用户名: 密码: 验证码:
石墨烯基二氧化钛纳米复合材料的制备与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对TiO2在光催化降解反应中存在的光生电子和光生空穴复合快、比表面积小、可见光下光催化效能低等不足,本文以石墨烯改性TiO2,制备石墨烯基TiO2纳米复合材料,从而提升TiO2光催化性能为研究思路。首先制备氧化石墨烯(GO),并以氧化石墨烯为基底材料,以Ti(OBu)4为钛源,以HF为形貌控制剂,采用溶剂热法制备了RGO/TiO2纳米复合材料;通过调控TiO2晶面,采用两步水热法制备了RGO/暴露晶面TiO2纳米复合材料;采用水热法和沉淀-析出法,制备AgBr-RGO/TiO2三元纳米复合材料,探讨了复合材料的光催化性能,主要内容如下:
     (1)采用改进的Hummers法制备了氧化石墨烯。以鳞片石墨为原料,以浓H2SO4和KMnO4为氧化剂,通过两步法,先制得氧化石墨,再通过超声分散制得氧化石墨烯。通过XRD、TEM、SEM等手段进行表征,实验制得的氧化石墨烯具有单层或者少层结构,其表面含有大量的-OH、-COOH、C-O-C、C=O等含氧基团。含氧基团的存在,增强了氧化石墨烯在水溶液中的分散性,同时也为后期石墨烯基二氧化钛纳米复合材料的制备过程中,二氧化钛晶体形核长大提供大量的活性位点。
     (2)采用溶剂热法制备RGO/TiO2纳米复合材料。在180℃下通过溶剂热法,以氧化石墨烯和Ti(OBu)4作为初始反应物,在乙醇溶剂中,合成RGO/TiO2纳米复合材料。通过XRD、SEM、TEM、XPS等手段对RGO/TiO2纳米复合材料的进行表征,对该复合材料的形貌及其光催化性能进行讨论。结果表明:氧化石墨烯被还原成石墨烯的同时,石墨烯的表面负载生长锐钛矿二氧化钛颗粒。随着溶剂热时间的延长,氧化石墨烯表面的活性基团减少,还原更加彻底,同时TiO2晶粒有一定的增大趋势;和纯TiO2相比,RGO/TiO2纳米复合材料光催化活性明显提高,石墨烯含量对复合材料的光催化活性有直接的影响。
     (3)采用两步水热法制备RGO/暴露晶面TiO2纳米复合材料。首先,在180℃下通过水热法,以HF为形貌控制剂,Ti(SO4)2为钛源,可控制备了暴露不同晶面的TiO2纳米结构。通过XRD、TEM、SEM、XPS等手段对制备的TiO2进行了表征,实验证明,HF在暴露不同晶面的TiO2纳米材料的制备中,对TiO2不同晶面的形貌的形成起主导的调节作用。在此基础之上,采用二次水热法,180℃条件下,利用先前制备的氧化石墨烯对暴露晶面的TiO2进行修饰改性,调控氧化石墨烯的含量,制备出RGO/暴露晶面TiO2纳米复合材料,对该复合材料的形貌及其光催化性能进行讨论。结果表明,在紫外光下,RGO/暴露晶面TiO2纳米复合材料的光催化活性优于纯TiO2;当GO含量为1%时,RGO/暴露晶面TiO2纳米复合材料的光催化性能最优。
     (4)采用水热法和沉淀-析出法制备AgBr-RGO/TiO2三元纳米复合材料。首先,在180℃下通过水热法,以HF为形貌控制剂,以Ti(SO4)2、氧化石墨烯为原料,可控合成RGO/TiO2二元复合物。通过XRD、TEM、SEM、XPS等手段对制备的二元复合物进行表征,其中TiO2具有双截断八棱锥结构的单晶锐钛矿结构。进而以RGO/TiO2二元复合物为中间物,添加AgNO3及KBr,通过沉淀-析出法在RGO/TiO2二元复合物表面沉积了AgBr纳米颗粒,从而制备出石墨烯基TiO2-AgBr三元纳米复合材料,并对该三元复合材料的形貌及其光催化性能进行讨论。研究表明,在可见光下,AgBr-RGO/TiO2三元纳米复合材料的光催化活性要明显优于RGO/TiO2二元复合物。
Aiming at the existence of TiO2photoproduction electronic and optical cavitycomposite quickly, small specific surface area, low visible light photocatalyticefficiency in photocatalytic degradation reaction.In this paper, the graphene modifiedTiO2, preparation of TiO2nano graphene-based nanocomposites, so as to improve thephotocatalytic properties of TiO2. First prepared graphene oxide(GO), using grapheneoxide as a substrate material,Ti(OBu)4as titanium source, HF as morphology controlagent. Preparation of graphene/TiO2nanocomposites by solvothermalmethod.Regulation of TiO2crystal surface, preparation of RGO/exposed crystal TiO2nanocomposites by two steps hydrothermal method.Preparation of AgBr RGO/TiO2ternary nanocomposites by hydrothermal method and precipitation-precipitationmethod. After that,discusses the photocatalytic performance of the them. The maincontents are as follows:
     (1) Prepared graphene oxide by improved Hummers method. With flake graphite asraw materials, with concentrated H2SO4and KMnO4as oxidant, through two-step, firstobtained graphite oxide. Then prepared graphene oxide(GO) by ultrasonic dispersion.We characterized by XRD, TEM, SEM and other means, we find that the obtained GOhas single or several layers structure.On the surface, contains a lot of-OH,-COOH,C-O-C, C=O groups. They enhance the GO dispersion in an aqueous solution, and alsoprovide a large number of active sites for the preparation of the graphene TiO2nancomposites.
     (2)Preparation of RGO/TiO2nanocomposites by one step solvothermal method.Using Ti(OBu)4and GO as raw materials, controllable synthesis of RGO/TiO2nanocomposites by solvothermal at180℃in Ethanol. Characterized by XRD, TEM,SEM,XPS and other means. And discuss its photocatalytic properties. The results showthat GO was reduced to grapheme.At the same time, the growth of the anatase TiO2particles in the surface of the graphene.With the extension of reaction time, the reactivegroup on the surface of the graphene oxide reduction, reduction more thoroughly,TiO2particles have a tendency to increase. The photocatalytic activity of RGO/TiO2nanocomposites than pure TiO2.The content of grapheme has a direct impact on thephotocatalytic activity of the nanocomposite.
     (3)Preparation of RGO/exposed crystal TiO2nanocomposites by two stepshydrothermal method. First,Using Ti(SO4)2as titanium source, HF as morphology control agent. Controllable Preparation of different crystal surfaces exposed TiO2nanostructures by hydrothermal method at180℃. Characterized by XRD, TEM,SEM,XPS and other means.Experiments show that, HF plays key role in the regulationof different crystal faces of TiO2. On this basis, the use of secondary hydrothermalmethod, using the GO to modify exposure different crystal TiO2surface by secondaryhydrothermal at180℃. And regulate the content of GO prepared RGO/exposed crystalTiO2nanocomposites. Discuss the morphology and its photocatalytic properties. Theresults show that under ultraviolet light, the photocatalytic activity of TiO2crystalsurface exposed graphene nanocomposites than pure TiO2; When GO content of1%, theRGO/exposed crystal TiO2nanocomposites has the best photocatalytic performance.
     (4)Preparation of AgBr RGO/TiO2ternary nanocomposites by hydrothermal methodand precipitation-precipitation method. First,using Ti(SO4)2and GO as raw materials,HF as morphology control agent, controllable synthesis of RGO/TiO2Binarycompounds by hydrothermal at180℃.Characterized by XRD, TEM, SEM,XPS andother means. TiO2has TOB structure of single crystal of anatase. And the binarycompounds as intermediate, add AgNO3and KBr, deposited AgBr nanoparticles on thesurface of RGO/TiO2binary compounds by precipitation-precipitation to preparate ofthe graphene TiO2-AgBr ternary nanocomposites. Discuss the morphology andphotocatalytic properties of ternary composites. Research shows that, under visible lightphotocatalytic activity, AgBr-RGO/TiO2photocatalytic activity of ternarynanocomposites to be significantly better than RGO/TiO2binary compounds.
引文
[1]中华人民共和国环境保护部.2010中国环境状况公报.
    [2]苏莹莹.水处理纳米材料的制备、性能及应用研究[D].青岛:中国科学院海洋研究所,2009.
    [3]中华人民共和国环境保护部.2011中国环境状况公报.
    [4]中华人民共和国环境保护部.2012中国环境公报.
    [5]叶婴齐.工业用水处理技术[M].上海:上海科学普及出版社.1995.
    [6]雷仲存等.工业水处理原理及应用[M].北京:化学工业出版.2003.
    [7]陶俊杰等.城市污水处理技术及工程实例[M].第二版.北京:化学工业出版社.2005.
    [8]苑宝玲.水处理新技术原理与应用[M]北京:化学工业出版.2006.
    [9] Fujishima A, Honda K.[J]. Nature,1972,238:37-38.
    [10] Carey H J, Lawrence J, Tosine M H.[J]. Bulle Environ Contam Toxic,1976,16:697-701.
    [11] S. N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide ion inaqueous solution at titanium dioxide powder. J. Am. Chem. Soc.[J],1977,99(1):303~304.
    [12] X. Bokhimi, A. Morales, M. Aguilar, et al. Local order in titania polymorphs.International Journal of Hydrogen Energy[J],2001,26(12):1279~1287.
    [13]王潺.纳米二氧化钛的制备及光催化性能研究[D].武汉:华中科技大学,2011.
    [14] T. Yamase. Photoredox chemistry of polyoxometalates as a photocatalyst. CatalysisSurveys from Asia,2003,7(4):203~217.
    [15] M. Hu, Y. Xu, J. Zhao. Efficient photosensitized degradation of4-chlorophenolover immobilized aluminum tetrasulfophthalocyanine in the presence of hydrogenperoxide. Langmuir,2004,20(15):6302~6307.
    [16] Hoffmann M R, Martin S T, Wonyong Choi, et al. Environmental application ofsemiconductor photocatalysis[J]. Chemical Reviews,1995,95(1):69-96.
    [17]陈超.碳改性TiO2及其块体结构的制备与可见光活性研究[D].哈尔滨:哈尔滨工业大学:2011.
    [18] Rehman S, Ullah R, Butt A M, et al. Strategies of Making TiO2and ZnO VisibleLight Active[J]. J. Hazard. Mater.,2009,170(2-3):560-569.
    [19] Wu. JM,Shih. HC,Wu. WT,Tseng. YK,Chen. IC. Thermal evaporation growth andthe luminescence property of TiO2nanowires[J]. J. Cryst. Grow,2005,281(2-4):384-390.
    [20] Yang. J, Mei.S,Ferreira. J.M.F. Hydrothermal synthesis of TiO2nanopowders fromtetraalkylammonium hydroxide peptized sols[J].Mater. Sci. Eng: C.2001,C15(1-2):183-185.([21] Li. X.L, Peng.Q, Yi. J.X, Wang. X, Li. Y.D. Near monodisperse TiO2nnoparticles and nanorods[J].Chem.sEur. J.2006,12(8):2383-2391.
    [22] Xu.J, Ge.J. P, Li.Y.D. Solvothermal Synthesis of Monodisperse PbSeNanocrystals[J].J. Phys. Chem. B.2006,110(6):2497-2501.
    [23] Wang.X, Zhuang. J, Peng. Q, Li.Y.D. A general strategy for nanocrystalsynthesis[J].Nature.2005,437(7055):121-124.
    [24] Jian Pan, Gang Liu,Gao Qing (Max) Lu, and Hui-Ming Cheng. On the TruePhotoreactivity Order of {001},{010}, and {101} Facets of Anatase TiO2Crystals[J].Angew. Chem. Int. Ed.2011,50,2133–2137.
    [25] XuJ, Ge J P, Li Y D. Solvothermal synthesis of monodisperse PbSenanocrystals[J].Phys.Chem. B,2006,110(6):2497-2501.
    [26] Wang X, Zhuang J, Peng Q, Li Y D. A general strategy for nanocrystalsynthesis[J].Nature,2005,43'7(7055):121-124.
    [27] Wei W, Yao Y, Huang T, Yu A. Solvothermal growth of well-aligned TiO2Nanowire arrays for dye-sensitized solar cell: dependence of morphology andvertical orientation upon substrate pretreatment[J]. Int. J. Electrochem. Sci.,2011,6:1871-1879.
    [28] Li X L, Peng Q, Yi J X, Wang X, Li Y D. Near monodisperse TiO2nanoparticlesand nanorods[J]. Chem. Eur. J.,2006,12(8):2383-2391.
    [29] Zhang Z., Zhong X H, Liu S, Li D, Han M. Aminolysis route to monodispersetitania nanorods with tunable aspect ratio[J]. Angew. Chem. Int. Ed.,2005,44(22):3466-3470.
    [30] Liu C, Yang S. Synthesis of angstrom-scale anatase titania atomic wires[J]. ACSNano,20093(4):1025-1031.
    [31] yllon. J. A, Figueras.A. Preparation of TiO2powder using titaniumtetraisopropoxide decomposition in a plasma enhanced chemical vapor deposition(PECVD) reactor[J]. J. Mater. Sci. Lett.1999,18(16):1319-1321.
    [32] Pradhan SK.; Reucroft PJ. A study of growth and morphological features ofTiOxNy thin films prepared by MOCVD[J]. J. Cryst. Growth. Journal of CrystalGrowth.2003,250(3-4):588-594.
    [33] Niederberger. M, Bartl. M.H,Stucky. G.D. Benzyl alcohol and titaniumtetrachloride-A versatile reaction system for the nonaqueous and low-temperaturepreparation of crystalline and luminescent titania nanoparticles[J]. Chem. Mater.2002,14(10):4364-4370.
    [34] Parala.H, Devi.A, Bhakta.R, Fischer. R.A. Synthesis of nano-scale TiO2particlesby a nonhydrolytic approach[J]. J. Mater. Chem.2002,12(6):,1625-1627.)
    [35] Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties,modifications, and applications [J]. Chem Rev,2007,107:2891-2959.
    [36]李大成,周大利,刘恒等.纳米TiO2的制备[J].四川有色金属,2003,(2):1-8.
    [37] Shi J, Fang J, Mu R.[J]. Spectro Lab,2006,23(6):1216-1220.
    [38] Ghezzar R M, Abdelmalek F, Belhadj M. Gliding arc plasma assistedphotocatalytic degradation of anthraquinonic acid green25in solution with TiO2[J]. Environment,2007,72(3-4):304-313.
    [39] Yan Wang, Yucheng Wu, Yongqiang Qin, Gaobin Xu, Xiaoye Hu, Jiewu Cui,Hongmei Zheng, Yu Hong, Xinyi Zhang. Rapid anodic oxidation of highly orderedTiO2nanotube arrays. Journal of Alloys and Compounds,509(2011) L157–L160.
    [40] Yucheng Wu, Yan Wang, Jiewu Cui, Guangqing Xu, Xinyi Zhang. Hydrothermaltreatment of TiO2nanotube arrays with AgNO3solutions and their photocatalyticproperties. Advanced Materials Research Vols.181-182(2011) pp702-706.
    [41]吴玉程,王岩,崔接武,秦永强,黄新民.一维纳米TiO2的可控合成及其应用的研究进展.中国有色金属学报,2011,10(21),2430-2447.
    [42] Chang,Z.;Liu,J.;Liu,J.F.;Sun,X.M.Titanate nanosheets and nanotubes: alkalinitymanipulated synthesis and catalyst support application.Journal of MaterialsChemistry2011,21,(1),277-282.
    [43] Barnard,A.S.;Xu,H.F.An Environmentally Sensitive Phase Map of TitaniaNanocrystals. Acs Nano2008,2,(11),2237-2242.
    [44] Barnard, A. S., Mapping the photocatalytic activity or potential free radical toxicityof nanoscale titania. Energy&Environmental Science2011,4,(2),439-443.
    [45]徐建华.新型纳米二氧化钛光催化材料的合成及反应研究[D].复旦大学博士论文,2007.
    [46]杨丽霞.基于二氧化钛的环境功能纳米材料制备与应用研究[D].湖南大学博士论文,2009.
    [47]崔玉民,张文保.二氧化钛光催化薄膜[M].北京:化学工业出版社,2011.
    [48]孙海身,李国平.硫掺杂纳米二氧化钛的水热合成及其光催化性能研究[J].新技术新工艺,2011,9:100-102.
    [49]肖逸帆,柳松.掺碳二氧化钛光催化的研究进展[J].硅酸盐学报,2011,30(2):349-355.
    [50] Ratanatawanate,C.;Xiong,C.R.;Balkus,K.Fabrication of PbS Quantum Dot DopedTiO2Nanotubes. Acs Nano2008,2,(8),1682-1688.
    [51] Ding,S.J.;Chen,J.S.;Lou,X.W.One-Dimensional Hierarchical Structures Composedof Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and TheirLithium-Storage Properties.Advanced Functional Materials2011,21,(21),4120-4125.
    [52] Kim, J. Y.; Noh, J. H.; Zhu, K.; Halverson, A. F.; Neale, N. R.; Park, S.; Hong, K.S.;Frank,A.General Strategy for Fabricating Transparent TiO2Nanotube Arrays forDye-Sensitized Photoelectrodes: Illumination Geometry and Transport Properties.Acs Nano2011,5,(4),2647-2656.
    [53] Zhang,H.;Lv,X.J.;Li,Y.M.;Wang,Y.;Li,J.H.P25-Graphene Composite as a HighPerformance Photocatalyst. Acs Nano2010,4,(1),380-386.
    [54]和东亮.掺杂改性的二氧化钛纳米材料的光催化性能研究[D].吉林大学博士论文,2008.
    [55] Novoselov K S,Geim A K,Morozov S V,Jiang D, Zhang Y,Dubonous SV,Grigorieva IV,Firsov A A. Electric Field Effect in Atomically Thin CarbonFilms[J].Science,2004,306:666-669.
    [56] Peierls R E. Quelques Proprietes Typiques Des Corpses Solides [J]. Ann. LH.Poincare,1935,5:177-222.
    [57] Landau L D. Zur Theorie Der Phasenumwandlungen II [J]. Phys. ZSowjetmion,1937,11:26-35.
    [58] Merniin N D,Wagner H. Absence of Ferromagnetismor Antiferromagnetismin Oneor Two Dimensional Isotropicheisenberg Models [J], Phys RevLett,1966,17(22):1133-1136.
    [59] Mermin N D. Crystalline Order in Two Dimensions [J]. PhysRev,1968,176(1):250-254.
    [60] Geim A K,Novoselov K S. The Rise of Graphene[J]. Nature materials,2007,6:183-191.
    [61] Bai, S.; Shen, X. P. Graphene-inorganic nanocomposites [J]. RSC Adv.2012,2,64-98.5.
    [62] Acik,M.; Chabal, Y. J. Nature of graphene edges: A review [J]. Jpn, J. Appl.Phys.2011,50,070101.6.
    [63] Geim, A. K. Random walk to graphene [J]. Int. J. Mod. Phys. B2011,25,4055-4080.
    [64] Novoselov K S,Geim A K, Morozov S V.et al. Two-Dimensional Gas ofMassless Diracfermions in Graphene[J]. Nature,2005,438;197-200.
    [65] Bolotina K I,Sikesb K J,Jianga Z,d,Klimac M,Fudenberga Gt, Honec J,KimaP,Stormera H L. Ultrahigh Electron Mobility in Suspended Graphene[J]. SolidStateCommm,2008,146;351-355.
    [66] Zhang Y B,Tan Y W,Stormer H L,Kim P.Experimental observation of the quantumHall effete and Berry’s Phase in grapheme [J].Nature.2005,438:201-204.
    [67] Bolotina K I,Sikesb K J,Jianga Z,d,Klimac M,Fudenberga Gt, Honec J,KimaP,Stormera H L. Ultrahigh Electron Mobility in Suspended Graphene[J]. SolidState Commm,2008,146;351-355.
    [68] Lee C, Wei X D, Kysar J W, et al. Measurement of the Elastic Properties andIntrinsic Strength of Monolayer Graphene [J]. Science,2008,321:385-388.
    [69] Balandin A A, Ghosh S, Bao W Z,Calizo R, Teweldebrhan D, Miao F, and Lau CN.Superior Thermal Conductivity of Single-Layer Graphene [J]. Nano Lett,2008,8(3):902-907.
    [70] Stankovich, S.; Dikin, D. A.; Dommett, G H. B.; Kohlhaas, K. M.; Zimney,E.J.;Stach, E. A.; Piner,R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-basedcompositematerials [J]. Nature2006,442,282-286.
    [71] Tang, L. A. L.; Wang, J.; Loh, K. P. Graphene-based SELDI probe withultrahighextaction and sensitivity for DNA oligomer [J]. J. Am. Chem. Soc.2010,132,10976-10977.
    [72] Kim, Y. K.; Na, H. K.; Kwack, S. J.; Ryoo, S. R.; Lee, Y.; Hong, S.; Hong, S.;Jeong,Y.; Min, D. H. Synergistic effect of graphene oxide/MWCNT films in laserdesorption/ionization mass spectrometry of small molecules and tissue imaging [J],ACS Nano2011,5,4550-4561.)
    [73] Si Y C,Samulski E T. Exfoliated Graphene Separated by Platinum Nanoparticles[J].Chem. Mater,2008,20(21):6792-6797.
    [74] Rangel, N. L.; Seminario, J. M. Graphene terahertz generators for molecularcircuits and sensors [J]. J. Phys. Chem. A2008,772,13699-13705.
    [74] Shivaraman S,Barton R A,Yu X,Alden J,Herman L,Chandrashekhar M V S,ParkJ,MeEuen P L,Parpia J M,Craighead H G,SPeneer M G.Free-standinge Pitaxialraphene[J].NanoLett.2009,9(9):3100-3105.
    [75] Berger, C, Song, Z.,Li, X.,Wu, X.l. Electronic Confinement and Coherence inPatterned Epitaxial Graphene [J]. Science,2006,312(5777):1191-1196.
    [76] Wu, X., Li, X.,Song, Z.. Weak Antilocalization in Epitaxial Graphene:Evidence forChiral Electrons[J]. Physical Review Letters,2007,98(13):136801.
    [77] Deng D,Pan X,Zhang H,Fu Q,Tan D,Bao X.Free standing grapheme by thermalsplitting of silieon carbide granules[J].Ady.Mater.2010,22(19):2168-2171.
    [78] Srivastava, S. K.; Shukla, A. K., Vankar, V.; Kumar, V. Growth, structure and fieldemission characteristics of petal like carbon nano-structured thin films [J]. ThinSolid Films2005,492,124-130.
    [79] Reina A, Jia X T, Ho J, et al. Large Area, Few-Layer Graphene Films on ArbitrarySubstrates by Chemical Vapor Deposition[J]. Nano Lett,2009,9:30-35.
    [80] Kim K S, Zhao Y, Jang H, et al. Large-Scale Pattern Growth of Graphene Filmsfor Stretchable Transparent Electrodes [J]. Nature,2009,457:706-710.
    [81] Li X S, Cai W W, An J H, et al. Large-Area Synthesis of High-Quality andUniform Graphene Films on Copper Foils[J]. Science,2009,324:1312-1314.
    [82] Bae S, Kim H, Lee Y, et al. Roll-to-Roll Production of30-Inch Graphene Filmsfor Transparent Electrodes [J]. Nature Nanotechnology,2010,5(8):574-578.)
    [83] Schhmiepp H C, Li J, McAllister M J, et al. Functionalized Single Graphene SheetsDerived from Splitting Graphite Oxiede [J]. J.Phys.Chem.B,2006,110(11):8535-8539.
    [84] McAllister M J, Li J, Adamson D H, et al. Single Sheet Functionalized Grapheneby Oxidation and Thermal Expansion of Graphite[J], Chem. Mater,2007,19:4396-4404.
    [85] Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, et al. Controlled Synthesis ofLarge-Area and Patterned Electrochemic-Ally Reduced Graphene OxideFilms[J].Chem Eur J,2009,15(25):6116-6120.
    [86] Zhou X J, Zhang J L, Wu H X,Yang H J, Zhang J Y, Guo S W. ReducingGraphene Oxide via Hydroxylamine; A Simple and Efficient Route to Graphene[J]. J. Phys.Chem. C,2011,115:11957-11961.
    [87] Li J F, Lin H, Yang Z L, Li J B. A Method for the Catalytic Reduction ofGraphene Oxide at Temperatures Below150oC[J]. Carbon,2011,49;3024-3030.
    [88] Loh, K. P.; Bao, Q. L_; Ang, P. K.; Yang, J. The chemistry of graphene [J]. J.Mater.Chem.2010,20,2277-2289.
    [89] Liu, N.; Luo, R; Wu, H. X.; Liu, Y.H.; Zhang, C.; Chen, J.One-stepionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets drectly from gaphite [J]. Adv. Funct. Mater.2008,18,1518-1525.
    [90] Yan, X.; Cui, X.; Li,B.; Li,L. S. Large, solution-processable graphene quantumdots as light absorbers for photovoltaics [J]. Nano Lett.2010,10,1869-1873.
    [91] Yan, X.; Cui X.; Li, L. S. Synthesis of large, stable colloidal graphene quantumdots with tunable size [J]. J. Am. Chem. Soc.2010,J32,5944-5945.
    [92] Subrahmanyam K S,Panchakarla L S,Govindaraj A,Rao CNR. Simple Method ofPreparing Graphene Flakes by an Arc-Discharge Method[J]. J.Phys.Chem.C,2009,113(11):4257-4259.
    [93] Kosynkin, D. V; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J.; Dimiev, A.;Price,B.J.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to formgrapheme nanoribbons [J]. Nature2009,458,872-876.
    [94] Liu, S.; Yu, J.; Jaroniec, M.: Anatase TiO2with Dominant High-Energy {001}Facets: Synthesis, Properties, and Applications. Chemistry of Materials2011,23,4085-4093.
    [95] Sun, L.; Zhao, Z.; Zhou, Y.; Liu, L.: Anatase TiO2nanocrystals with exposed {001}facets on graphene sheets via molecular grafting for enhanced photocatalyticactivity. Nanoscale2012,4,613-620.
    [96] Liu, J.; Wang, Z.; Liu, L.; Chen, W.: Reduced graphene oxide as capturer of dyesand electrons during photocatalysis: surface wrapping and capture promotedefficiency. Physical Chemistry Chemical Physics2011,13,13216-13221.
    [97] Peining, Z.; Nair, A. S.; Shengjie, P.; Shengyuan, Y.; Ramakrishna, S.: FacileFabrication of TiO2–Graphene Composite with Enhanced Photovoltaic andPhotocatalytic Properties by Electrospinning. Acs Applied Materials&Interfaces2012,4,581-585.
    [98] Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L.; Cheng, H.-M.: Battery Performanceand Photocatalytic Activity of Mesoporous Anatase TiO2Nanospheres/GrapheneComposites by Template-Free Self-Assembly. Advanced Functional Materials2011,21,1717-1722.
    [99] Jun Song, C.; Zhi yu, W.; Xiao Chen, D.; Peng, C.; Xiong Wen, L.:Graphene-wrapped TiO2hollow structures with enhanced lithium storagecapabilities. Nanoscale2011,3.
    [100] Zhang,Y.H.;Tang,Z.R.;Fu,X.Z.;Xu,Y.J.TiO2-Graphene Nanocomposites forGas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: IsTiO2-Graphene Truly Different from Other TiO2Carbon Composite Materials.Acs Nano2010,4,(12),7303-7314.
    [101]张晓燕,李浩鹏,崔晓莉. TiO2/石墨烯复合材料的合成及光催化分解水产氢活性[J].无机化学学报,2009,25(11):1903-1907.
    [102] Zhang X.Y;Li H.P;Cui X.L. Graphene/TiO2nanocomposites: synthesis,characterization and applicationin hydrogen evolution from water photocatalyticsplitting. Journal of Materials Chemistry,2010,20:2801-2806.
    [103] Hao Zhang, Xiao jun Lv,Yue ming Li,Ying Wang,and Jing hong Li:P25-Graphene Composite as a High Performance Photocatalyst. Acs Nano2010,4.
    [104] Zhao, D.; Sheng, G.; Chen, C.; Wang, X.: Enhanced photocatalytic degradation ofmethylene blue under visible irradiation on grapheme/TiO2dyade structure.Applied Catalysis B-Environmental2012,111,303-308.
    [1] Zhang H.,Lv X. J.,Li Y. M., Wang Y..Li J. H. P25-Graphene Composite as aHigh Performance Photocatalyst [J]. Acs Nano.2010,4(1):380-386.
    [2] Yan J., Fan Z. J.,Wei T., Qian W. Z,Zhang M. L..Wei R Fast and reversiblesurface redox reaction of graphene-MnCh composites as supercapacitorelectrodes [J].Carbon.2010'48(13):3825-3833.
    [3] Arico A. S.,Bruce P., Scrosati B., Tarascon J. M..Van Schalkwijk W.Nanostructured materials for advanced energy conversion and storagedevices [J]. Nature Materials.2005,4(5):366-377.
    [4]Li,X.,Wang, X., Zhang, L,,Lee, S.' el al. Chemically Derived,UltrasmoothGraphene Nanoribbon Semiconductors[J]. Science,2008,319(5867):1229-1232.
    [5] Liang, Y. Y.; Wu, D. Q.; Feng, X. L.; Mullen, K. Dispersion of graphenesheets in organic solvent supported by ionic interactions [J], Adv. Mater.2009,27,1679-1683.
    [6] Zhang,B. Q.; Ning, W.; Zhang, J. M.; Qiao, X.; Zhang, J.; He, J. S.; Liu, C.Y.Stable dispersions of reduced graphene oxide in ionic liquids [J]. J. Mater.Chem.2010,20,5401-5403.
    [7] Park,S; Lee, K. S.; Bozoklu, G; Cai, W.; Nguyen, S. T; RuofF, R. S.Grapheneoxide papers modified by divalentions-enhancing mechanicalproperties via chemical cross-linking [J]. ACSNano2008,2,572-578.
    [8] Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes [J].Nat.Nanotechnol.2009,4,217-224.
    [9] Chen, C.; Cai,W. M.; Long, M. C.; Zhou,B. X.; Wu, Y. R; Wu,D. Y.; Feng, YJ.Synthesis of visible-light responsive graphene oxide/TiO2compositeswith p/n heterojunction [J]. ACS Nano2010,4,6425-6432.
    [10]DreyerDR,ParkS,BielawskiCW,RuoffR.ThechemistryofgraPheneoxide[J].Chem.Soe.Rev.2010,39:228-240.
    [11] BC,B. r. Sur le Poids atomique dugra Phite.Ann Chim Phys.1860,59:466)
    [12]Ramesh P, Bhagyalakshmi S,SamPath S. Preparation and Physieochemicaland electroehemieal eharaeterization of exfoliated graphite oxide [J]. J.Colloid Interface Sci.2004,274:95-102.
    [13] Hummers W. S..OfFeman R. E. Preparation of Graphitic Oxide [J]. Journalof the American Chemical Society.1958,80(6):1339-1339.
    [14] Zhang, W., He,W.,Jing, X. Preparation of a Stable Graphene Dispersionwith High Concentration by Ultrasound [J]. Journal of Physical ChemistryB,2010,114(32):10368-10373.
    [15] Xu,Y.,Bai,H.,Lu, G.,Li, C.,et al. Flexible Graphene Films via theFiltration of Water-soluble Noncovalent Functionalized Graphene Sheets[J].Journal of the American Chemical Society,2008,130(18):5856-5857.
    [16] Solis-Fernandez, P., et al., Determining the thickness of chemicallymodified graphenes by scanning probe microscopy [J], Carbon,2010,48:2657-2660.
    [17] Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S. Graphene basedmaterials: Past, present and future [J]. Progress in Materials Science,2011,56(8):1178-1271.
    [18]张琼,贺蕴秋,陈小刚.氧化钛/氧化石墨烯复合结构及其光催化性能[J].科学通报,2010,55(7):620-628.
    [1]王环颖,李文军,常志东,周花蕾,郭会超.表面修饰碳纳米管、二氧化钛复合光催化剂制备及催化活性研究[J].光谱学与光谱分析,2011,31(9):2529-2532.
    [2] Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic carbon-nanotube-TiO2composites [J]. Advanced Materials,2009,21(21):2233-2239.
    [3] Jitianu A, Cacciaguerra T, Benoit R, Chen A. Synthesis and characterization ofcarbon nanotubes-TiO2nanocomposites [J]. Carbon,2004,42(5):1147-1151.
    [4] Geim A K. Graphene: Status and Prospects [J]. Science,2009,324(5934):1530-1534.
    [5] Rao C N, Sood A K, Subrahmanyam K. Graphene: The new two-dimensionalnanomaterial [J]. Angewandte Chemie International Edition,2009,48(42):7752-7777.
    [6]张琼,贺蕴秋,陈小刚.氧化钛/氧化石墨烯复合结构及其光催化性能[J].科学通报,2010,55(7):620-628.
    [7] Huang X, Yin Z Y, Wu S X. Graphene-based Materials: synthesis, characterization,properties, and applications [J]. Small,2011,7(14):1876-1902.
    [8] An X Q, Yu J C. Graphene-based photocatalytic composites [J]. RSC Advances,2011,1(8):1426-1434.
    [9] Williams G, Seger B,Kamat P. TiO2-graphene nanocomposites. UV-assistedphotocatalytic reduction of graphene oxide [J]. ACS Nano,2008,2(7):1487-1491.
    [10] Wong T J, Lim F J, Gao M M, Lee G H, Ho G W. Photocatalytic H2production ofcomposite one-dimensional TiO2nanostructures of different morphologicalstructures and crystal phases with graphene [J]. Catalysis Science&Technology,2013,3(4):1086-1093.
    [11] Jiang B J, Tian C G, Zhou W. In situ growth of TiO2in interlayers of expandedgraphite for the fabrication of TiO2–graphene with enhanced photocatalytic activity[J].Chem.Eur.J.2011,17(30):8379–8387.
    [12]耿静漪,朱新生,杜玉扣. TiO2-石墨烯光催化剂制备及引入石墨烯的方法对光催化性能的影响[J].无机化学学报,2012,28(2):357-361.
    [13] Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S. Graphene based materials:Past, present and future [J]. Progress in Materials Science,2011,56(8):1178-1271.
    [14] Xiang Q J, Yu J G, Jaroniec M. Graphene-based semiconductor photocatalysts [J].Chem. Soc. Rev,2012,41(2):782-796.
    [15] Xiang Q J, Yu J G, Jaroniec M. Synergetic effect of MoS2and graphene ascocatalysts for enhanced photocatalytic H2production activity of TiO2nanoparticles [J]. Journal of the American Chemical Society,2012,134(15):6575-6578.
    [16] Zhang J T, Xiong Z G, Zhao X S. Graphene-metal-oxide composites for thedegradation of dyes under visible light irradiation [J]. Journal of MaterialsChemistry,2011,21(11):3634-3640.
    [17]裴福云,徐慎刚,刘应良,张丽,吕晶,路瑞娟等.染料敏化二氧化钛-石墨烯杂化材料光催化水分解制氢[J].化工学报,2013,64(8):3062-3069.
    [18] Wang W G, Yu J G, Xiang Q J, Cheng B. Enhanced photocatalytic activity ofhierarchical macro/mesoporous TiO2-graphene composites for photodegradation ofacetone in air [J]. Applied Catalysis B-Environmental,2012,119:109-116.
    [19] Zhang J, Zhu Z P, Tang Y P, Feng X L. Graphene encapsulated hollow TiO2nanospheres: efficient synthesis and enhanced photocatalytic activity [J]. Journal ofMaterials Chemistry A,2013,1(11):3752-3756.
    [20]赵慧敏,苏芳,范新飞,于洪涛,吴丹,全燮.石墨烯-二氧化钛复合催化剂对光催化性能的提高[J].催化学报,2012,33(5):777-782.
    [21]张晓艳,李浩鹏,崔晓莉. TiO2/石墨烯复合材料的合成及光催化分解水产氢活性[J].无机化学学报,2009,25(11):1903-1907.
    [22] Zhang H, Lv X J, Li Y M, Wang Y, Li J H. P25-Graphene composite as a highperformance photocatalyst [J]. Acs Nano,2010,4(1):380-386.
    [23] Lee J S, You K H,Park C B. Highly photoactive, low bandgap TiO2nanoparticleswrapped by graphene [J]. Advanced Materials,2012,24(8):1084-1088.
    [1] Huagui Yang, Chenghua Sun, Shizhang Qiao, Jin Zou, Gang Liu, Sean CampbellSmith, Huiming Cheng and Gaoqing Lu. Anatase TiO2single crystals with a largepercentage of reactive facets. Nature,2008,453,638-641.
    [2] Shengwei Liu, Jiaguo Yu, Mietek Jaroniec. Anatase TiO2with DominantHigh-Energy {001} Facets: Synthesis, Properties, and Applications [J]. Chem.Mater.,2011,23(18):4085-4093.
    [3] Lun Pan, Jijun Zou, Songbo Wang, Xinyu Liu, Xiangwen Zhang, Li Wang.Morphology Evolution of TiO2Facets and Vital Influences on PhotocatalyticActivity [J]. ACS Appl. Mater. Interfaces,2012,4(3):1650-1655.
    [4] Xiaohua Yang, Zhen Li, Chenghua Sun, Huagui Yang, Chunzhong Li.Hydrothermal Stability of {001} Faceted Anatase TiO2[J]. Chem. Mater.,2011,23(15):3486-3494.
    [5] Cizhang Wen, Jizhi Zhou, Haibo Jiang, Qiuhong Hu, Shizhang Qiao, Huagui Yang.Synthesis of Micro-sized Titanium Dioxide Nanosheets Wholly Exposed withHigh-energy {001} and {100} Facets [J]. Chem. Commun.,2011,47(15):4400-4402.
    [6] Zhaoke Zheng, Baibiao Huang, Xiaoyan Qin, Xiaoyang Zhang, Ying Dai, MinhuaJiang, Peng Wang, Whangbo Myung-Hwan. Highly Efficient Photocatalyst: TiO2Microspheres Produced from TiO2Nanosheets with a High Percentage of Reactive{001} Facets [J]. Chem. Eur. J.,2009,15(46):12576-12579.
    [7] Liqun Ye, Jinyan Liu, Lihong Tian, Tianyou Peng, Ling Zan. The Replacement of{101} by {010} Facets Inhibits the Photocatalytic Activity of Anatase TiO2[J].Appl. Catalysis B: Environ.,2013,134-135:60-65.
    [8] Jian Pan, Gang Liu, Gaoqing (Max) Lu, and Huiming Cheng. On the TruePhotoreactivity Order of {001},{010}, and {101} Facets of Anatase TiO2Crystals[J]. Angew. Chem. Int. Ed.2011,50,2133-2137.
    [9] Haimin Zhang, Porun Liu, Feng Li, Hongwei Liu, Yun Wang, Shanqing Zhang,Mingxing Guo, Huiming Cheng, and Huijun Zhao. Facile Fabrication of AnataseTiO2Microspheres on Solid Substrates and Surface Crystal Facet Transformationfrom {001} to {101}[J]. Chem. Eur. J.2011,17,5949-5957.
    [10] Shengwei Liu, Jiaguo Yu and Mietek Jaroniec. Tunable Photocatalytic Selectivityof Hollow TiO2Microspheres Composed of Anatase Polyhedra with Exposed {001}Facets. J. Am. Chem. Soc.,2010,132,11914-11916.
    [11] Min Liu, Lingyu Piao, Lei Zhao, Siting Ju, Zijie Yan, Tao He, Chunlan Zhou andWenjing Wang. Anatase TiO2single crystals with exposed {001} and {110} facets:facile synthesis and enhanced photocatalysis. Chemical Communications,2010,46,1664-1666.
    [12] Jiaguo Yu, Gaopeng Dai, Quanjun Xiang and Mietek Jaroniec. Fabrication andenhanced visible-light photocatalytic activity of carbon self-doped TiO2sheets withexposed {001} facets. Journal of Materials Chemistry,2011,21,1049-1057.
    [13]张琼,贺蕴秋,陈小刚.氧化钛/氧化石墨烯复合结构及其光催化性能[J].科学通报,2010,55(7):620-628.
    [14] Zhang Qiong,He Yunqiu,Chen Xiaogang. Structure and photocatalytic propertiesof TiO2-graphene oxide intercalated composite [J].Chinese Sci Bull,2010,55,620-628.
    [15] Bai S,Shen X P. Graphene–inorganic nanocomposites [J]. RSC Advances,2012,2,64-98.
    [16] Huang X, Yin Z Y, Wu S X. Graphene-based Materials: synthesis, characterization,properties, and applications [J]. Small,2011,7(14):1876-1902.
    [17] An X Q,Yu J C. Graphene-based photocatalytic composites [J]. RSC Advances,2011,1,1426-1434.
    [18] Williams G, Seger B,Kamat P. TiO2-graphene nanocomposites. UV-assistedphotocatalytic reduction of graphene oxide [J]. Acs Nano,2008,2,1487-1491.
    [19] Zhang H, Lv X J, Li Y M. P25-graphene composite as a high performancephotocatalyst [J]. Acs Nano,2010,4,380-386.
    [20] Lee J S, You K H,Park C B. Highly photoactive, low bandgap TiO2nanoparticleswrapped by graphene [J]. Advanced Materials,2012,24,1084-1088.
    [21] Jiang B J, Tian C G, Zhou W. In situ growth of TiO2in interlayers of expandedgraphite for the fabrication of TiO2–graphene with enhanced photocatalyticactivity [J]. Chem.Eur.J.2011,17,8379–8387.
    [22]耿静漪,朱新生,杜玉扣. TiO2-石墨烯光催化剂制备及引入石墨烯的方法对光催化性能的影响[J].无机化学学报,2012,28,357-361.
    [23] Geng Jingyi,Zhu Xinsheng,Du Yukou. TiO2-Graphene photocatalyst: preparationand effect of the introduction of graphene on photocatalyst performance [J].Chinese journal of inorganic chemistry,2012,28(2):357-361.
    [24] Lixia Yang, Shenglian Luo, Yue Li, Yan Xiao, Qing Kang and Qingyun Cai.HighEfficient Photocatalytic Degradation of p-Nitrophenol on a Unique Cu2O/TiO2p-nHeterojunction Network Catalyst. Environ. Sci. Technol.,2010,44,7641-7646.
    [25] Dinakaran Kannaiyan, Eunhye Kim, Nayoun Won, Kang Wook Kim, Yoon HeeJang, Min-Ah Cha, Du Yeol Ryu, Sungjee Kim and Dong Ha Kim. On thesynergistic coupling properties of composite CdS/TiO2nanoparticle arraysconfined in nanopatterned hybrid thin films. Journal of Materials Chemistry,2010,20,677-682.
    [26] Haidong Bian, Xia Shu, Jianfang Zhang, Bao Yuan, Yan Wang, Lingjuan Liu,Guangqing Xu, Zhong Chen and Yucheng Wu. Uniformly Dispersed andControllable Ligand-Free Silver-Nanoparticle-Decorated TiO2Nanotube Arrayswith Enhanced Photoelectrochemical Behaviors. Chemistry-An Asian Journal,2013,8,2746-2754.
    [1] Fujishima A,Honda K. Electrochemical photolysis of water at asemiconductor electrode [J]. Nature,1972,238(5358):37-38.
    [2] Kitano M, Matsuoka M, Ueshima M,Anpo M. Recent developments intitanium oxide-based photocatalysts [J]. Applied Catalysis a-General,2007,325(1):1-14.
    [3] Chen X B,Mao S S. Titanium Dioxide Nanomaterials: Synthesis, Properties,Modifications, and Applications [J]. Chemical Reviews,2007,(107):2891-2959.
    [4]吴玉程,王岩,崔接武,秦永强,黄新民.一维纳米TiO2的可控合成及其应用的研究进展[J].中国有色金属学报2011,21(10):2430-2447.
    [5]刘时铸.金属掺杂二氧化钛的研究进展[J].广东化工,2008,35(6):125-129.
    [6]孙海身.硫掺杂纳米二氧化钛的水热合成及其光催化性能研究[J].新技术新工艺,2011,9:53-57.
    [7]付乌有,杨海滨,刘冰冰,邹广田.锐钛矿型TiO2/MnFe2核壳结构复合纳米颗粒的制备及其光催化特性[J].复合材料学报,2007,24(3):136-140.
    [8] Wang D S, Duan Y D, Luo Q Z, Li X Y, An J, et al. Novel preparationmethod for a new visible light photocatalyst: mesoporous TiO2supportedAg/AgBr [J]. Journal of Materials Chemistry,2012,22(11):4847-4854.
    [9]于江伟,朱丽英,杨小平,于运花.碳纤维负载钐掺杂纳米TiO2复合材料的制备与表征[J].复合材料学报,2010,27(6):22-25.
    [10]张琼,贺蕴秋,陈小刚.氧化钛/氧化石墨烯复合结构及其光催化性能[J].科学通报,2010,55(7):620-628.
    [11]周锋.氧化石墨烯-二氧化钛复合光催化剂制备及光催化性能增强[J].2010年全国太阳能光化学与光催化学术会议,2010.
    [12] Lambert T N, Chavez C A, Hernandez-Sanchez B, Lu P, Bell N S, et al.Synthesis and Characterization of Titania-Graphene Nanocomposites [J].Journal of Physical Chemistry C,2009,113(46):19812-19823.
    [13] Zhang H, Lv X j, Li Y M, Wang Y,Li J H. P25-Graphene Composite as aHigh Performance Photocatalyst [J]. Acs Nano,2010,4(1):380-386.
    [14] Wang P, Wang J, Wang X, Yu H, Yu J, et al. One-step synthesis ofeasy-recycling TiO2-rGO nanocomposite photocatalysts with enhancedphotocatalytic activity [J]. Applied Catalysis B-Environmental,2013,132:452-459.
    [15] Stengl V, Bakardjieva S, Grygar T M, Bludska J,Kormunda M.TiO2-graphene oxide nanocomposite as advanced photocatalytic materials[J]. Chemistry Central Journal,2013,7.
    [16] Li J, Zhou S L, Hong G-B,Chang C-T. Hydrothermal preparation ofP25-graphene composite with enhanced adsorption and photocatalyticdegradation of dyes [J]. Chemical Engineering Journal,2013,219:486-491.
    [17] Wang P, Zhai Y, Wang D,Dong S. Synthesis of reduced grapheneoxide-anatase TiO2nanocomposite and its improved photo-induced chargetransfer properties [J]. Nanoscale,2011,3(4):1640-1645.
    [18] Liu S, Yu J,Jaroniec M. Anatase TiO2with Dominant High-Energy {001}Facets: Synthesis, Properties, and Applications [J]. Chemistry of Materials,2011,23(18):4085-4093.
    [19] Hua Gui Y, Cheng Hua S, Shi Zhang Q, Jin Z, Gang L, et al. Anatase TiO2single crystals with a large percentage of reactive facets [J]. Nature,2008,453(7195).
    [20] Han X, Kuang Q, Jin M, Xie Z,Zheng L. Synthesis of Titania Nanosheetswith a High Percentage of Exposed (001) Facets and Related PhotocatalyticProperties [J]. Journal of the American Chemical Society,2009,131(9):3152-3153.
    [21] Yang X H, Li Z, Liu G, Xing J, Sun C, et al. Ultra-thin anatase TiO2nanosheets dominated with {001} facets: thickness-controlled synthesis,growth mechanism and water-splitting properties [J]. Crystengcomm,2011,13(5):1378-1383.
    [22] Wang W S, Wang D H, Qu W G, Lu L Q,Xu A W. Large Ultrathin AnataseTiO2Nanosheets with Exposed {001} Facets on Graphene for EnhancedVisible Light Photocatalytic Activity [J]. Journal of Physical Chemistry C,2012,116(37):19893-19901.
    [23] Sun L, Zhao Z, Zhou Y,Liu L. Anatase TiO2nanocrystals with exposed{001} facets on graphene sheets via molecular grafting for enhancedphotocatalytic activity [J]. Nanoscale,2012,4(2):613-620.
    [24] Gu L, Wang J, Cheng H, Zhao Y, Liu L, et al. One-Step Preparation ofGraphene-Supported Anatase TiO2with Exposed {001} Facets andMechanism of Enhanced Photocatalytic Properties [J]. Acs AppliedMaterials&Interfaces,2013,5(8):3085-3093.
    [25] Changle W, Li S, Yong Cai Z,Qingli H. Synthesis of AgBr/ZnOnanocomposite with visible light-driven photocatalytic activity [J].Materials Letters,2012,66(1):83-5.
    [26] Wang J, An C, Liu J, Xi G, Jiang W, et al. Graphene oxide coupled AgBrnanosheets: an efficient dual-functional visible light-responsivenanophotocatalyst with enhanced performance [J]. Journal of MaterialsChemistry A,2013,1(8):2827-2832.
    [27] Tian G H, Chen Y J, Bao H L, Meng X Y, Pan K, et al. Controlled synthesisof thorny anatase TiO2tubes for construction of Ag-AgBr/TiO2compositesas highly efficient simulated solar-light photocatalyst [J]. Journal ofMaterials Chemistry,2012,22(5):2081-2088.
    [28] Li Q Y, Xing Y Y, Li R, Zong L L, Wang X D, et al. AgBr modified TiO2nanotube films: highly efficient photo-degradation of methyl orange undervisible light irradiation [J]. RSC Advances,2012,2(26):9781-9785.
    [29] Hu C, Lan Y Q, Qu J H, Hu X X,Wang A M. Ag/AgBr/TiO2visible lightphotocatalyst for destruction of azodyes and bacteria [J]. Journal ofPhysical Chemistry B,2006,110(9):4066-4072.
    [30] Xing Y Y, Li R, Li Q Y,Yang J J. A new method of preparation ofAgBr/TiO2composites and investigation of their photocatalytic activity [J].Journal of Nanoparticle Research,2012,14(12).
    [31] Wang W X, Jing L Q, Qu Y C, Luan Y B, Fu H G, et al. Facile fabricationof efficient AgBr-TiO2nanoheterostructured photocatalyst for degradingpollutants and its photogenerated charge transfer mechanism [J]. Journal ofHazardous Materials,2012,243:169-178.
    [32]曹静,林海莉,贾丽,陈士夫. AgBr/TiO2复合催化剂:双注法制备及其可见光催化性能[J].影像科学与光化学,2009,27(6):462-468.
    [33] Zhong Y H, Zhou Q, Liu J Q, Wang Y, Chen X, et al. Preparation ofFluorizated TiO2Hollow Microspheres and Their Photocatalytic Activity[J]. Chinese Journal of Inorganic Chemistry,2013,29(10):2133-2139.
    [34]周琪,钟永辉,陈星,王岩,吴玉程等.石墨烯/纳米TiO2复合材料制备及其光催化性能[J].复合材料学报,2014,31(2):255-262.
    [35]侯阳.可见光响应型TiO2:基纳米管阵列与ZnFe204纳米球的制备及性能研究[D]2011,大连理工大学.
    [36] Wang P, Tang Y, Dong Z, Chen Z,Lim T-T. Ag–AgBr/TiO2/RGOnanocomposite for visible-light photocatalytic degradation of penicillin G[J]. Journal of Materials Chemistry A,2013,1(15):4718-4722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700