用户名: 密码: 验证码:
低镍奥氏体不锈钢热变形过程中的塑性及开裂机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奥氏体不锈钢在热变形加工过程中塑性较低,容易产生裂纹,本文针对两种低镍奥氏体不锈钢Cr17Mn6Ni4Cu2N和Cr15Mn9Cu2NiN,首先研究了其微观组织,然后分别利用高温拉伸试验、模拟热轧试验及熔炼凝固试验,研究了变形温度、应变速率、变形方式及化学成分对热塑性的影响,结合上述实验结果对热变形开裂的机理进行了讨论分析,提出了防止热变形开裂的措施,并将提出的措施应用到实际的生产过程中进行验证。
     在Cr17Mn6Ni4Cu2N铸坯壳层,其组织为树枝状δ铁素体分布在柱状奥氏体晶粒内部(1#组织);在芯部,δ铁素体以条状分布在奥氏体晶粒内部及晶界上(2#组织);整个铸坯的凝固模式为FA模式。在Cr15Mn9Cu2NiN壳层,当距表面距离小于27.5mm时,微观组织由树枝状δ铁素体、通道状奥氏体和奥氏体基体组成(3#组织),凝固模式为FA和A模式共存。距离大于27.5mm时,壳层组织由树枝状δ铁素体和奥氏体基体组成;芯部为粗大的单相奥氏体柱状晶(4#组织);凝固模式为FA模式。并测定了不同微观组织具有的热塑性。
     对比铸态试样及具有等轴晶组织的热加工态试样发现,在1000~1250℃内,铸态试样的热塑性随变形温度的降低迅速下降,而在热加工态试样中则是缓慢下降。分析认为,正是由于铸态组织及其变形特性使得其在热变形过程中容易开裂,并且发现热变形中的开裂与焊接中的失塑裂纹具有相同的特点,属于同一机制。提出了热变形加工过程中失塑温度区间的概念,即容易开裂的温度区间。分析得出在应变速率为0.1s-1时,微观组织的失塑倾向由低到高分别为1#组织,3#组织,4#组织,2#组织,两种钢的失塑温度区间分别为850~1000℃和900~1250℃。
     分析了应变速率对不同铸态组织的热塑性、裂纹形核位置及失塑温度区间的影响。低应变速率时,1#和3#组织的热塑性较高,提高应变速率会降低其热塑性,并导致裂纹形核位置由铁素体树枝晶处转移至奥氏体晶界处。在2#组织中,提高应变速率会明显提高其热塑性,并使裂纹的形核位置由晶界铁素体处变为奥氏体晶界和晶界铁素体处共存。高应变速率时,铁素体和奥氏体的强度均会升高,使得它们之间的强度差别减小,降低了铁素体处的应力集中,导致变形中的薄弱环节由铁素体处转至奥氏体晶界处,进而导致裂纹形核位置的改变。将变形过程的应变速率由0.1提高至10s-1,会增大1#和4#组织的失塑温度区间,使3#组织的失塑温度区间向低温端平移50℃,减小2#组织的失塑温度区间。在Cr17Mn6Ni4Cu2N中,应变速率为别1和10s-1时的失塑温度区间分别为950~1100℃和850~1250℃;而在Cr15Mn9Cu2NiN中,失塑温度区间分别为850~900℃和850~1050℃。
     通过模拟热轧试验发现,在950~1250℃内,两种钢中均存在随着变形温度的降低临界开裂应变量迅速下降的情况,且铸态组织比经历再结晶的等轴晶组织更容易开裂。这与通过拉伸试验得到的结果是相同的。
     根据以上的实验结果,提出了热变形开裂的机理。铸态奥氏体不锈钢在热变形过程中容易开裂,主要是由于铸态组织及其变形特性引起的。在铸态组织中以粗大的柱状晶为主,具有明显的结晶取向性,在热变形过程中随着变形温度的降低,屈服会迅速升高,导致各晶粒进行塑性变形及变形协调的能力变差,在较小的变形量下就会导致裂纹的形核;柱状晶晶界中,小角度晶界比例高,且单条晶界较长,变形时一旦裂纹形核就会沿柱状晶界迅速扩展;奥氏体不锈钢的堆垛层错能低,高温变形时的软化机制主要为动态再结晶,当铸态奥氏体不锈钢的变形量未达到再结晶所需的临界变形量,同时动态回复的软化作用受到抑制时,如在低的变形温度或高的应变速率,就会导致裂纹的形核。
     在实际的热轧生产中,适当提高坯料预热时的在炉时间、预热温度及粗轧开轧温度或调整Cr15Mn9Cu2NiN中B的含量均会使板坯边裂及回炉的比例降低,而增加N的含量会导致边裂及回炉的比例升高。
Hot ductility in austenitic stainless steel (ASS) slab is low and prone to suffer from cracking during hot deformation. The factors which affect the hot ductility in ASS, such as microstructure, chemical composition, deformation temperature, strain rate and deformation mode have been studied—a case study of two kinds of low Ni ASSs Cr17Mn6Ni4Cu2N and Cr15Mn9Cu2NiN. Combined with the above results, the cracking mechanism was discussed and the measures that avoid cracking during hot deformation were proposed.
     In the slab shell of Cr17Mn6Ni4Cu2N, the microstructure is dendrite8ferrite which distributing in columnar austenite grains (1#microstructure); in the core,δ ferrite distributes in the interior of austenite and on the austenite boundaries in the form of bar (2#microstructure); the solidification mode of this steel is FA.
     In the shell of Cr15Mn9Cu2NiN, as the distance from slab surface shorter than27.5mm, the microstructure is consist of dendrite8ferrite, austenite matrix and channel-like austenite (3#microstructure), the solidification mode is the co-existence of FA and A; as the distance longer than27.5mm, the microstructure is consist of ferrite and austenite; in core, the microstructure is coarse austenite columnar grains (4#microstructure), and the solidification mode is FA.
     Though the comparison of hot ductility in specimens which made from slab and hot-rolled plate, it is found as deforming temperature in the range of1000-1250℃, RA in slab decreased rapidly with temperature. Analysis suggested that, the as-cast microstructure and its deformation characters induce the cracking problem during hot deformation. Through the comparison of cracking in hot working and ductility-dip cracking in welding, it is found that they have the same characters and induced by the same mechanism. The concept of ductility-dip temperature range (DDTR) during hot deformation was proposed in this article. As the strain rate is0.1s-1, the cracking tendency of each microstructure from high to low is1#,3#,4#,2#, respectively.
     The influence of strain rate on hot ductility, cracks nucleating positions and DDTR were analyzed. As the strain rate is lower, RA in1#and3#microstructure is high, while increasing the strain rate would decrease the hot ductility and the positions of crack nucleuses were changed from δ ferrite dendrites to austenite GB. In2#microstructure, RA increases with strain rate, and the positions of cracks nucleuses are changed from GB ferrite to the co-existence of GB ferrite and austenite GB. As the materials deformation at higher strain rate, the strength can be improved both in austenite and ferrite, which will decrease the stress concentration on ferrite and transfer the weak location from ferrite to austenite GB, then induce the change of nucleating positions of cracks. As increasing the strain rate from0.1to10s-1will enlarge the DDTR in1#and4#microstructure, move the DDTR50℃to the low temperature side in3#microstructure, decrease the DDTR in2#microstructure.
     According to the hot rolling experiment results, in the range of1000-1250℃, in the two steels, the critical cracking strain deceases rapidly with deformation temperature, In multi-pass hot rolling, the microstructure in Cr15Mn9Cu2NiN slab easier suffer from cracking than the equiaxed grains which from recrystallization, all of this is consistent with the results from tensile tests.
     According to the above results, the cracking mechanism of as-cast austenitic stainless steel during hot working is proposed. The reason that as-cast ASSs are easier suffer from cracking problems during hot working, mainly due to the as-cast microstructure and its deformation characters. The as-cast microstructure is consisting of coarse columnar grains, which has obviously crystal orientation. During deformation, as decreasing deformation temperature, the columnar grains are easy to strengthen, leading to higher yield strength, the deformation coordination ability is poor, and under a small deformation amount, the cracks will nucleate at the boundaries of columnar grains. The majority of columnar grains boundaries are high angle GB. During deformation, once the cracks nucleate on columnar GBs, they will grow and propagate along them. The stacking faults energy in ASSs is low, and the soften mechanism in which is dynamic recrystallization during elevated-temperature deformation. As the strain lower than the critical strain that needed for dynamic recrystallization, and the dynamic recovery is suppressed, such as at lower deformation temperature or higher strain rate, the cracks will nucleate quickly.
     In the practical hot rolling produce of Cr15Mn9Cu2NiN, increasing the time in the furnace, preheating temperature and roughing rolling start temperature or adjusting the content of B will reduce the proportion of edge-cracking in strip. But increasing the content of N will deteriorate the hot ductility in slab, and increase the proportion of edge-cracking in strip.
引文
[1]李登超.不锈钢板带材生产技术.北京:化学工业出版社,2008,1-3
    [2]陈剑虹译.不锈钢焊接冶金学及焊接性.机械工业出版社,2008
    [3]William F S, Javad H. Foundation of materials science and engineering.北京:机械工业出版社,2005,424-428
    [4]罗维.2011年全球不锈钢产量创新高.上海金属,2012,34(3):12-12
    [5]中商情报网.2000-2011年度中国不锈钢产量及表观消费量情况.http://www.askci.com/news/201207/25/251527863966.shtml
    [6]张文华.不锈钢及其热处理.沈阳:辽宁科学技术出版社,2010,3-6
    [7]严旺生.200系列(锰系)不锈钢发展前景.中国锰业,2004,22(2):8-12
    [8]陆世英,张廷凯,康喜范等.不锈钢.北京:原子能出版社,1998,161
    [9]Schino A D, Kenny J M and Mecozzi M G. Development of high nitrogen-low nickel-18%Cr austenitic stainless steels. Journal of Materials Science,2000, 35(19):4803-4808
    [10]伍千思.不锈钢中的铬锰系(美国200系)奥氏体不锈钢.冶金标准化与质量,2004,42(6):34-37
    [11]耿华师.关于202不锈钢发展的几点思考.科技情报开发与经济,2004,14(6):116
    [12]柳学胜,杨凡,朱瑞金,等00Cr14Ni14Si4奥氏体不锈钢中微量铝硫与锻造裂纹.理化检验:物理分册,1997,33(11):3-8
    [13]戴护民.1Cr18Ni9 Ti不锈钢热镦成形工艺的研究.武汉船舶职业技术学院学报,2003,3:19-21
    [14]Cho J Y, Czerwinski F, Szpunar J A. The effect of reheating conditions and chemical composition on δ ferrite content in austenitic stainless steel slabs. Journal of Materials Science,2000,35(8):1997-2003
    [15]Ilola R, Hanninen H, Kauppi T. Hot and Cold Rolling of High Nitrogen Cr-Ni and Cr-Mn Austenitic Stainless Steels. Journal of Materials Engineering and Performance,1998,7(5):661-666
    [16]Czerwinski F, Cho J Y. The edge-cracking of AISI 304 stainless steel during hot-rolling. Journal of Materials Science,1999,34(19):4727-4735
    [17]百度百科.http://baike.baidu.com/view/337753.htm
    [18]Schino A D, Mecozzi M G, Barteri M. Solidification mode and residual ferrite in low-Ni austenitic stainless steel. Journal of Materials Science,2000,35:375-380
    [19]Hammar O, Svensson U. Solidification and casting of metals. The Metals Society, London,1979,1-10
    [20]张有余,马蓉,侯国清,等.Cr17Mn6Ni4Cu2N奥氏体不锈钢连铸坯组织及凝固模式.兰州理工大学学报,2009,35(4):15-18
    [21]Shankar V, Gill T P S, Mannan S L. Solidification cracking in austenitic stainless steel welds. Sadhan,2003,28,(3-4):359-382
    [22]Elmer J W, Aleen S M, Eagar T W. Microstructure development during solidification of stainless steel alloys. Metallurgical Transaction A,1989,20A(10): 2117-2131
    [23]David S A, Vitek J M, Hebble T L. Study of low-temperature ferrite de-composition in austenitic stainless steel welds. Welding Journal,1987,66: 289-300
    [24]Czerwinski F, Brodtka A, Cho J Y, et al. A role of δ-ferrite in edge-crack formation during hot-rolling of austenitic stainless steels. Scripta Materialia,1997, 37(8):1231-1235
    [25]Tarboton J N. The hot workability of Cromanite, a high Nitrogen austenitic stainless steel. Materials Science Forum,1999,318-320:777-784.
    [26]肖纪美.不锈钢的金属学问题.北京:冶金工业出版社,2006
    [27]Tasuo K, Isao T, Hirosh O, et al. Hot workability of austenitic stainless steels containing delta-ferrite. Kawasaki steel technical report,1986,14(3):50-60
    [28]毛萍莉,苏国跃,扬柯.铸态0Cr17Mn14Mo2N双相不锈钢中δ铁素体的形态对室温塑性的影响.热加工工艺,2001,5:22-24
    [29]石锋,王立军,崔文芳Fe-18Cr-12Mn-0.55N高氮奥氏体不锈钢的热塑性研究.http://www.paper.edu.cn/index.php/default/releasepaper/content/200704-254
    [30]Bilmesa P, Gonzaleza A, Llorenteb C. Effect of 8 ferrite solidification morphology of austenitic stainless steel weld metal on properties of welded joints. Welding International,1996,10(10):797-808
    [31]卞华康,卫英慧,王辉绵等.节镍型奥氏体不锈钢的高温塑性.机械工程材料,2012,36(3):72-75
    [32]钟政烨,盛光敏.200系奥氏体不锈钢热轧裂纹的产生原因及其工艺改进.机械工程材料,2010,34(4):79-83
    [33]崔光洙,邸洪双,刘相华等.304HC不锈钢的热塑性及变形抗力的模型.东北大学学报(自然科学版),2001,22(6):656-659
    [34]古贺猛,清水哲也,野田俊治.奥氏体系列高氮不锈钢DSN9.上海钢研, 2003,(3):60-62
    [35]沈国雄刘斌.氮对304奥氏体不锈钢组织和力学性能的影响.钢铁研究学报,1997,9(6):33-36
    [36]赵朴.化学成分和固溶温度对1Cr17Mn9Ni4N不锈钢组织和性能的影响.钢铁研究学报,2003,15(3):21-24
    [37]Janowski G M, Biancaniello F S, Ridder S D. Beneficial effects of nitrogen atomization on an austenitic stainless steel. Metallurgical Transaction A,1992, 23(11):3263-3272
    [38]李岩,张有余,朱亮.低镍奥氏体不锈钢热变形性能及氮的影响.轧钢,2008,25(3):11-15
    [39]Kim D W. Influence of nitrogen-induced grain refinement on mechanical properties of nitrogen alloyed type 316LN stainless steel. Journal of Nuclear Materials,2012,420:473-478
    [40]李晶黄运华译.高氮钢和不锈钢.北京:化学工业出版社,2006
    [41]夏明生.高氮奥氏体不锈钢的氮化物析出及其对焊接性影响.焊接学报,2005,26(12):108-112
    [42]郎宇平,康喜范.超级高氮奥氏体不锈钢的耐腐蚀性能及氮的影响.钢铁研究学报,2001,13(1):31-35
    [43]袁志钟,戴起勋,程晓农等.氮在奥氏体不锈钢中的作用.江苏大学学报,2002,23(3):72-75
    [44]淮凯文,于式昌.316L奥氏体不锈钢的氮合金化.宝钢技术,2007,(4):9-12
    [45]Jae Young Cho. Effect of δ ferrite on edge-cracking formation during hot rolling of austenitic stainless steel:[dissertation]. Montreal:McGill University,1999
    [46]Bulat S I, Sorokina N A and Ulyanin E A. Effect of Boron on ductility of Cr-Ni-Mn steel with nitrogen. Metallovedenie i Termicheskaya Obrabotka Metallov,1975,8(8):67-69.
    [47]张俊堂译.不锈钢中的残余元素.炼钢,1998,(1):66-69
    [48]Zarandi F, Yue S. In:Proc Materials Science and Technology Conf ISS. Warrendale,2003,21-31
    [49]陈德和.不锈钢的性能与组织.北京:机械工业出版社,1977
    [50]Suutala N. Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds. Metallurgical Transaction A,1982,13(12): 2121-2130
    [51]Rechsteiner A. In:Proc of the 1st European Stainless Steel Conf. Florence, 1993,107
    [52]梁新斌.低镍奥氏体不锈钢组织与凝固模式:[兰州理工大学硕士论文].兰州:兰州理工大学材料科学与工程学院,2009,39-45
    [53]McQueen H J, Yue S, Ryan N.D. Proc. XIV Intnl. Conf. Advanced Materials Technologies, Zakopone,1995, L.A. Dobrzanski, (Ed.).
    [54]Ryan D, Mcqueen H J. Effect of alloying upon the hot workability of carbon, tool, and austenitic stainless steels. Journal of Mechanical Working Technology, 1986,12:279-296
    [55]Ryan D, Mcqueen H J. Flow stress, dynamic restoration, strain harding and ductility in hot working of 316L steel. Journal of Materials Processing Technology,1990,21:177-199
    [56]Ryan D, Mcqueen H J. Dynamic recovery and strain hardening in the hot deformation of type 317 stainless steel. Materials Science and Engineering, 1986,81:259-272
    [57]McQueen H J, Jonas J J. Plastic Deformation of Materials, Treatise on Materials. Science Technology. Academic Press, New York,1975,393-493
    [58]Ryan N D, McQueen H.J, in:R.A. Lula (Ed.), New Developments in Stainless Steel Technology, ASM, Materials Park, OH,1985, pp.293-304.
    [59]Zarandi F, Yue S. Hot ductility and effect of high temperature deformation in in-situ solidified microalloy steels. The 45th Mechanical Working and Steel Processing conference. Vol. XLI,2003.
    [60]Matuszewski T, Machmeier P M, Mcqueen H J. Torsional hot workability in 0.47C-0.86Mn-0.5Cr-B steel from 650 to 870℃. Metallurgical and Materials Transactions A,1991,22(2):469-477
    [61]姜周华,刘喜海,张颖等.电渣重熔Mn18Cr18N钢铸态热塑性与组织的关系.钢铁研究学报,1998,10(6):37-40
    [62]崔光洙,高德福,才金正Cr18Mn18N奥氏体不锈钢热镦裂纹分析和高温塑性研究.塑性工程学报,1996,3(4):3-6
    [63]Di H S, Cui G Z and Wang G D. Hot ductility of 304HC stainless steel and the model of resistance to deformation. Acta Metallurgiga Sinica (English Letters), 2003,16(2):97-103.
    [64]Laila S B. Edge stresses in wide strip hot rolling. International Journal of Mechanical Science,1997,39(4):397-408
    [65]Duly D, Lenard J G, Schey J A. Applicability of indentation tests to assess ductility in the hot rolling of aluminum alloys. Journal of Materials Processing Technology,1998,75(1-3):143-151
    [66]Mintz B, Shaker M, Crowther D N. Hot ductility of an austenitic and a ferritic stainless steel. Materials Science and Technology,1997,13(3):243-249
    [67]Mintz B, Cowley A, Abushusha R. Hot ductility curve of an austenitic stainless steel and importance of dynamic recrystallization in determining ductility recovery at high temperature. Materials Science and Technology,1999,15(10): 1179-1185
    [68]Simon Gr, Sergiu I, Cecilia P. Influence of strain rate on hot ductility of a V-microalloyed steel slab. Steel Research International,2012,83(5):445-455
    [69]McQueen H J, Yue S, Ryan N D. Hot working characteristics of steels in austenitic state. Journal of Materials Processing Technology,1995,53:293-310.
    [70]Faramarz MH Zarandi. The effect of high temperature deformation on the hot ductility of Nb-microalloyed steel:[dissertation]. Monteral:Univ. of McGill,2004, 15-23
    [71]林建农,马富昌,赵向政Nb、V、Ti微合金钢的边角裂纹与高温延性.北京科技大学学报,2007,19(S1):118-121
    [72]Zarandi F M, Yue S. Failure mode analysis and a mechanism for hot-ductility improvement in the Nb-microalloyed steel. Metallurgical and Materials Transaction A,2004,35(12):3823-3832
    [73]Mintz B, Jonas J J. Influence of strain rate on production of deformation induced ferrite and hot ductility of steels. Materials Science and Technology,1994,10(8): 721-727
    [74]Lin M R, Wagoner R H. Effect of temperature, stain and strain rate on the tensile flow stress of I.F. steel and stainless steel type310. Scripta Metallurgica,1986, 20(1):143-148
    [75]Pinol-Juez A, Iza-Mendia A and Gutierrez I.8/y interface boundary sliding as a mechanism for strain accommodation during hot deformation in a duplex stainless steel. Metallurgical and Materials Transactions A,2000,31(6):1671-1677
    [76]Iza-Mendia A, Pinol-Juez A, Urcola J J. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions. Metallurgical and Materials Transactions A,1998,29(12):2975-2986
    [77]卡恩R W,哈森P,克雷默E J.材料的塑性变形与断裂.北京:科学出版社,1998,1-10
    [78]刘瑞堂,刘文博,刘锦云.工程材料力学性能.哈尔滨:哈尔滨工业大学出版社,2001,1-7
    [79]Fu J W, Yang Y S, Guo J J. Formation of a two-phase microstructure in Fe-Cr-Ni alloy during directional solidification. Journal of Crystal Growth,2008, 311:132-136
    [80]Liang J P, Gao Y L, Li R X. Phase evolution of AISI 321 stainless steel during directional solidification. Ironmaking and Steelmaking,2009,36(8):603-609
    [81]Fu J W, Yang Y S, Guo J J. Formation of a blocky ferrite in Fe-Cr-Ni alloy during directional solidification. Journal of Crystal Growth,2009,311:3661-3666
    [82]朱亮,梁新斌.冷却速度对奥氏体不锈钢Cr15Mn9Cu2Ni1N组织与凝固模式的影响.铸造技术,2009,30(7):864-867
    [83]Baldissin D, Baricco M, Battezzati L. Microstructures in rapidly solidified AISI 304 interpreted according to phase selection theory. Materials Science and Engineering A,2007,449-451:999-1002
    [84]Suutala N. Effect of solidification conditions on the solidification mode in austenitic stainless steels. Metallurigical Transactions A,1983,14(1):191-197
    [85]马蓉.低镍奥氏体不锈钢的凝固模式及高温力学性能:[兰州理工大学硕士论文].兰州:兰州理工大学材料科学与工程学院,2010,20-23
    [86]Abdulgader S A. L. Laster welding of 200-series stainless steels:solidification behavior and microstructure characteristics:[dissertation]. Pennsylvania:The Pennsylvania State University,1998
    [87]Maehara Y, Yasumoto K, Tomono H, et al. Surface cracking mechanism of continuously cast low carbon low alloy steel slabs. Materials Science and Technology,1990,6:793-806
    [88]Crowther D N, Mintz B. Influence of grain size and precipitation on hot ductility of microalloyed steels. Materials Science and Technology,1986,11(2):1099-1105
    [89]Mintz B, Cowley A, Abushusha R. Importance of columnar grains in dictating hot ductility of steels. Materials Science and Technology,2000,16(1):1-5
    [90]Bywater K A, Gladman T. Influence of composition and microstructure on hot workability of austenitic steels. Metals Technology,1976,8(8):358-365
    [91]Ritter A M, Savage W E. Solidification and solidification cracking in nitrogen-strengthened austenitic stainless steels. Metallurgical Transactions A, 1986,17(4):727-737.
    [92]Tehovnik F, Vodopivec F, Ladislav K. Hot ductility of austenitic stainless steel with a solidification structure. Materiali in Tehnologije,2006,40(4):129-137
    [93]侯国清,朱亮,马蓉.奥氏体不锈钢Cr15Mn9Cu2Ni1N连铸坯壳层的热塑性.材料科学与工艺,2011,19(1):91-94
    [94]周晓光,吴迪,赵忠.中厚板热轧过程中的温度场模拟.东北大学学报(自然科学版),2005,26(12):1161-1163
    [95]胡贤磊,矫志杰,李建民.中厚板精轧过程的高精度温度预测模型.东北大学学报(自然科学版),2003,24(1):71-74
    [96]梁高飞,朱丽业,王成全.AISI304不锈钢中δ→γ相变的原位观察.金属学报,2007,43(2):119-124
    [97]Nissley N E, Collins M G, Guatima G. Development of the strain-to-fracture test for evaluating ductility dip cracking in austenitic stainless steel and Ni-based alloys. Welding in the World.2002,46(7-8):32-40
    [98]Nissley N E, Lippold J C. Ductility-dip cracking susceptibility of austenitic alloys. In:Proc of Int Conf on Trends in Welding Research. ASM International, Materials Park,OH,2003,64-69
    [99]Nissley N E, Lippold J C. Development of the strain-to-fracture test for evaluating ductility-dip cracking in austenitic alloys. Welding Journal,2003,82 (12):355s-364s.
    [100]Chen J Q, Lu H, Cui W. Study on Ductility Dip Cracking susceptibility in Filler Metal 82 during welding. Frontiers of Materials Science,2011,5(2):203-208
    [101]McQueen H J. Elevated-Temperature Deformation at Forming Rates of 10-2 to 102 s-1. Metallurgical and Materials Transactions A,2002,33(2):345-360
    [102]Ronald L P, Clara H, Doris M E. A short review on wrought austenitic stainless steels at high temperatures:processing, microstructure, properties and performance. Materials Research,2007,10(4):453-460
    [103]Kashyap B P, McTaggart K, Tangri K. Study on the substructure evolution and flow behavior in type 316L stainless steel over the temperature range 21-900℃. Philosophicai Magazine A,1988,57(1):97-114
    [104]Woei S L, Chi F L, Tao H C. Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range. Materials Science and Engineering A,2011,528:6279-6286
    [105]Witold Z, Ayad A A, Krzysztof J K. TEM studies of dislocation substructure in 316 austenitic stainless steel strained after annealing in various environments. Materials Science and Engineering A,1998,249:91-96
    [106]Mintz B, Crowther D N. Hot ductility of steels and its relationship to the problem of transverse cracking in continuous casting. International Materials Reviews,2010,55(3):168-196
    [107]唐正柱,陈佩寅,吴伟.Nb对镍基合金高温失塑裂纹敏感性的影响机理.焊接学报,2008,29,(11):109-113
    [108]唐正柱,陈佩寅,吴伟.Nb和Ti对高温失塑裂纹敏感性影响机理研究.焊接,2007,11:37-41
    [109]Ramirez A J, Sowards J W, Lippold J C. Improve the ductility-dip cracking resistance of Ni-base alloys. Journal of Materials Processing Technology.2006, 179(1-3):212-218
    [110]Lippold J C. Nissley N E.Further investigations of ductility-dip cracking in high Chromium Ni-base filler metals. Welding in the world.2007,51(9-10):24-30
    [111]Yong G A, Capobianco T E, Penik M A. The mechanism of ductility dip cracking in nickel-chromium alloys.Welding Journal,2008,87(2):31s-43s
    [112]Saida K, Nomoto Y, Okauchi H. Influences of phosphorus and sulphur on ductility dip cracking susceptibility in multipass weld metal of alloy 690. Science and Technology of Welding and Joining.2012,17(1):1-8
    [113]Nissley N E, Lippold J C. Ductility-dip cracking susceptibility of nickel-based weld metals Part 1:strain-to-fracture testing. Welding Journal,2008,87(10): 257s-264s
    [114]Noecker F F, Dupont J N. Metallugical investigation into ductility dip cracking in Ni-based alloys:part II. Welding Journal.2009,88(3):62s-77s
    [115]Jang A Y, Lee D J, Lee S H. Effect of Cr/Ni equivalent ration on ductility-dip cracking in AISI 316L weld metals. Materials and Design,2011,32(1):371-376
    [116]Kim Y H, Lee D J, Byun J C. The effect of sigma phases formation depending on Cr/Ni equivalent ratio in AISI 316L weld metals. Materials and Design,2011,32(1):330-336
    [117]Kim Y H, Kim D G, Sung J H. Influences of Cr/Ni Equivalent Ratios of Filler Wires on Pitting Corrosion and Ductility-Dip Cracking of AISI 316L Weld Metals. Metals and Materials International,2011,17(1):151-155
    [118]Lee D J, Byun J C, Sung J H. The dependence of crack properties on the Cr/Ni equivalent ratio in AISI 304L austenitic stainless steel weld metals. Material Science and Engineering A.2009.513-514:154-159
    [119]Nissley N E, Lippold J C. Development of the strain-to-fracture test:A new test has been established for evaluating ductility dip cracking susceptibility in austenitic alloys. Welding Journal.2003,82(12):355s-364s
    [120]Lippold J C. Solidification behavior and cracking susceptibility of pulsed-laser welds in austenitic stainless steels. Welding Journal,1994,73(6)129s-139s
    [121]Parsa M H, Ahmadabadi M N, Shirazi H. Evaluation of microstructure change and hot workability of high nickel high strength steel using wedge test, Journal of Materials Processing Technology,2008,199(1-3):304-313
    [122]Grobeiber S, Ilie S, Poletti C. Influence of strain rate on hot ductility of a V-Microalloyed steel slab. Steel Research International,2012,83(5):445-455
    [123]Ryan N D, McQueen H J. Comparison of dynamic softening in 301,304,316 and 317 stainless steels. High Temperature Technology,1990,8(3):185-200
    [124]Ryan N D, McQueen H J, Jonas J J. The deformation behavior of types 304,316, and 317 austenitic stainless steels during hot torsion, Canadian Metallurgical Quarterly,1983,22(3):369-378
    [125]Tan S P, Wang Z H, Cheng S C. Processing maps and hot workability of Super304H austenitic heat-resistant stainless steel, Materials Science and Engineering A,2009,517(1-2):312-315
    [126]Wang Z H, Fu W T, Sun S H. Effect of preheating temperature on surface cracking of high nitrogen CrMn austenitic stainless steel. Journal of Materials Science and Technology,2010,26(9):798-802
    [127]Jorge-Badiola D, Iza-Mendia A. Study by EBSD of the development of the substructure in a hot deformed 304 stainless steel. Materials Science and Engineering A,2005,394(1-2):445-454
    [128]任建斌,宋志刚,郑文杰.254SMo超级奥氏体不锈钢的热变形行为.钢铁研究学报,2012,24(5):42-46,57
    [129]Mataya M C, Eric R N, Elliot L B. Hot working and recrystallization of as-cast 316L. Metallurgical and Materials Transactions A,2003,34(8):1683-1703
    [130]Mataya M C, Eric R N, Elliot L B. Hot working and recrystallization of as-cast 317L. Metallurgical and Materials Transactions A,2003,34(12):3021-3041
    [131]Zhang P, Hu H Y, Liu Y Y. Investigation on cracking mechanism of austenite stainless steel during in situ tension in transmission electron microscope. Materials Science and Engineering A.2011,528:1201-1204
    [132]焦国华,吴光亮,孙彦辉,等.CSP热轧板卷边部裂纹成因及控制.钢铁,2006,41(6):27-31
    [133]张华,倪宏卫.中厚板边裂的形成与控制.武汉科技大学学报(自然科学版),2006,29(3):217-220
    [134]崔荣合.中厚板轧制边部不均匀变形机理的探讨.重型机械科技,2002,1:13-16
    [135]Liu F C, Yang Z N, Zheng C L. Simultaneously improving the strength and ductility of coarse-grained Hadfeld steel with increasing strain rate. Scripta Materialia,2012,66(7):431-434
    [136]张有余.JSS E02不锈钢热轧变形行为及组织研究:[北京科技大学硕士学位论文].北京:北京科技大学材料科学与工程学院,2009,45-47
    [137]Jivkov A P, Stevens N P C, Marrow T J. A three-dimension computational model for intergranular cracking. Computational Materials Science,2006,38:442-453
    [138]Zhang X Z, Zhang Y S, Li Y J. Cracking initiation mechanism of 316LN stainless steel in the process of the hot deformation. Materials Science and Engineering A,2013,559:301-316
    [139]Thomas H C. Mechanical Behavior of Materials北京:机械工业出版社,2004,340-354
    [140]Chen Y J, Hjelen J and Roven H J. Application of EBSD technique to ultrafine grained and nanostructured materials processed by severe plastic deformation: Sample preparation, parameters optimization and analysis. Transactions of Nonferrous Metals Society of China,2012,22(8):1801-1809.
    [141]张寿禄.超级双相不锈钢$32750固溶处理组织的EBSD研究.电子显微学报,2011,30(4-5):345-348
    [142]焦汇胜,Ubhi H S, Gooran D不锈钢部件失效分析中的EBSD应用.电子显微学报,2009,28(1):29-33
    [143]Cizek P, Wynne B P, Rainforth W M. EBSD investigation of the effect of strain path changes on the microstructure and texture of duplex stainless steel during hot deformation. Journal of Physics:Conference Series2006,26:331-334
    [144]石德珂.材料科学基础.北京:机械工业出版社,2005.
    [145]余永宁.金属学原理.北京:冶金工业出版社,2005,266-269
    [146]Ryan N D, McQueen H J. Dynamic softening mechanism in 304 austenitic stainless steel. Canadian Metallurigical Quarterly,1990,29(2):174-162
    [147]Gopi K M, Nicole S and Peter H. Effect of hot working on dynamic recrystallisation study of as-cast austenitic stainless steel. Materials Science and Engineering A,2012,556:585-595
    [148]Mirzadeh H, Parsa M H and Ohadi D. Hot deformation behavior of austenitic stainless steel for a wide range of initial grain size. Materials Science and Engineering A,2013,569:54-60
    [149]毛萍莉,杨柯,苏国跃.铸态奥氏体不锈钢的热变形行为.金属学报,2001,37(1):39-41
    [150]朱亮,张孝平,侯国清.Cr15Mn9Cu2Ni1N奥氏体不锈钢的热变形本构特性.塑性工程学报,2009,16(5):96-100
    [151]Zener C, Hollomon J H. Effect of strain rate upon the plastic flow of steel. Journal of Applied Physics,1944,15(1):22-32.
    [152]Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels. Act Materialia,1996,44(1):137-148
    [153]Dehghan-Manshadi A, Hodgson P D, Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite. Journal of Materials Science,2008, 43(18):6272-6277.
    [154]Kartika K, Matsumoto H, Chiba A. Deformation and microstructure evolution in Co-Ni-Cr-Mo superalloy during hot working. Metallurgical and Materials Transactions A,2009,40(6):1457-1468
    [155]陈树旺,程焕武,陈卫东.渗硼技术的研究应用发展.国外金属热处理,2003,24(5):8-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700