用户名: 密码: 验证码:
混凝—气浮工艺去除原水预氯化副产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯是目前给水厂使用最广泛的预氧化剂和消毒剂,然而由于加氯而产生的三卤甲烷(Trihalomethanes, THMs)也是最主要的氯化副产物之一,并已经被确认为“三致”(致癌、致畸、致突变)物。THMs是三氯甲烷(CHCl3)、二氯一溴甲烷(CHCl2Br)、一氯二溴甲烷(CHClBr2)和三溴甲烷(CHBr3)四种卤代烷烃的总称,其前体物主要是水体中的天然有机物。未经处理的原水中含有较多的三卤甲烷前体物,具有较大的三卤甲烷生成势(Trihalomethanes Formation Potential,THMFP),在预氯化后会产生大量的THMs,研究表明,预氯化是出厂水中产生THMs的主要原因,与氯消毒产生的THMs共同组成了自来水中的‘三致”物。因此在水处理工艺中去除预氯化已产生的THMs的同时去除水中仍然存在的THMFP从而减少氯消毒产生THMs的量,才能有效控制出水中的THMs。
     气浮工艺由于在处理低温、低浊、高藻水等方面的优势,在国外的给水处理中应用较为广泛。近年来为适应我国水处理行业的发展,气浮技术也被逐渐应用到国内的给水处理工艺中,代替传统的沉淀工艺。逆流气浮是一种新型气浮工艺,相比于原水与回流水同向流动的传统气浮技术,可较大程度的避免溶气回流水进入气浮池时打碎脱稳絮体,逆向流动更加充分地发挥气泡/絮体聚集体悬浮层以及气泡层的拦截作用,增加了气泡与絮体的碰撞粘附几率,提高了处理效率。本课题采用混凝-气浮工艺去除预氯化产生的三卤甲烷以及预氯化后水中剩余的三卤甲烷前体物,将静态混凝-气浮小试与混凝-逆流气浮动态实验相结合,研究去除机理,优化工艺参数,从而控制出厂水中的THMs,为水厂改进处理工艺,提高饮用水水质安全程度提供技术支持。
     通过静态混凝-气浮实验得出以下结论:对比了铁盐和铝盐混凝剂的净水效果,选定氯化铁作为后续实验的混凝剂。絮凝条件、絮凝时间及投药量对絮凝体形态及强度有着显著影响,进而影响到THMs、THMFP和其它指标的去除效果。不同的絮凝方式对絮凝体的强度有着显著影响,恒速和降速两种絮凝方式形成的絮凝体形态相似时,降速絮凝形成的絮凝体强度更大,抗剪切能力更强;絮凝体的形态和强度共同影响气浮处理效果,采用降速絮凝方式,在适当的投药量、絮凝搅拌强度及时间下,形成的絮凝体枝权较多,结构较为疏松,强度较大,能够有效吸附有机物,同时也有利于气浮去除。通过改善气浮反应池构造及释放器性能,使微气泡的空间分布更加均匀,减小局部湍流强度,尽量延长气泡与絮凝体的接触时间,增大碰撞几率,可达到提高处理效果的目的。
     混凝-气浮工艺有利于THMs中易挥发成分的去除,对THMs、THMFP及有机物的去除效果均优于混凝-沉淀工艺。气浮对各分子量区间THMFP及有机物的去除效果均优于沉淀,但二者均以去除大分子量区间THMFP和有机物为主,对小分子量区间THMFP和有机物的去除效果均较差。采用粉末活性炭强化混凝-气浮工艺可以显著增强对THMs及小分子量区间有机物的去除效果,THMs、THMFP、TOC和UV254的去除率分别达到了47.3%、64.8%、64.6%和69.8%。
     在混凝-逆流气浮动态实验中,在静态小试所取得的实验结论基础上,分别采用常规逆流气浮(溶气水单级释放)和溶气水分级释放两种运行方式。研究结果表明:采用分级释放可以增强气泡/絮体聚集体悬浮层的拦截作用,减小悬浮层的厚度,增加过渡层的厚度,延长过渡层中小絮体与气泡的碰撞接触时间;采用分级释放时,最大水力负荷可以达到14.Sm/h,与常规工艺最大水力负荷(9.8m/h)相比提高了51%,处理效率明显提高;分级释放时,可移动式释放器(M)与固定式释放器(F)的释放量比以及M与原水进水口的距离对处理效果有显著影响,当M与F的流量比控制2-3之间、M与进水口的距离在60-90cm时,处理效果较好。当氯化铁投加量为35mg/L,快速混合G值为648s-1,一级絮凝反应G值为107s-1,二级絮凝反应G值为21s-1,溶气水回流比为15%,排渣比为10%,水力负荷为13.8m/h时,分级释放逆流气浮工艺对各污染物的去除情况:浊度的去除率为77.5-87.9%,THMs的去除率为37.7-47.7%,THMFP的去除率为55.3-64.1%,对TOC的去除率为47.5-62.1%,对UV254的去除率为52.1-65.6%。
Chlorine is currently the most widely used oxidizer and disinfectant in water treatment plant, but the Trihalomethanes (THMs) is one of the main chlorination by-products and has been recognized as a cause of Carcinogenicity-Mutagenicity-Teratogenicity. THMs contains four kinds of halogenated alkanes (CHCl3, CHCl2Br, CHClBr2 and CHBr3), their precursors are mainly of natural organic matter. Raw water contains more trihalomethanes precursors, with larger Trihalomethanes Formation Potential (THMFP). Studies have shown that prechlorination and chlorine disinfection is the main source of THMs, so removing the generated THMs and reducing the THMFP in prechloridized water are effective method to reduce the THMs of the tap water.
     Coagulation-Dissolved air flotation(D AF) process with the advantage of treating low temperature, low turbidity and high algae-laden water will be gradually applied to the water treatment process, instead of the traditional coagulation-sedimentation process. Counter current dissolved air flotation (CCDAF) is a new type of flotation technique. Compared with the traditional co-current DAF, the advantages of this process are that the potential for floc damage by recycle water is eliminated, the counter-flow can exert capturing of bubble/floc aggregate suspension bed and bubble blanket so that the collision and adhesion rate of floc and bubble is enhanced, and the efficiency of treatment is improved. This dissertation studied the effect of generated THMs and the THMFP in prechloridized water by coagulation-DAF process. The influencing factors on flotation effects were studied by the coagulation-DAF jar test and the coagulation-CCDAF dynamic state test, and the efficiency of treatment was enhanced by optimizing the operational parameters and improving operating mode.The experimental results are hoped to provide references and supports in improving the treatment process and the quality of drinking water safety.
     The raw water was treated by jar test of flocculation-DAF, and the results were as follows:FeCl3 was chosen as the coagulant of subsequent tests by contrasting treatment effects of iron salt and aluminum salt coagulants. Flocculation conditions, flocculation time and dosage have a significant effect in the floc form and strength, thereby affecting the removal effect of the THMs, THMFP and other indicators. Different flocculation modes had marked influences on floc strength, and When floc form formed by constant and tapered flocculation was similar, the floc strength formed by the tapered flocculation was greater. floc form and strength influenced jointly the flotation treating effect, and by the tapered flocculation during which the dosage, stirring strength and time of flocculation reaction were proper, the flocs with looser structure, more branches and greater strength can effectively adsorb organic matter and were more easily removed by flotation. structure of flotation tank and performance of releaser should be improved in order to distribute the microbubbles evenly throughout the space, reduce partial turbulent intensity, try to extend the contact time of bubbles and flocs and increase the collision probability, so the treatment efficiency can be enhanced in practice.
     Coagulation-DAF process is conducive to the removal of volatile components of THMs and Coagulation-DAF process on the removal of THMs, THMFP and organic matter were better than the coagulation-sedimentation process. Removal effect of THMFP and organic matter in each molecular weight distribution range by Coagulation-DAF process were better than by coagulation-sedimentation process. But the two processes are mainly removing the THMFP and the organic matter of large molecular weight. And the removal effects of small molecular weight THMFP and organic matter were worse. Enhanced coagulation using powder activated carbon-DAF process could significantly enhance the removal of THMs and small molecular weight THMFP and organic matter. The removal rate of THMs, THMFP, TOC and UV254 were respectively 47.3%,64.8%,64.6%and 69.8%.
     In the dynamic test, the raw water was treated respectively by conventional single-recycle and novel step-recycle coagulation-CCDAF on the basis of jar test. The results were as follows:step-recycle mode of dissolved air water can strengthen capturing of bubbles and flocs association suspension bed, and extend the collision time of smaller flocs and bubbles because of reducing the thickness of suspension bed and increasing that of transition bed; compared with the biggest hydraulic load (9.8m/h), that of step-recycle could reach 14.8m/h which was almost increased by 51%, and the treatment efficiency was largely improved; the flow ratio of fixed releaser F and mobile one M and the distance between M and the inlet of raw water influenced removal effect remarkably, and the removal effect was better when the flow of M is 2 to 3 times as much as that of F and the distance was kept between 60 to 90 centimeters; when the FeCl3 adding amount was 35mg/L, the fast stirring strength was 648s-1, the two-grade tapered flocculation values were 107s-1 and 21s-1 respectively, the recycle rate was 15%, the rate of sludge discharge was about 10%, and the hydraulic load was 13.8m/h, the pollutant removals by the process with step-recycle were that the removal rates of turbidity, THMs, THMFP, TOC and UV254 were respectively 77.5-87.9%,37.7-47.7%,55.3-64.1%,47.5-62.1%, 52.1-65.6%.
引文
[1]Bunyarit Panyapinyopol, Taha F. Marhaba, Vorapot Kanokkantapong,et al.Characterization of precursors to trihalomethanes formation in Bangkok source water. Journal of Hazardous Materials 2005,B120:229~236
    [2]Tadanier, C.J., Berry, D.F., Knocke, W.R. Dissolved component recovery following resin exchange based DOM fractionation. J. Environ. Eng.1999,125(10),933-943.
    [3]P.C. Chiang, E.E. Chang, C.H. Liang. NOM characteristics and treatabilities of ozonation processes. Chemosphere 2002,46:929-936
    [4]王丽花,周鸿,张晓健等.常规工艺对消毒副产物及前体物的去除.给水排水.2001,27(4):36-38
    [5]王丽花,张晓健.成都市饮用水中消毒副产物的变化研究.中国给水排水.2003,19(11):8-11
    [6]Jan dojlido, Edzard zbiec,and Ryszard swietli. Formation of the haloacetic acids during ozonation and chlorination of water in Warsaw waterworks(poland).Water Reseach. 1999.33(14):3111~3118
    [7]王志飞.我国城市供水系统消毒的现状与发展.城市给排水.2003,17(3):27-29
    [8]Taha F., Marhaba, Doanh Van. The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant. Journal of Hazardous Materials,2000,74(3):133~147
    [9]Singer P.C. Occurrence of haloacetic acids in chlorinated dringking water. Water Science and Technology:Water Supply,2002,2 (5-6):487~492
    [10]Crone Jean-Philippe, Villleau David, Labouyrie Lawrence. Disinfection by-product formation potentials of hydrophobic and hydrophilic natural organic matter fractions:A comparison between a low-and a high-humic water. ACS Symposium Series, 2000,761:139~153
    [11]D.M.White, D.S. Garlandb, J. Narrb, C.R.Woolardc, Natural organic matter and DBP formation potential in Alaskan water supplies, Water Res.2003 (37):939-947.
    [12]赵振业.肖贤明,李丽.水体中不同分子量有机质对饮用水消毒的影响.环境科学,2002,23(6):45-50
    [13]Krasner Stuart W., Wright J.Michael. The effect of boiling water on disinfection by-product exposure. Water Research,2005,39 (5):855~864
    [14]于柞斌,高明等.简易曝气法去除水中三卤甲烷的研究.环境与健康杂志,1994,11(5):206-209
    [15]Lydia L. Lifongo, Derek J. Bowden, Peter Brimbleco}abe. Photodegradation of haloacetic acids in water. Chemosphere,2004, Vol.55 (3):467~476
    [16]顾春晖,郑正,杨光俊.辐照降解饮用水氯化消毒副产物的研究.环境科学与技术,2005,28(2):3-8
    [17]Landmeyer James E., Bradley Paul M., Thomas James. Biodegradation of disinfection by-products as a potential removal process during aquifer storage recovery. Journal of the American Water Resources Association.2000,36 (4):861~868
    [18]McRae Bethany M., Lapara Timothy M., Hozalski Raymond M.. Biodegradation of haloacetic acids by bacterial enrichment cultures. Chemosphere,2004,55 (6):915~925
    [19]丁英锋,王启山,贾霞珍.絮凝-吸附去除微污染水中THMF.中国给水排水,2002,18(7)45-47
    [20]刘文君.饮用水中可生物降解有机物和消毒副产物特性研究.清华大学博士学位论文.1999
    [21]王琳,王宝贞.优质饮用水净化技术.北京:科学出版社,2000.
    [22]许保玖.关于混凝技术术语规范化的建议[J].给水排水,1992,18(2):36-39.
    [23]Stumm W, Morgan J J. Chemical aspects of coagulation [J]. J. AWWA,1962, 54(8):971~992.
    [24]Black A P. Basic mechanism of coagulation [J]. J.AWWA,1960,52(4):492.
    [25]Black A P. Stoichiometry of the coagulation of color causing organic compounds with ferric sulfate[J].J.AWWA,1963,55(10):1149.
    [26]LaMer V K, Healy T W. Adsorption-flocculation reactions of macromolecules at the solid-liquid interface [A]. Rev. Pure Appl. Chem.,1963 (13):112.
    [27]LaMer V K. Coagulation symposium introduction [J]. J. Colloid Science,1964(19):291.
    [28]Packham R F. Some studies of the coagulation of dispersed clays with hydrolyzed salts [J]. J.Colloid Sci.,1964,20:81.
    [29]AWWA Research Committee. State of the art of coagulation [J]. J. AWWA,1971, 63(2):99~108.
    [30]上海市政工程设计院编.给水排水设计手册第三册——城市给水[M].北京:中国建筑工业出版社,2004.
    [31]蒋展鹏,尤作亮.混凝形态学的研究进展[J].给水排水,1998,24(10):70-71.
    [32]汤鸿霄,微界面水质过程的理论与模式应用[J].环境科学学报,2000,20(3):2-9.
    [33]Gregory J, Hiller N. Enterpretation of flocculation test data [A]. Proceeding of filtration technology in Europe,1995:405~414.
    [34]Erzan A, Gungor N. Fractal geometry and size distribution of clay particles [J]. J. Colloid and interface science,1995,176:301~307.
    [35]Sorensen C M et al. Fractal cluster size distribution measurement using static light scattering [J]. J. Colloid and interface science,1995,174:456~460.
    [36]Li X, Logan B E. Settling and coagulating behavior of fractal aggregates [J]. Wat. Sci. Tech., 2000,42:253~258.
    [37]黄畇.分形发展三十年[J].物理,1998,27(2):90-93.
    [38]Mandelbrot B B. The fractal geometry of nature [M]. New York:W. H. Freeman and Company.1982.
    [39]Lorene E M.混沌的本质[M].刘式达译,北京:气象出版社,1997.
    [40]张济忠.分形[M].北京:清华大学出版社,1995.
    [41]M Kostoglou, A C Konstandopoulos. Evolution of Aggregate Size and Fractal Dimension during Brownian Coagulation [J]. Journal of Aerosol Science.2001,32:1399~1420.
    [42]A S Kim, K D Stolzenbach. The Permeability of Synthetic Fractal Aggregates with Realistic Three-dimensional Structure [J]. Journal of Colloid and interface Science,2002, 253:315~328.
    [43]K C Rajat, F A Joseph, V B John. Characterization of Alum Floc by image Analysis Environment Science Technology,2000,34:3969~3976.
    [44]Lee D G, Bonner J S, Garton L S, et al. Modeling coagulation kinetics incorporating fractal theories:comparison with observed data [J]. Water Research,2002,36(4):1056~1066.
    [45]Bushell G C, Yan Y D, Woodfield D, et al. On techniques for the measurement of the mass fractal dimension of aggregates [J]. Advances in Colloid Interface Science,2002,95(1): 1-50.
    [46][94] Wu R M, Lee D J, Waite T D, et al. Multilevel structure of sludge flocs [J]. Journal of Colloid and Interface Science,2002,252(2):383~392.
    [47][95] Waite T D, Cleaver J K, Beattie J K. Aggregation kinetics and fractal structure of y-alumina assemblages [J]. Journal of Colloid and Interface Science,2001,241(2):333~339.
    [48]金鹏康,王晓昌.腐殖酸絮凝体的形态特征和混凝化学条件[J].环境科学学报,2001,21(6):23-29.
    [49]Li D, Ganczarczyk J. Fractal geometry of particle aggregates generated in water and wastewater treatment processes [J]. Environmental Science and Technology,1989,23 (11): 1385~1389.
    [50]Jiang Q, Logan B E. Fractal dimensions determined from steady-state size distribution [J]. Environmental Science and Technology,1991,25 (12):2031-2038.
    [51]王晓吕,丹保宪仁.絮凝体形态学合密度的探讨——(Ⅰ)从絮凝体分形构造谈起[J].环境科学学报,2000,20(3):257-262.
    [52]王毅力,李大鹏,解明曙.絮凝形态学研究及进展[J].环境污染治理技术与设备,2003,4(10):1-9.
    [53]Meakin P. Fractal aggregates [J]. Advances in Colloid Inter. Sci.,1988 (28):249~331.
    [54]Q Jiang, Logan B E, Fractal Dimensions of Aggregates from Shear Devices. JAWWA.1996, 90:100~113.
    [55]Chakraborti R K, et al. Characterization of alum floc by image analysis [J]. Environmental Science&Technology,2000,34(18):3969~3976.
    [56]Logan B E, Kilps J R. Fractal dimensions of aggregates formed in different fluid mechanical environments [J]. Water Research,1995,29(2):443~453.
    [57]Jiang Q, Logan B E. Fractal dimensions of aggregates from shear devices [J]. J AWWA, 1996,88(2):100~113.
    [58]王东升,汤鸿霄.分形理论在混凝研究中的应用与进展[A].国化学会第五届水处理化学学术研讨会会议论文集(北京),2000.
    [59]Guan J, Waite T D, Amal R. Rapid structure characterization of bacterial aggregates[J]. Environmental science and technology,1998,32(23):3735~3742.
    [60]Masion A, et al. Coagulation-flocculation of natural organic matter with Al-Salts: Specaiation and structure of the aggregates [J]. Environmental science and technology, 2000,34(15):3242~3246.
    [61]Jarvisa P, Jeffersona B, Gregory J, et al. A review of floc strength and breakage [J]. Water Research,2005,39(14):3121~3137.
    [62]Bache D H, Johnson C, McGilligan J F, et al. A conceptual view of floc structure in the sweep floc domain [J]. Water Science and Technology,1997,36 (4):49~56.
    [63]Boller M, Blaser S. Particles under stress [J]. Water Science and Technology,1998,37 (10):9-29.
    [64]Zhang Z, Slisk M L.Characterisation of the breaking force of latex particle aggregates by micromanipulation [J]. Part. System Characteridation,1999,16:278~283.
    [65]Yeung A K C, Pelton R. Micromechanics:a new approach to studying the strength and breakup of flocs. J.Colloid Interface Sci.,1996,184:579~585.
    [66]Gregory J. The role of floc density in solid-liquid separation [J]. Filtr. Sep.,1998, (35):367~371.
    [67]Bache D H, Floe rupture and turbulence:a framework for analysis [J]. Chem. Eng. Sci, 2004, (59):2521~2534.
    [68]Stumm W, O'Melia C R. Stoichiometry of coagulation [J]. J.AWWA,1968,60(5):514.
    [69]Gregory J. Turbidity fluctuations in flowing suspensions [J]. J. Colloid and interface science, 1985,105(2):357~371.
    [70]张松年.气浮净水技术[M].北京:中国环境科学出版社,1991.
    [71]陈翼孙,胡斌.气浮净水技术的研究与应用[M].上海:科学技术出版社,1985
    [72]Edzwald J K. Principles and applications of dissolved air flotation [J]. Wat. Sci. Tech.,1995, 31(3/4):1-23.
    [73]Gergory R, et al. Sedimentation and flotation [A]. In:AWWA. Water Quality and Treatment —A Handbook of Community Water Supplies[M]. New York:McGraw Hill,2000,47~61.
    [74]Fukushi K, et al. A kinetic model for dissolved air flotation in water and wastewater treatment [J]. Wat.Sci. Tech.,1995,31(3/4):37~47.
    [75]Fukushi K. A kinetic study of dissolved air flotation [J]. J. JWWA,1985,606:22~30.
    [76]Malley J P, et al. Concepts for dissolved air flotation treatment of drinking water [J]. Water SRT-Aqua,1991,40(1):7-17.
    [77]Edzwald J K, et al. A concepts for dissolved air flotation in water treatment [J]. Water Supply,1990, (8):141~150.
    [78]Kiuru H J. Development of dissolved air flotation technology from the first generation to the newest (third) one (DAF in turbulent flow conditions) [J]. Wat. Sci. Tech.,2001,43 (8): 1~17.
    [79]Officer J, Ostrowski J A, Woollard P J. The design and operation of conventional and novel flotation systems on a number of impounded water types [J]. J. Wat. Sci. Tech:Water Supply,2001,43(1):63~69.
    [80]Rounds Hill, Kenilworth, Warwickshire. Dissolved air flotation in drinking water production [J].Wat. Sci. Tech.,2001,43(8):9-18.
    [81]Kempeneers S, Van Menxel F, Gille L. A decade of large scale experience in dissolved air flotation [J]. Wat. Sci. Tech.,2001,43(8):27~34.
    [82]Hyde R A, Miller D G. Water clarification by flotation [J]. AWWA,1997,69(7):369-377.
    [83]Edzwald J K. Flocculation and air requirement for dissolved air flotation [J]. AWWA,1992, 84(3):92~101.
    [84]Valade M T. Pretreatment effects on particle removal by flotation and filtration [J]. AWWA, 1996,88(12):35~47.
    [85]Amato T, Edzwald J K, Tobiason J E. An integrated approach to dissolved air flotation [J]. Wat. Sci. Tech.,2001,43(8):19~26.
    [86]Janssens J G. Developments in coagulation, flocculation and dissolved air flotation [J].Water Engineering and Management,1992,139(1):5.
    [87]Donald Q, Bunker, et al. Pretreatment considerations for dissolved air flotation:water type, coagulants and flocculation [J]. Wat. Sci. Tech.,1995,31 (3/4):63~71
    [88]王毅力,李大鹏,郭瑾珑等.絮凝——DAF 工艺的化学因素与颗粒特征研究[J].环境科学学报,2002,22(5):545-550
    [89]王毅力,汤鸿霄,宋乔健等.絮凝—-DAF 中试工艺处理密云水库低温低浊水的影响因素[J].环境科学,2001,22(1):27-31.
    [90]Chung Yong, Yoon Chan Choi, Yoon Ho Choi, et al. A demonstration scaling-up of the dissolved air flotation [J]. Wat. Sci. Tech.,2000,42(3):817~824.
    [91]Crossley L A, Valade M T, Shawcross J. Using lessons learned and advanced methods to design a 1500Ml/day DAF water treatment plant [J]. Wat. Sci. Tech.,2001,43(8):35~41.
    [92]J. Haarhoff, Van Der Vuuren, L. R. J. Design parameters for dissolved air flotation in south Africa [J]. Wat. Sci. Tech.1995,31(3-4):203~212.
    [93]Schofield T. Dissolved air flotation in drinking water production [J]. Wat. Sci. Tech.,2001, 43(8):9-18.
    [94]Hall T, Pressdee J, Gregory R. Cryptosporidium removal during water treatment using dissolved air flotation [J]. Wat. Sci. Tech.,1995,31 (3):125~135.
    [95]Andrew Eades. Counter-current dissolved air flotation-filtration [J]. Wat. Sci. Tech.,1995, 31(3/4):173~178.
    [96]郭瑾珑,王毅力等.逆流共聚气浮水处理工艺研究[J].中国给水排水,2002,18(7):12-16.
    [97]Akio Imai, kazuo matsushige, Takashi Nagai.Trihalomethane formation potential of dissolved organic matter in a shallow eutrophic lake[J].Water Research,2003,37 (17): 4284~4294.
    [98]Summers R,Scott, Hooper Stuart M, Shukairy,Hiba M, et al.Assessing DBP yield:uniform formation conditions[J] AWWA,1996,88 (6):80~93..
    [99]Jorma Kuivinen, Hakan Johnsson, Determination of Trihalomethanes and Some Chlorinated Solvents in Drinking Water by Headspace Technique with Capillary Column Gas-Chromatography[J].Water Resesrch,1999,33 (5):1201~1208.
    [100]林细萍,卢益新,张德明等THMFP及HAAFP的测定方法[J].中国给水排水,2003,19(10):98-100.
    [101]Amy G L,Sierka R A, Bedessem J. Molecular size distribution of dissovlved organic matter[J] AWWA,1992,84(6):67~75.
    [102]Marhaba Taha F, Van Doanh. The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant[J]. Journal of Hazardous Materials,2000,14(3):133~147.
    [103]Goslan E H, Fearing D A, Banks J, et al. Seasonal Variations in the Disinfection by-Product Precursor Profile of a Reservorir Water[J].J Water SRT-Aqua,2002,51(8):475-482.
    [104]周玲玲,张永吉,孙丽华.铁盐和铝盐混凝对水中天然有机物的去除特性研究[J].环境科学,2008,29(5):1187-1191.
    [105]伍海辉,高乃云,贺道红.臭氧活性炭工艺中卤乙酸生成潜能与相对分子质量分布关系的研究[J].环境科学,2006,27(10):2035-2039.
    [106]Zhao Zhen-Ye, Gu Ji-Dong, Fan Xiao-Jun, et al.Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments[J]. Journal of Hazardous Materials.2006.134(1-3):60~66.
    [107]Li X Y, Logan Bruce E. Collision frequencies between fractal aggregates and small particles in a turbulently sheared fluid [J]. Environmental Science Technology,1997,31(4): 1237~1242.
    [108]上海市政工程设计院编.给水排水设计手册第三册——城市给水[M].北京:中国建筑工业出版社,2004.
    [109]Li T, Zhu Z, Wang D S, et al. The strength and fractal dimension characteristics of alum-kaolin flocs [J]. Mineral Processing,2007, (82)1:23~29.
    [110]Tao Li, Zhe Zhu, Dongsheng Wang, Chonghua Yao, Hongxiao Tang. Characterization of floc size, strength and structure under various coagulation mechanisms [J]. Powder Technology,2006,168(3):104~110.
    [111]董秉直,曹达文,范瑾初等.UF膜与混凝粉末活性炭联用处理微污染原水[J].环境科学.2001,22(1):37-40
    [112]张之源,王培华等.巢湖富营养化状况评价及水质恢复探讨[J].环境科学研究,1999,5(12):45-48.
    [113]马军,王静超,刘芳等.利用溶气气浮工艺强化处理低浊高色富含有机物地表水[J].给水排水,2004,30(9):21-27.
    [114]李冰璟,张巍,刘婉冬等.去除饮用水中三卤甲烷和腐殖酸的活性炭选型方法[J].环境污染与防治,2008,30(4):48-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700