用户名: 密码: 验证码:
层状硅酸盐纳米改性沥青及其混合料动态力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国公路建设的飞速发展,内蒙、西藏、青海等西部地区广泛采用了具有优良路用性能和舒适行车性能的沥青路面。西部地区紫外光辐射强烈、日照时间长、昼夜温差大,使得沥青路面更易因老化而产生疲劳破坏。本文结合交通部西部交通建设科技项目“层状硅酸盐改性沥青及其混合料路用性能研究与应用”,在分析研究现有的聚合物/层状硅酸盐纳米复合材料的制备方法及效果的基础上,提出采用层状硅酸盐无机材料进行沥青改性,并对改性沥青及其混合料的动态力学性能进行了系统研究。
     采用熔融插层方法,制备了具有插层结构的有机化蒙脱土纳米改性沥青,并对其路用性能进行了研究。结果表明,有机蒙脱土片层分散在沥青中起到阻隔的作用,阻碍了沥青分子链的热运动,显著改善沥青的温度敏感性、耐老化性能及抗疲劳性能;有机蒙脱土对沥青胶浆的疲劳性能的改善作用在高应力时比低应力更加明显。
     采用单轴压缩、四点弯曲、间接拉伸、直接拉伸实验,对有机蒙脱土改性沥青混凝土动态力学性能进行系统研究,建立了相应的疲劳方程。结果表明,有机化蒙脱土纳米改性沥青显著改善了沥青混凝土的抗压强度、抗弯曲疲劳特性与动、静态回弹模量,低温和常温下四点弯曲疲劳性能与直接拉伸强度和破坏拉伸应变等动态力学性能。沥青混凝土的累积耗散能与疲劳寿命成正比,低温时在消耗相同能量时的疲劳寿命比常温时高。不同的疲劳评价方法可以从不同角度反映沥青混凝土的疲劳寿命。对于同种沥青混凝土,四点弯曲疲劳实验所得的疲劳寿命最高,直接拉伸疲劳实验次之,间接拉伸疲劳寿命最短。
     上述研究工作对于提高沥青材料的环境适应性、解决寒冷地区沥青路面的动态疲劳破坏,具有重要的理论意义和实际应用价值。论文所取得的研究成果为层状硅酸盐纳米改性沥青路面的设计提供了技术支持和理论依据,对于促进交通材料的发展、推动我国公路建设有重要意义
With the rapid development of road construction in China, asphalt pavement which has good service performance has been widely used in the western China including Inner Mongolia, Tibet and Qinghai etc. The western region is under the environmental conditions of more ultraviolet radiation, longer sunshine time and higher diurnal temperature, which will accelerate the aging of bitumen and consequently cause the fatigue damage of asphalt pavement. Funded by the Western Communication Construction Project of Communication Ministry of China, this research reviewed the preparation and effect of polymer/layered silicate nanocomposites at home and aboard. And the layered silicate modified bitumen was put forward; meanwhile, the dynamic mechanic performances of bitumen and asphalt mixture were researched.
     Layered silicate modified bitumen was prepared via melting intercalated method, and the performances were studied. The results show that most of the silicate layers were randomly dispersed in the bitumen with nano-lamellar structure, which hinders the thermal motion of bitumen molecule and correspondingly improves the properties of bitumen such as temperature-sensitivity, anti-aging and fatigue resistance. Moreover, the improvement effect of silicate on fatigue of bitumen is better at higher stress than at lower stress ratio.
     The dynamic mechanical performances of layered silicate modified asphalt mixtures were studied using the Axis Compression Test, Beam Bending Test, Indirect Tensile Test and Direct Test. And the corresponding fatigue equations were established. The results show that the addition of layered silicate modified bitumen can improve the dynamic mechanical performances, including compressive strength, anti-bending fatigue characteristic, dynamic and static state rebound modulus, four-point bending fatigue property and direct tensile strength and damage tension strain at low or room temperature. Cumulated dissipated energy of asphalt concrete is proportional to the fatigue life, which is longer at the lower temperature than at the room temperature while the consumed energy is the same. The fatigue life of asphalt concrete could be appraised from different sides through different fatigue evaluation methods. For the same asphalt concrete, the fatigue life from the four point bending fatigue experiment is the highest, the one from the direct tension test is the lower and the one from the indirect tension test is the lowest.
     The research work above is of great both theoretical and practical significance, especially for improving the bitumen properties and solving the fatigue damage of asphalt pavement. The achievement will supply technology guide and theory basis for the application of layered silicate nanometer modified asphalt concrete. And there is a great important to accelerate the development of traffic material and road construction in our country.
引文
[1]中国公路运输业发展研究报告(2005/2006)[R].北京:人民交通出版社,2006,3.
    [2]国家高速公路网规划(2004)[R].北京:人民交通出版社,2005,2.
    [3]黄瑞豹,林洲.沥青路面早期损坏的分析与防治[J].交通标准化,2006,(11),147-150.
    [4]崔颖超,孙民刚,潘国强.公路改建中沥青混凝土路面病害检测与评价[J].地下空间,2005,(S1),1163-1167.
    [5]施树明,初秀民,王荣本.沥青路面破损图像测量方法研究[J].公路交通科技,2004,(07),12-16.
    [6]孙成仁,何桂平.路面破损状况自动检测系统[J].公路,2002,(07),19-22.
    [7]蒋彬,刘淑荣.基于图象识别的公路路面破损自动检测研究进展[J].东北公路,2002,(03),19-21.
    [8]何桂平,曹翠星,.孙成仁.路面破损自动评价技术的现状和发展[J].中外公路,2002,(03),11-13.
    [9]Tarek A. Monem, Amr A. Oloufa, and Hesham Mahgoub. Asphalt crack detection using thermography[C]. InfraMation 2005 Proceeding,2005:1-12.
    [10]朱道本译.导电高分子材料[M].北京:北京科学出版社,1989:145-153.
    [11]杨大川译.金属填充聚合物—性能与应用[M].北京:中国石化出版社,1992:104-106.
    [12]汤浩,陈欣方,罗云霞.复合型导电高分子材料导电机理研究及电阻率计算[J].高分子材料科学与工程,1996,12(3):1-7.
    [13]13Li R.Q., Dou D.Y.. Complicated resistivity-temperature behavior in polymer composites [J]. Journal of Applied Polymer Science,2002, (86):2217-2221.
    [14]席保锋,刘辅宜,徐传骧.聚合物/炭黑复合材料PTC特性的理论研究进展[J].高分子材料科学与工程.1999,15(6):25-29.
    [15]Chen G.H., Weng W. G. Nonlinear conduction in nylon-6/foliated graphite nanocomposites above the percolation threshold [J]. Journal of Polymer Science:Part B: Polymer Physics,2004,(42):155-167.
    [16]Yu G, Zhang M. Q., Effect of filler treatment on temperature dependence of resistivity of carbon-black-filled polymer blends [J]. Journal of Applied Polymer Science, 1999, 73:489-494.
    [17]Weihua Di, Zhang Guo. Resistivity-temperature behavior of carbon fiber filled semicrystalline composites [J]. Journal of Applied Polymer Science,2004, 91:1222-1228.
    [18]Sau K. P., KhastgiD. r, Chaki T. K.. Electrical conductivity of carbon black and carbon fibre filled silicone rubber composites. Die Angewandte Makromolekulare Chemie 1998 (258):11-17.
    [19]王钧,刘东,张联盟.碳纤维增强聚合物基复合材料自诊断性能研究[J].武汉理工大学学报,2002,24(4):36-40.
    [20]Zhang X.W., Pan Y.. Piezoresistance of conductor filled insulator Composites [J]. Polymer International,2001,(50):229-236.
    [21]Fu Xuli and Chung D.D.L., Effect of curing age on the self-monitoring behavior of carbon fiber reinforced mortar [J]. Cement and Concrete Research,1997, 27(9):1313-1318.
    [22]Chung D.D.L.. Self-monitoring structural materials [J]. Materials Science and Engineering, R22 (1998) 57-78.
    [23]Fu Xuli, Chung D.D.L. Self-monitoring in carbon fiber reinforced mortar by reactance measurement [J]. Cement and Concrete Research,1997, (27):845-852.
    [24]Yao Wu, Chen Bing and Wu Keru. Smart behavior of carbon fiber reinforced cement-based composite [J]. Journal of Materials Science & Technology, 2003,(19):239-245.
    [25]Carrion F. J., Doyle J. F., Lozano A. Structural health monitoring and damage detection using a sub-domain inverse method [J]. Smart Mater. Struct.2003,(12):776~784.
    [26]Ken P Chong, Nicholas J Carino and Glenn Washer. Health monitoring of civil infrastructures [J]. Smart Mater. Struct.2003,(12):483~493.
    [27]Gerhard Mook, Juergen Pohl and Fritz Michel. Non-destructive characterization of smart CFRP structures [J]. Smart Mater, Struct.,2003,(12):997-1004.
    [28]Wang Shoukai, Kowalik Daniel P and Chung D.D.L. Self-sensing attained in carbon-fiber polymer-matrix structural composites by using the interlaminar interface as a sensor [J]. Smart Mater. Struct.,2004,(13):570-592.
    [29]Masri S F, Sheng L. H., Caffrey J. P., Nigbor R. L., MWahbeh and A M Abdel-Ghaffar. Application of a web-enabled real-time structural health monitoring system for civil infrastructure systems [J]. Smart Mater. Struct.,2004,(13):1269-1283.
    [30]Yung Bin Lin, KuoChun Chang, Jenn Chuan Chern and Lon AWang. The health monitoring of a prestressed concrete beam by using fiber Bragg grating sensors [J]. Smart Mater. Struct.,2004,(13):712-718.
    [31]Hiroshi Tsuda, Nobuyuki Toyama, KeiUrabe and JunjiTakatsubo. Impact damage detection in CFRP using fiber Bragg gratings [J]. Smart Mater. Struct.,2004,(13): 719-724.
    [32]Shui zhonghe, Stroeven piet. Electrical conductive behavior of cementitious composites with low content of hybrid steel-carbon fiber systems [J]. Journal of Wuhan University of Technology,1998,(13):18-24.
    [33]Chen P u-Woei, Chung D.D.L.. Concrete as a new strain/stress sensor [J]. Composites: Part B,1996,(27B):11-23.
    [34]Fu Xuli, Chung D.D.L.. Contact electrical resistivity between cement and carbon fiber: its decrease with increasing bond strength and its increase during fiber pull-out [J]. Cement and Concrete Research,1995,(25):1391-1396.
    [35]Fu Xuli, Chung D.D.L.. Self-monitoring of fatigue damage in carbon fiber reinforced cement [J]. Cement and Concrete Research,1996,(26):15-20.
    [36]Wang S., Chung D.D.L.. Self-monitoring of strain and damage by a carbon-carbon composite [J]. Carbon,1997,(35):621-630.
    [37]张登良.沥青与沥青混合料[J].北京:人民交通出版社,1993:15-89.
    [38]吴少鹏,磨炼同,林振华.石油沥青及传导性能的研究[J].国外建材科技,2001,(22):14-16.
    [39]Wu Shaopeng, Mo Liantong, Shui Zhonghe, Chen Zheng. Investigation of the conductivity of asphalt concrete containing conductive fillers [J]. Carbon,2005,(43):1358-1363.
    [40]Wu Shaopeng, Mo Liantong, Shui Zhonghe. Percolation model of graphite-modified asphalt concrete [J]. J. Wuhan Univ. Tech. (Mater. Sci. Ed.),2005, (20)1:111-113.
    [41]Wu shaopeng, Mo Liantong, Shui Zhonghe. Piezoresistivity of graphite modified asphalt-based composites [J]. Key Engineering Materials,2003,(249):391-396.
    [42]Wu Shaopeng, Liu.Xiaoming Research of self-monitoring mechanism of electrically conductive asphalt-based composite [J]. Key Engineering Materials,2006,(326-328): 1499-1502.
    [43]Wen S. and Chung D.D.L.. Pitch-matrix composites for electrical, electromagnetic and strain-sensing applications [J], Journal of Materials Science,2005,(40)15:3897-3903.
    [44]王建军,宋显辉,李卓球.碳纤维水泥基复合材料压敏性应用研究[J].华中科技大学学报(自然科学版),2007,35(03):100-103.
    [45]王绍怀,张肖宁.沥青混合料疲劳破坏预测方法的研究[J].哈尔滨建筑大学学报,1995,28(2):37-44.
    [46]吕伟民.沥青混合料设计原理与方法[M].上海:同济大学出版社,2000.40-80.
    [47]彭波,刘红瑛.SAC及superpave沥青混合料路用性能[J].长安大学学报(自然科学版),2002,22(6):23-29.
    [48]Dana Pantea, Hans Darmstadt, Serge Kaliaguine. Electrical conductivity of thermal carbon fibers [J]. Carbon,2002,40(13):2461-2468.
    [49]沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,1999.60-79.
    [50]中华人民共和国交通行业标准.公路工程沥青及沥青混合料实验规程(JTJ052-200)[S],北京:人民交通出版社,2000.
    [51]JTG F40-2004,公路沥青路面施工技术规范[S].北京:人民交通出版社,2005.
    [52]曾竟成.复合材料理化性能[M].长沙:国防科技大学出版社,1998:84-98.
    [53]NCHRP Report 539:Aggregate properties and the performance of superpave-designed hot mix asphalt.
    [54]JTG E42-2005,公路工程集料实验规程[S].北京:人民交通出版社,2006,1.
    [55]Wu Shaopeng, Liu Xiaoming. Fatigue Failure Self-monitoring of graphite modified bituminous composites. Proceedings of the 2nd International Conference on Structural Health Monitoring of Intelligent Infrastructure 16-18 November 2005, Shenzhen, China, 1494-1498.
    [56]Wu Shaopeng, Liu Xiaoming. Deformation self-monitoring of bituminous composites containing conductive fillers. Proceedings of the 2nd International Conference on Structural Health Monitoring of Intelligent Infrastructure 16-18 November 2005, Shenzhen, China,1499-1503.
    [57]’Whiteoak D.壳牌沥青手册[M].北京:英国壳牌石油公司沥青部,1995:1-45.
    [58]磨炼同.导电沥青混凝土的制备与研究[D].武汉:武汉理工大学,2004.6.
    [59]周晓青,李宇峙,应荣华.沥青混合料拉伸疲劳实验下疲劳损伤特性研究[J].重庆建筑大学学报,2005,27(5):47-52.
    [60]许志鸿,李淑明,高英.沥青混合料疲劳性能研究[J].交通运输工程学报,2001,1(1):20-24.
    [61]黄爱明,刘铁山.沥青混合料疲劳性能的能耗分析方法研究[J].山西建筑,2005,31(23):148-149.
    [62]Monismith C L, F Long. Overlay design for cracked and seated Portland cement concrete (PCC) pavement-interstate route 710 [C]. USA:University of California-Berkley,1999.
    [63]Monismith C L, Viscoelastic behavior of asphalt concrete pavements,1st International Conference on the Structural Design of Asphalt Pavements,1962. Vol.1.
    [64]郑健龙,吕松涛,田小革.沥青混合料粘弹性参数及其应用[J].郑州大学学报,2004,25(4):8-12.
    [65]NCHRP Report 325:Significant findings from full-scale accelerated pavement testing
    [66]David Harold Timm. A phenomenological model to predict thermal crack spacing of asphalt pavement. A thesis submitted to the Faculty of the Graduate School of the University of Minnesota in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.
    [67]AASHTO Designation:T 321-03. Standard method of test for determining the fatigue life of compacted hot-mix asphalt (HMA) subjected to repeated flexural bending [S].
    [68]AASHTO Designation:T 322-03:Standard test method for determining the creep compliance and strength of hot mix asphalt (HMA) using the indirect tensile test device [S].
    [69]韩宝国,关新春,欧进萍.碳纤维水泥石测试方法研究[J].玻璃钢/复合材料,2003,24(6):6-9.
    [70]简华丽,谢慧才,刘金伟.碳纤维混凝土中纤维含量对其力学、压敏性能的影响[J].混凝土,2003,170(12):21-23.
    [71]Wu shaopeng, Mo Liantong, Shui Zhonghe. An Improvement in electrical properties of asphalt concrete[J]. Journal of Wuhan Univesity of Technology (Mater.Sci.Ed),2002,17 (4):63-65.
    [72]吴少鹏,磨炼同,水中和.导电沥青混凝土的制备研究[J].武汉理工大学学报(交通科学与工程版),2002,26(5):566-569.
    [73]吴少鹏,刘小明,等.自诊断沥青混凝土及其应用前景[J].华中科技大学学报,2005,22(3):1-4.
    [74]Zou J.F., Yu Z. Z., Pan Y.X.. Conductive mechanism of polymer graphite conducting composites with low percolation threshold [J]. Journal of Polymer Science:Part B: Polymer Physics,2002, (40):954-963.
    [75]南策文,陈政新.Ti-Al_2O_3金属陶瓷的渗流模型[J].物理学报,1987,36:511-513.
    [76]王乐.国外沥青路面车辙的控制[J].交通标准化,2006,(08),17-19.
    [77]陆长征.碳黑填充导电塑料的研究[J].塑料,2000,29(1):32-34.
    [78]景志坤.碳黑在塑料(橡胶)中的作用[J].塑料科技,1994,99(1):14-20.
    [79]陈晓梅,全成子,沈经纬.聚丙烯/石墨导电复合材料的制备与表征[J].中国塑料,2001,15(9):40-43.
    [80]Tseng Kevin K and Wang Liangsheng. Smart piezoelectric transducers for in situ health monitoring of concrete [J]. Smart Mater. Struct.2004,(13):1017-1024.
    [81]Hou Y. H., Zhang M. Q.. Improvement of conductive network quality in carbon black-filled polymer blends [J]. Journal of Applied Polymer Science,2002,84, 2768-2775.
    [82]Ezquerra T.A., Connor N.T.. Alternating-current properties of graphite, carbon-black and carbon-fiber polymeric composites [J]. Composites Science and technology,2001, 61:903-909.
    [83]Taya M., Kim W.J., Ono K.. Piezoresistivity of a short fiberrelastomer matrix composite [J]. Mechanics of Materials,1998,28:53-59.
    [84]Novikov V. V.. Frequency dependences of dielectric properties of petal-Insulator composites [J]. Physics of the Solid State,2002,44, (11):2055-2062.96Sun Mingqing, Li Zhuoqiu, Mao Qizhao. A study on thermal self-monitoring of carbon fiber reinforced concrete [J]. Cemnt and Concrete Research,1999,(29):169-771.
    [85]李晓军,张肖宁.沥青混合料单轴重复加卸载破损CT识别[J].哈尔滨工业大学学报,2005,37(9):1228-1230.
    [86]SHRP-A-656. Development of an asphalt core tomographer. Strategic Highway Research program, National Research Council, Washington,DC 1993.
    [87]Hand GP. Graphite [J]. Mining Engineering.1997,49(2):34-38.
    [88]许立宁,邓海金,等.原位聚合法制备PMMA/石墨纳米导电复合材料[J].塑料工业,2001,29(6):17-19.
    [89]周强,徐瑞清.石墨材料的润滑性能及其开发应用[J].新型碳材料,1997,12(3):11-17.
    [90]Zheng Q., Song Y.. Reversible nonlinear conduction behavior for high-density polyethylene graphite powder composites near the percolation threshold. Journal of Polymer Science:Part B:Polymer Physics,2001,39:2833-2842.
    [91]彭波,靳明,袁万杰.纤维增强沥青混合料性能的研究[J].重庆交通学院学报,2002,21(4):27-29.
    [92]Lee Young-Seak, Lee Byoung-Ky. Surface properties of oxyfluorinated PAN-based carbon fibers[J]. Carbon,2002,40(13):2461-2468.
    [93]唐祖全.导电混凝土路面材料的性能分析及导电组份选择[J].混凝土,2002,150(4):28-32.
    [94]李晓军,张肖宁.CT技术在沥青胶结颗粒材料内部结构分析中的应用.公路交通科技,2005,22(2):14-16.
    [95]Ihn Jeong-Beom and Chang Fu-Kuo. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network [J]. Smart Mater. Struct., 2004, (13):609-620.
    [96]Sun Mingqing, Li Zhuoqiu, Mao Qizhao. A study on thermal self-monitoring of carbon fiber reinforced concrete [J]. Cemnt and Concrete Research,1999,(29):169-771.
    [97]钱庆纬,张经双.纤维混凝土特性研究及应用前景[J].西部探矿工程,2005,114(10):165-167.
    [98]王建军,宋显辉.碳纤维水泥涂层的温敏性研究[J].武汉理工大学学报,2005,12(1):15-21.
    [99]许美萱,刘文广,姚康德.纤维增强复合材料无损检测的新趋势—自诊断智能材料的构思[J].材料导报,1995,2:8-11.
    [100]陈兵,吴科如,姚武.碳纤维水泥基复合材料导电性能研究[J].混凝土与水泥制品,2002(12),6:36-39.
    [101]王后裕,朱可善,言志信.沥青混合料蠕变柔量的一种实用模型及其应用[J].固体力学学报,2002,23(2):232-236.
    [102]AASHTO Designation:TP31-96. Standard method of test for determining the resilient modulus of bituminous mixtures by indirect tension [S].
    [103]张志详,陈荣生,白绮峰.沥青混合料抗车辙性能研究[J].公路交通科技,2006,23(4):19-122.
    [104]刘峰,李宇峙.沥青路面车辙分析与防治[J].中外公路,2005,25(4):192-195.
    [105]李晓军,张肖宁.沥青混合料破损动态识别研究进展[J].长安大学学报,2003,23(6):11-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700