modified with silica sulfuric acid nanoparticles [J]. Int J Hydrogen Energ,2012,37(16):11853-11861.
    [97]RANI G S, BEERA M K, PUGAZHENTHI G. Development of sulfonated poly(ether ether ketone)/zirconium titanium phosphate composite membranes for direct methanol fuel cell [J]. J Appl Polym Sci,2012,124:E45-E56.
    [98]OKADA A, KAWASUMI M, KURAUCHI T, et al. Synthesis and Characterization of a Nylon 6-Clay Hybrid [J]. Polym. Prepr.,1987,28:447-448.
    [99]ZHANG L M, WANG G H. Reinforcement in thermal and viscoelastic properties of polystyrene by in-situ incorporation of organophilic montmorillonite [J]. Appl Clay Sci,2007,38(1-2):17-22.
    [100]LIVI S, DUCHET-RUMEAU J, THI N P, et al. Synthesis and physical properties of new surfactants based on ionic liquids:Improvement of thermal stability and mechanical behaviour of high density polyethylene nanocomposites [J]. J Colloid Interf Sci,2011,354(2):555-562.
    [101]VAIA R A, GIANNELIS E P. Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment [J]. Macromolecules,1997,30(25):8000-8009.
    [102]WANG S F, HU Y, ZONG R W, et al. Preparation and characterization of flame retardant ABS/montmorillonite nanocomposite [J]. Appl Clay Sci,2004,25(1-2):49-55.
    [103]DETELLIER C, DEFONTAINE G, BARICHARD A, et al. Nanoporous polymer-Clay hybrid membranes for gas separation [J]. J Colloid Interf Sci,2010,343(2):622-627.
    [104]PARK S J, KIM S. Interlayer spacing effect of alkylammonium-modified montmorillonite on conducting and mechanical behaviors of polymer composite electrolytes [J]. J Colloid Interf Sci, 2009,332(1):145-150.
    [105]LIM S T, HYUN Y H, CHOI H J, et al. Synthetic biodegradable aliphatic polyester/montmorillonite nanocomposites [J]. Chem Mater,2002,14(4):1839-1844.
    [106]JEON H S, RAMESHWARAM J K, KIM G, et al. Characterization of polyisoprene-clay nanocomposites prepared by solution blending [J]. Polymer,2003,44(19):5749-5758.
    [107]吴婷,闫新亚,蔡祥,et al.季铵盐插层蒙脱土及其去除海洋卡盾藻的研究[J].无机化学学报,2010(08):1399-1403.
    [108]HE H P, FROST R L, BOSTROM T, et al. Changes in the morphology of organoclays with HDTMA(+) surfactant loading [J]. Appl Clay Sci,2006,31(3-4):262-271.
    [109]XI Y, ZHOU Q, FROST R L, et al. Thermal stability of octadecyltrimethylammonium bromide modified montmorillonite organoclay [J]. J Colloid Interf Sci,2007,311 (2):347-353.
    [110]XI Y F, FROST R L, HE H P, et al. Modification of Wyoming montmorillonite surfaces using a cationic surfactant [J]. Langmuir,2005,21(19):8675-8680.
    [111]刘羽中,王小群,陈贻炽,et al.不同链长的聚醚铵阳离子协同插层对蒙脱土性能的影响[J].化学学报,2012(07):911-916.
    [112]陈海群,李英勇,朱俊武,et al.十二烷基磺酸钠改性蒙脱土的制备与表征[J].无机化学学报,2004(03):251-255+235.
    [113]ZHU L Z, CHEN B L. Sorption behavior of p-nitrophenol on the interface between anion-cation organobentonite and water [J]. Environ Sci Technol,2000,34(14):2997-3002.
    [114]ZHU J X, QING Y H, WANG T, et al. Preparation and characterization of zwitterionic surfactant-modified montmorillonites [J]. J Colloid Interf Sci,2011,360(2):386-392.
    [115]SHEN Y H. Preparations of organobentonite using nonionic surfactants [J]. Chemosphere,2001, 44(5):989-995.
    [116]WILLIAMS-DARYN S. The Intercalation of a Vermiculite by Cationic Surfactants and Its Subsequent Swelling with Organic Solvents [J]. J Colloid Interf Sci,2002,255(2):303-311.
    [117]CHEN H, ZHOU L M, JIANG X H, et al. Modification of montmorillonite surfaces using a novel class of cationic gemini surfactants [J]. J Colloid Interf Sci,2009,332(1):16-21.
    [118]FROST R L, XI Y F, HE H P. Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides [J]. J Colloid Interf Sci,2007,305(1):150-158.
    [119]DUCHET-RUMEAU J, LIVI S, PHAM T N, et al. A comparative study on different ionic liquids used as surfactants:Effect on thermal and mechanical properties of high-density polyethylene nanocomposites [J]. J Colloid Interf Sci,2010,349(1):424-433.
    [120]TIWARI R. Synthesis and characterization of novel organo-montmorillonites [J]. Appl Clay Sci, 2008,38(3-4):203-208.
    [121]WEN X, HE H, ZHU J, et al. Arrangement, conformation, and mobility of surfactant molecules intercalated in montmorillonite prepared at different pillaring reagent concentrations as studied by solid-state NMR spectroscopy [J]. J Colloid Interf Sci,2006,299(2):754-760.
    [122]LAGALY G. Interaction of Alkylamines with Different Types of Layered Compounds [J]. Solid State Ionics,1986,22(1):43-51.
    [123]LAGALY G. Inorganic Layer Compounds-Phenomena of Reactions with Organic-Compounds [J]. Chimia,1980,34(2):73-73.
    [124]LAGALY G. Inorganic Layer Compounds-Phenomena of Interface Reactions with Organic-Compounds [J]. Naturwissenschaften,1981,68(2):82-88.
    [125]LAGALY G. Characterization of Clays by Organic-Compounds [J]. Clay Miner,1981,16(1):1-21.
    [126]LAGALY G. Interaction of Alkylamines with Different Types of Layer Compounds [J]. Abstr Pap Am Chem S,1986,191:38-Inor.
    [127]LAGALY G. Clay Organic Interactions [J]. Philos T Roy Soc A,1984,311(1517):315-332.
    [128]YUI T, YOSHIDA H, TACHIBANA H, et al. Intercalation of polyfluorinated surfactants into clay minerals and the characterization of the hybrid compounds [J]. Langmuir,2002,18(3):891-896.
    [129]JORDAN J W. Organophilic Bentonites. I. Swelling in Organic Liquids [J]. The Journal of physical chemistry,1949,52(2):294-306.
    [130]SLABAUGH W H, HILTNER P A. Swelling of Alkylammonium Montmorillonites [J]. J Phys Chem-Us,1968,72(12):4295-4298.
    [131]BURGENTZLE D. Solvent-based nanocomposite coatingsl. Dispersion of organophilic montmorillonite in organic solvents [J]. J Colloid Interf Sci,2004,278(1):26-39.
    [132]CONNOLLY J, VAN DUIJNEVELDT J S, KLEIN S, et al. Effect of surfactant and solvent properties on the stacking behavior of non-aqueous suspensions of organically modified clays [J]. Langmuir,2006,22(15):6531-6538.
    [133]HO D L, GLINKA C J. Effects of solvent solubility parameters on organoclay dispersions [J]. Chem Mater,2003,15(6):1309-1312.
    [134]HASANI-SADRABADI M M, EMAMI S H, GHAFFARIAN R, et al. Nanocomposite membranes made from sulfonated poly(ether ether ketone) and montmorillonite clay for fuel cell applications [J]. Energ Fuel,2008,22(4):2539-2542.
    [135]HASANI-SADRABADI M M, EMAMI S H, MOADDEL H. Preparation and characterization of nanocomposite membranes made of poly(2,6-dimethyl-1,4-phenylene oxide) and montmorillonite for direct methanol fuel cells [J]. J Power Sources,2008,183(2):551-556.
    [136]HASANI-SADRABADI M M, DASHTIMOGHADAM E, MAJEDI F S, et al. Nafion (R)/bio-functionalized montmorillonite nanohybrids as novel polyelectrolyte membranes for direct methanol fuel cells [J]. J Power Sources,2009,190(2):318-321.
    [137]HASANI-SADRABADI M M, GHAFFARIAN S R, MOKARRAM-DORRI N, et al. Characterization of nanohybrid membranes for direct methanol fuel cell applications [J]. Solid State Ionics,2009,180(32-35):1497-1504.
    [138]HASANI-SADRABADI M M, DASHTIMOGHADAM E, GHAFFARIAN S R, et al. Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone) [J]. Renew Energ,2010,35(1):226-231.
    [139]HASANI-SADRABADI M M, DORRI N M, GHAFFARIAN S R, et al. Effects of Organically Modified Nanoclay on the Transport Properties and Electrochemical Performance of Acid-Doped Polybenzimidazole Membranes [J]. J Appl Polym Sci,2010,117(2):1227-1233.
    [140]CHEN Y N, CHUNG P Y, YEN S C. Conductivity and methanol permeability of sulfonated polystyrene membrane with dispersed montmorillonite nanoclay [J]. Polym Composite,2012, 33(12):2105-2113.
    [141]JAAFAR J, ISMAIL A F, MATSUURA T. Effect of dispersion state of Cloisitel5A (R) on the performance of SPEEK/Cloisitel5A nanocomposite membrane for DMFC application [J]. J Appl Polym Sci,2012,124(2):969-977.
    [142]GOSALAWIT R, CHIRACHANCHAI S, SHISHATSKIY S, et al. Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs) [J]. J Membrane Sci,2008,323(2):337-346.
    [143]JUNG D H, CHO S Y, PECK D H, et al. Preparation and performance of a Nafion (R)/montmorillonite nanocomposite membrane for direct methanol fuel cell [J]. J Power Sources, 2003,118(1-2):205-211.
    [144]HASANI-SADRABADI M M, DASHTIMOGHADAM E, MAJEDI F S, et al. Novel nanocomposite proton exchange membranes based on Nafion (R) and AMPS-modified montmorillonite for fuel cell applications [J]. J Membrane Sci,2010,365(1-2):286-293.
    [145]ZHANG G W, ZHOU Z T. Organic/inorganic composite membranes for application in DMFC [J]. J Membrane Sci,2005,261(1-2):107-113.
    [146]CHANG J H, PARK J H, PARK G G, et al. Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials [J]. J Power Sources,2003,124(1):18-25.
    [147]CHOI Y S, KIM T K, KIM E A, et al. Exfoliated sulfonated poly(arylene ether sulfone)-clay nanocomposites [J]. Adv Mater,2008,20(12):2341-+
    [148]SONG M K, KIM Y M, KIM Y T, et al. Ultrathin reinforced nanocomposite membranes for direct methanol fuel cells [J]. J Electrochem Soc,2006,153(12):A2239-A2244.
    [149]KIM Y, LEE J S, RHEE C H, et al. Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic-inorganic composite membranes [J]. J Power Sources,2006, 162(1):180-185.
    [150]LEE W, KIM H, KIM T K, et al. Nation based organic/inorganic composite membrane for air-breathing direct methanol fuel cells [J]. J Membrane Sci,2007,292(1-2):29-34.
    [151]GOSALAWIT R, CHIRACHANCHAI S, SHISHATSKIY S, et al. Krytox-Montmorillonite-Nafion (R) nanocomposite membrane for effective methanol crossover reduction in DMFCs [J]. Solid State Ionics,2007,178(29-30):1627-1635.
    [152]RHEE C H, KIM H K, CHANG H, et al. Nafion/sulfonated montmorillonite composite:A new concept electrolyte membrane for direct methanol fuel cells [J]. Chem Mater,2005,17(7): 1691-1697.
    [153]SILVA R F, PASSERINI S, POZIO A. Solution-cast Nafion((R))/montmorillonite composite membrane with low methanol permeability [J]. Electrochim Acta,2005,50(13):2639-2645.
    [154]THOMASSIN J M, PAGNOULLE C, CALDARELLA G, et al. Impact of acid containing montmorillonite on the properties of Nafion (R) membranes [J]. Polymer,2005,46(25): 11389-11395.
    [155]THOMASSIN J M, PAGNOULLE C, BIZZARI D, et al. Improvement of the barrier properties of Nafion (R) by fluoro-modified montmorillonite [J]. Solid State Ionics,2006,177(13-14): 1137-1144.
    [156]LIN Y F, YEN C Y, HUNG C H, et al. A novel composite membranes based on sulfonated montmorillonite modified Nafion((R)) for DMFCs [J]. J Power Sources,2007,168(1):162-166.
    [157]SONG M K, PARK S B, KIM Y T, et al. Characterization of polymer-layered silicate nanocomposite membranes for direct methanol fuel cells [J]. Electrochim Acta,2004,50(2-3): 639-643.
    [158]KIM T K, KANG M, CHOI Y S, et al. Preparation of Nafion-sulfonated clay nanocomposite membrane for direct menthol fuel cells via a film coating process [J]. J Power Sources,2007,165(1): 1-8.
    [159]KLINE G M. Brandrup J-Polymer Handbook [J]. Science,1966,153(3742):1372-&.
    [160]KIM D J, HWANG H Y, NAM S Y, et al. Characterization of a composite membrane based on SPAES/sulfonated montmorillonite for DMFC application [J]. Macromol Res,2012,20(1):21-29.
    [161]YU Y H, LIN C Y, YEH J M, et al. Preparation and properties of poly(vinyl alcohol)-clay nanocomposite materials [J]. Polymer,2003,44(12):3553-3560.
    [162]GU S, HE G H, WU X M, et al. Preparation and Characterization of Poly(vinylidene fluoride)/Sulfonated Poly(phthalazinone ether sulfone ketone) Blends for Proton Exchange Membrane [J]. J Appl Polym Sci,2010,116(2):852-860.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700