用户名: 密码: 验证码:
猪下丘脑—垂体—甲状腺轴五个关键基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
候选基因鉴定法是分析数量性状基因的重要方法。本论文以在机体物质与能量代谢、个体生长发育调控中发挥重要作用的下丘脑-垂体-甲状腺轴五个关键调控基因:促甲状腺激素释放激素前体TRH基因、促甲状腺激素释放激素受体TRHR基因、组成促甲状腺激素的糖蛋白激素共同亚基CGA基因和促甲状腺激素β亚基TSHB基因,以及促甲状腺激素受体TSHR基因为研究对象,应用生物信息学、辐射杂交细胞系定位技术、3'RACE、实时荧光定量RT-PCR、PCR-RFLP、四引物ARMS-PCR等技术对HPT轴五个关键基因进行染色体定位、QTL分布分析、cDNA克隆、组织表达谱分析、遗传多态寻找以及与猪主要经济性状的关联分析研究,以期了解HPT轴该五个关键基因的分子生物学特性,并为猪主要经济性状遗传改良和标记辅助选择提供科学依据。实验主要得出以下一些结果:
     (1)应用生物信息学和辐射杂交细胞系定位技术,HPT轴五个关键基因分别被定位于猪13、4、1、4和7号染色体。根据QTL数据库查询结果,五个基因全部位于日增重、肌肉品质和脂肪性状相关QTL内,提示猪HPT轴基因多态与个体生长速度、肉质和脂肪性状差异可能存在重要关联,为相应QTL的位置功能候选基因。
     (2)本论文首次克隆获得猪TRHR基因mRNA序列,并在分子水平上进行了深入分析。猪TRHR基因与人TRHR基因进化上很接近。除TRHR基因的功能性转录本外,本论文实验中还发现了另外两种转录本类型。其中,转录本2为功能转录本1的截断型,仅含N端结构、跨膜螺旋1-5及部分胞内环3序列,缺失跨膜域6和7以及蛋白C端结构;而转录本3则恰与转录本2相反,剪切661 bp的选择性剪接内含子后,使之缺失了TRHR蛋白的N端编码序列,但保留有C端编码序列。然而选择性内含子的剪接,破坏了原阅读框,转录本3可能编码一种新的功能蛋白,也可能使用了不同的翻译起始位点。多种转录本存在的意义有待研究。
     (3)采用荧光定量RT-PCR技术,检测了HPT轴五个关键基因在大脑、下丘脑、垂体、心、肝、脾、肺、’肾、甲状腺、胰、胃、小肠、大肠,以及肌肉和皮下脂肪共15个组织中的表达分布。HPT轴激素及其受体在外周组织,如皮下脂肪中的共表达,提示相应激素可能通过旁分泌或自分泌方式对局部组织进行着生长发育调控。
     (4)以金华猪和皮特兰资源家系亲本个体为模板,共设计17对引物扩增HPT轴五个关键基因总长11,340 bp的DNA序列,进行PCR再测序以寻找核苷酸多态变异。分析基因测序峰图,共发现37个多态座位,其中位于TRH基因多态座位8个,TRHR基因多态座位7个,CGA基因多态座位14个,TSHB基因多态座位5个,TSHR基因多态座位3个。检测到的所有多态座位都提交到了国际SNP数据库dbSNP,并获得SNP登录号。根据多态座位彼此间距离间隔、侧翼序列特点及其潜在功能重要性,选择了其中20个座位,采用PCR-RFLP和四引物ARMS-PCR技术设计并优化了分型方法。
     (5)对49头纯种金华猪和24头纯种皮特兰猪进行HPT轴20个多态座位的分型,并采用HapBlock软件进行基因单倍型块分析和标签SNP选择。除TRH基因SNP在金华猪中分布于两个单倍型块外,其他基因的SNP座位均位于同一单倍型块中。结合两个品种的单倍型区块和标签SNP集合信息,共选择了3个TRH基因标签SNP,3个TRHR基因标签SNP,5个CGA基因标签SNP,3个TSHB基因标签SNP和1个TSHR基因标签SNP,用于在金华猪与皮特兰资源家系中进行HPT轴基因多态遗传效应分析。
     (6)在金华猪与皮特兰资源家系共463头个体中分析了HPT轴基因多态性与猪生长、胴体和肉质共30个主要经济性状的关联性,并在在约克夏、杜洛克、长白猪以及嘉兴黑猪中进行了一定的验证分析。分析结果显示:
     1)在金皮资源家系中TRH ss325994933与个体生长发育后期,尤其是150-180日龄期间增重有显著关联,其在国内和国外猪种中的基因频率亦存在明显的对立分布差异,但在生长较慢的金华猪中占优势的插入突变却在资源家系中表现为生长优势。本研究认为TRH基因可能在中外猪种生长性状差异形成中有一定影响,是相关日增重QTL下的位置功能候选基因,但其多态座位效应仍有待进一步挖掘验证。
     2) TRHR基因多态性的种群间分化较大。在金皮资源家系中,其对个体头重和胴体长有极显著效应,对眼肌的导电率、pH值、系水力、肌内水份和肌内脂肪性状有显著影响。TRHR基因与多项肉质指标存在显著关联,且在肌肉组织中有表达,本文认为有必要对TRHR基因在猪肌肉组织中的功能进行深入研究。
     3)尽管本文发现CGA基因多态性与猪肌内水份含量存在显著关联,此前并未见肌内水份QTL定位于CGA基因。可能由于CGA基因内微卫星的存在,造成较频繁的基因内重组,而使基因效应表现不稳定。所有5个CGA SNP在国内外猪种中均未表现出明显对立的等位基因频率分布差异。因此本研究认为,CGA基因多态性可能在国内外猪种性状差异形成中不具有重要地位。
     4)TSHB基因的种群间分化也较大。在金皮资源家系中,TSHB基因多态性对猪90-120日龄期间增重、后腿肌肉重有统计显著效应,对猪胴体重、胴体长和平均背膘厚有极显著效应。含金华猪单倍型G-G-A纯合子个体较皮特兰单倍型A-G-G纯合子个体增重显著慢,与一般认为的金华猪生长速度慢相一致。并且含皮特兰单倍型A-G-G个体背膘厚显著小于含金华猪单倍型G-G-A个体。此外,在杜洛克群体中,TSHB SNP座位ss181129015与背膘厚也存在显著关联,在国外猪种中占优势的等位基因A有降低背膘厚的效应,验证了在金皮资源家系中的分析结果。因此本研究认为,TSHB基因,尤其是其SNP ss181129015且有作为遗传分子标记应用于猪背膘厚性状改良育种中的价值。
     5) TSHR基因多态性座位的等位基因A在所有猪种中均以低频出现。金皮资源家系中,TSHR基因多态性对个体生长发育后期120日龄至180日龄期间增重以及眼肌pH值有显著影响。在长白猪群体中的关联分析,进一步确证了TSHR与日增重的关联性。然而,在金皮资源家系中表现出生长优势的等位基因A,在长白猪群体中却表现为生长劣势。
Candidate gene approach is one of the important methods in quantitative trait analysis. In the present study, five candidate genes of hypothalamo-pituitary-thyroid axis which plays important roles in the regulation of animals' growth, development and many metabolic and physical processes:thyrotropin releasing hormone gene (TRH), thyrotropin releasing hormone receptor gene (TRHR), thyrotropin alpha subunit gene (CGA) and beta subunit gene (TSHB), and thyrotropin receptor gene (TSHR) were investigated using bioinformatis, radiation hybrid mapping,3'RACE, real-time quantitative RT-PCR, PCR-RFLP, tetra-primers ARMS-PCR technolgies and so on to map the genes, analyse the QTLs located on them, clone the cDNA, study the genes' tissue expression profile, seach for the genetic polymorphisms and investigate their associations with porcine economical important traits. The objectives of these studies were to characterize the five porcine key genes of HPT axis, develop and evaluate new effective genetic markers for the improvements of porcine economical important traits. The results obtained were as follows:
     (1) With bioinformatics method and Radiation Hybrid mapping technology, the five key genes of HPT axis were mapped to Sus Scorfa chormosome 13,4,1,1 and 7, respectively. According to the information from pig QTL datebase, all the five genes lie in the daily gain, meat quality and fat related QTLs, which suggesting that genetic polymorphisms of HPT asis might associate with individuals' growth rate, meat quality and fat traits' variation, and could be the positional and functional candidate genes of respective QTLs.
     (2) mRNA sequence of porcine TRHR gene was obtained at the first time. Porcine TRHR gene was near to the human TRHR gene in the evolution. Except the functional transcript variant (TV1), two additional transcript variants (TV2 and TV3) were also found in this study. TV2 was truncated in the nucleotide sequence that encodes the putative third intracellular loop and retained a part of the intron, while TV3 was the purduct of a 661-bp alternative spliced intron existed in the 2nd exon. The splicing of the alternative spliced intron interrupts the open reading frame, thus TV3 might code a new protein or use a different translation start site. The meaning of the existence of more than one transcript variant remains investigation.
     (3) Using real-time quantitative RT-PCR technology, tissue distributions of the five genes in brain, hypothalamus, pituitary, heart, liver, spleen, lung, kidney, thyroid, pancreas, stomach, small intestine, large intestine, muscle and fat were investigated. Co-expression of the hormones and their receptors in the same tissues, e.g. in fat tissue, indicating that regulations of the respective hormones on the tissues might partly via paracrine or autocrine effects.
     (4) To scan for the nucleotide polymorphisms in the genes of HPT axis, re-sequencing 11,340 bp DNA sequence of each founder animal of the Jinhua and Pietrain resource family with 17 pairs of primers were performed.37 polymorphisms in total were identified, among which 8 loci in TRH gene,7 loci in TRHR gene,14 loci in CGA gene,5 loci in TSHB gene, and 3 loci in TSHR gene. All the polymorphisms identified in this study has been submitted to the international SNP database (dbSNP) and gotten the SNP accession number (ss#). Based on the distance between each locus,the flanking sequence, and their potential functions,20 loci were selected and genotyping methods using PCR-RFLP or tetra-primers ARMS PCR technology were designed and verified.
     (5) The 20 SNP loci of HTP axis were genotyped in 49 Jinhua pigs and 24 Pieterain pigs, and the haplotype block analysis and Tag SNP selection were performed with HapBlock software. All the loci of the same gene located in one block, except the TRH gene in Jinhua population which were separated into two blocks. In combination of the haploblock and Tag SNP information in the two breeds, 3 TRH tag SNP,3 TRHR tag SNP,5 CGA tag SNP,3 TSHB tag SNP and 1 TSHR tag SNP were selected to genotype in Jinhua and Pietrain resource family to analyze the genetic effects of HPT axis.
     (6) Association analysis between the genetic polymorphisms of HPT axis and 30 porcine growth, carcass and meat quality traits were carried out in the Jinhua and Pietrain resource family (463 individuals in total), and verified in purebreds Yorkshire, Duroc, Landrace and Jiaxing Black pigs. The results showed that:
     1) TRH ss325994933 had effects on the growth in later stage, especially significant (P<0.05) on the weight gain between 150 to 180 days old. And opposite dominant alleles appeared in the Chinese and Western breeds. However, the insertion allele which was dominant in the slowly growing Jinhua pigs showed growth advatage in the resource family. The results suggested that TRH might play important roles in the growth rate difference between breeds and could be the candidate gene of daily gain, though its genetic effects remains further investigation.
     2) Considerable population diversity of TRHR gene existed. TRHR polymorphisms had high significant effects on heat weight and carcass length, and significant effects on the conductivity, pH value, water holding capacity, and intramuscular water and fat content of loin muscle. Both TRHR's expression in muscle and its associations with the meat quality traits suggested that further investigation on roles of TRHR in musle tissue was necessary.
     3) CGA polymorphisms had significant effect on intramuscular water content, however no such QTL had been located on the CGA gene previously. The existence of intragenic microsatellite in CGA gene might be the reasons of its instable genetic effects. Allele distributions of all the five CGA SNPs showed no apparent differences in the pig breeds. Thus, CGA gene might do not play important roles in the forming of breed specific characteristics.
     4) Considerable population diversity of TSHB gene was also observed. TSHB polymorphisms had significant effects on weight gain between 90-120 days old and ham muscle weight, and high significant effects on carcass weight, carcass length and average backfat thickness. In the resource family, homozygotes of G-G-A which was from the Jinhua pigs significantly grew slower than the homozygotes of A-G-G which was from the Pietrain, in accordance with the truth that Jinhua pigs had slower growth rate. And BFT of individuals with A-G-G was significantly thinner than those with G-G-A. Futher, TSHB ss181129015 showed significant association with BFT in Duroc and its allele A which was mainly observed in Western breeds was associated with thinner BFT, supporting the results obtained from the resource family. TSHB gene, especially the ss181129015, could be utilized as genetic marker for BFT improvement in pig breeding.
     5) Allele A of TSHR had low frequencies in all pig breeds. TSHR polymorphism had significant effects on weight gain between 120-180 days old and intramuscular pH value. Association between TSHR and ADG was also observed in Landrace. However, Allele A was associated with faster growth rate in the resource family but with slower growth rate in the Lancrace.
引文
Aikawa S, Susa T, Sato T, Kitahara K, Kato T, Kato Y. Transcriptional activity of the 5'upstream region of the porcine glycoprotein hormone alpha subunit gene. Journal of Reproduction and Development 2005; 51:117-121.
    Amaral AJ, Megens HJ, Crooijmans RP, Heuven HC, Groenen MA. Linkage disequilibrium decay and haplotype block structure in the pig. Genetics 2008; 179:569-79.
    Andersson L, Haley CS, Ellegren H, Knott SA, Johansson M, Andersson K, et al. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 1994; 263:1771-4.
    Bagriacik EU, Klein JR. The thyrotropin (thyroid-stimulating hormone) receptor is expressed on murine dendritic cells and on a subset of CD45RB(high) lymph node T cells:Functional role for thyroid-stimulating hormone during immune activation. Journal of Immunology 2000; 164: 6158-6165.
    Baquedano MS, Ciaccio M, Dujovne N, Herzovich V, Longueira Y, Warman DM, et al. Two novel mutations of the TSH-beta subunit gene underlying congenital central hypothyroidism undetectable in neonatal TSH screening. J Clin Endocrinol Metab 2010; 95:E98-103.
    Beeckmann P, Schroffel J, Moser G, Bartenschlager H, Reiner G, Geldermann H. Linkage and QTL mapping for Sus scrofa chromosome 1. Journal of Animal Breeding and Genetics 2003; 120Suppl. 1:1-10.
    Bidanel JP, Milan D, Iannuccelli N, Amigues Y, Boscher MY, Bourgeois F, et al. Detection of quantitative trait loci for growth and fatness in pigs. Genet Sel Evol 2001; 33:289-309.
    Bidanel JP, Rosendo A, Iannuccelli N, Riquet J, Gilbert H, Caritez JC, et al. Detection of quantitative trait loci for teat number and female reproductive traits in Meishan X Large White F2 pigs. Animal 2008; 2:813-820.
    Bidaud I, Lory P, Nicolas P, Bulant M, Ladram A. Characterization and functional expression of cDNAs encoding thyrotropin-releasing hormone receptor from Xenopus laevis-Identification of a novel subtype of thyrotropin-releasing hormone receptor. European Journal of Biochemistry 2002; 269:4566-4576.
    Bilek R. TRH-like peptides in prostate gland and other tissues. Physiol Res 2000; 49 Suppl 1:S19-26.
    Bockmann J, Bockers TM, Winter C, Wittkowski W, Winterhoff H, Deufel T, et al. Thyrotropin expression in hypophyseal pars tuberalis-specific cells is 3,5,3'-triiodothyronine, thyrotropin-releasing hormone, and Pit-1 independent. Endocrinology 1997; 138:1019-1028.
    Bolander FF. Molecular endocrinology. Amsterdam:Elsevier Academic Press,2004.
    Brokken LJ, Scheenhart JW, Wiersinga WM, Prummel MF. Suppression of serum TSH by Graves'Ig: evidence for a functional pituitary TSH receptor. J Clin Endocrinol Metab 2001; 86:4814-7.
    Burgus R, Dunn TF, Ward DN, Vale W, Amoss M, Guillemin R. [Synthetic polypeptide derivatives with thyrotropin releasing factor hypophysiotropic activity]. C R Acad Sci Hebd Seances Acad Sci D 1969; 268:2116-8.
    Cao J, O'Donnell D, Vu H. Payza K, Pou C, Godbout C, et al. Cloning and characterization of a cDNA encoding a novel subtype of rat thyrotropin-releasing hormone receptor. Journal of Biological Chemistry 1998; 273:32281-32287.
    Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 2004; 74:106-20.
    Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, et al. Matlnspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 2005; 21: 2933-42.
    Chabaud O, Lissitzky S. Thyrotropin-specific binding to human peripheral-blood monocytes and polymorphonuclear leukocytes. Molecular and Cellular Endocrinology 1977; 7:79-87.
    Chowdhury I, Chien JT, Chatterjee A, Yu JY. Effects of leptin and neuropeptide-Y on transcript levels of thyrotropin beta and common alpha subunits of rat pituitary cells in vitro. Life Sci 2004; 75: 2897-909.
    Civitareale D, Castelli MP, Falasca P, Saiardi A. Thyroid transcription factor 1 activates the promoter of the thyrotropin receptor gene. Mol Endocrinol 1993; 7:1589-95.
    Cohn WB, Jones RA, Valverde RA, Leiner KA, MacKenzie DS. Molecular cloning and regulation of mRNA expression of the thyrotropin beta and glycoprotein hormone alpha subunits in red drum, Sciaenops ocellatus. Fish Physiol Biochem 2010; 36:1277-90.
    Collu R, Tang J, Castagne J, Lagace G, Masson N, Huot C, et al. A novel mechanism for isolated central hypothyroidism:inactivating mutations in the thyrotropin-releasing hormone receptor gene. J Clin Endocrinol Metab 1997; 82:1561-5.
    Cornelius P, MacDougald OA, Lane MD. Regulation of adipocyte development. Annu Rev Nutr 1994; 14:99-129.
    Couperwhite S, Kato Y, Archibald AL. A TaqI RFLP at the porcine thyroid stimulating hormone beta-subunit locus (TSHB). Anim Genet 1992; 23:567.
    Crisanti P, Omri B, Hughes E, Meduri G, Hery C, Clauser E, et al. The expression of thyrotropin receptor in the brain. Endocrinology 2001; 142:812-22.
    Dacou-Voutetakis C, Feltquate DM, Drakopoulou M, Kourides IA, Dracopoli NC. Familial hypothyroidism caused by a nonsense mutation in the thyroid-stimulating hormone beta-subunit gene. Am J Hum Genet 1990; 46:988-93.
    Davies TF, Ando T, Lin RY, Tomer Y, Latif R. Thyrotropin receptor-associated diseases:from adenomata to Graves disease. J Clin Invest 2005; 115:1972-83.
    Davies TF, Smith BR, Hall R. Binding of thyroid stimulators to guinea pig testis and thyroid. Endocrinology 1978; 103:6-10.
    Davies TF, Teng CS, Mclachlan SM, Reessmith B, Hall R. Thyrotropin receptors in adipose-tissue, retro-orbital tissue and lymphocytes. Molecular and Cellular Endocrinology 1978; 9:303-310.
    Davies TF, Yin X, Latif R. The genetics of the thyroid stimulating hormone receptor:history and relevance. Thyroid 2010; 20:727-36.
    de Bakker PI, Yelensky R, Pe'Er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency and power in genetic association studies. Nat Genet 2005; 37:1217-23.
    de Koning DJ, Janss LL, Rattink AP, van Oers PA, de Vries BJ, Groenen MA, et al. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics 1999; 152:1679-90.
    de Koning DJ, Rattink AP, Harlizius B, Groenen M, Brascamp EW, van Arendonk J. Detection and characterization of quantitative trait loci for growth and reproduction traits in pigs. Livestock Production Science 2001; 72:185-198.
    Dechairo BM, Zabaneh D, Collins J, Brand O, Dawson GJ, Green AP, et al. Association of the TSHR gene with Graves'disease:the first disease specific locus. Eur J Hum Genet 2005; 13:1223-30.
    Demeure O, Sanchez MP, Riquet J, Iannuccelli N, Demars J, Feve K, et al. Exclusion of the swine leukocyte antigens as candidate region and reduction of the position interval for the Sus scrofa chromosome 7 QTL affecting growth and fatness. J Anim Sci 2005; 83:1979-87.
    Desautes C, Bidanelt JP, Milant D, Iannuccelli N, Amigues Y, Bourgeois F, et al. Genetic linkage mapping of quantitative trait loci for behavioral and neuroendocrine stress response traits in pigs. J Anim Sci 2002; 80:2276-85.
    Ding K, Zhang J, Zhou K, Shen Y, Zhang X. htSNPer1.0:software for haplotype block partition and htSNPs selection. BMC Bioinformatics 2005; 6:38.
    Drvota V, Janson A, Norman C, Sylven C, Haggblad J, Bronnegard M, et al. Evidence for the presence of functional thyrotropin receptor in cardiac muscle. Biochem Biophys Res Commun 1995; 211: 426-31.
    Duthie Sm, Taylor P1, Anderson L, Cook J, Eidne Ka. Cloning and functional-characterization of the human TRH receptor. Molecular and Cellular Endocrinology 1993; 95:R11-R15.
    Edwards DB, Ernst CW, Raney NE, Doumit ME, Hoge MD, Bates RO. Quantitative trait locus mapping in an F2 Duroc x Pietrain resource population:Ⅱ. Carcass and meat quality traits. J Anim Sci 2008; 86:254-66.
    Edwards DB, Ernst CW, Tempelman RJ, Rosa GJ, Raney NE, Hoge MD, et al. Quantitative trait loci mapping in an F2 Duroc x Pietrain resource population:Ⅰ. Growth traits. J Anim Sci 2008; 86: 241-53.
    Endo T, Ohta K, Haraguchi K, Onaya T. Cloning and functional expression of a thyrotropin receptor cDNA from rat fat cells. J Biol Chem 1995; 270:10833-7.
    Engel S, Gershengorn MC. Thyrotropin-releasing hormone and its receptors--a hypothesis for binding and receptor activation. Pharmacol Ther 2007; 113:410-9.
    Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman LJ. Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1 A. BMC Biotechnol 2006; 6:41.
    Estelle J, Gil F, Vazquez JM, Latorre R, Ramirez G, Barragan MC, et al. A quantitative trait locus genome scan for porcine muscle fiber traits reveals overdominance and epistasis. J Anim Sci 2008; 86:3290-9.
    Fan B, Du Z, Gorbach DM, Rothschild MF. Development and application of high-density SNP arrays in Genomic Studies of Domestic Animals. Asian-Australian Journal of Animal Science 2010; 23:833-847.
    Farid NR, Szkudlinski MW. Minireview: structural and functional evolution of the thyrotropin receptor. Endocrinology 2004; 145:4048-57.
    Fiddes JC, Talmadge K. Structure, expression, and evolution of the genes for the human glycoprotein hormones. Recent Prog Horm Res 1984; 40:43-78.
    FrancisS基础与临床内分泌.北京:人民卫生出版社,2009.
    Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science 2002; 296:2225-9.
    Galas L, Bidaud I, Bulant M, Jenks BG, Ouwens DT, Jegou S, et al. In situ hybridization localization of TRH precursor and TRH receptor mRNAs in the brain and pituitary of Xenopus laevis. Ann N Y Acad Sci 2005; 1040:95-105.
    Gershengorn MC, Osman R. Molecular and cellular biology of thyrotropin-releasing hormone receptors. Physiol Rev 1996; 76:175-91.
    Gordon DF, Lewis SR, Haugen BR, James RA, McDermott MT, Wood WM, et al. Pit-1 and GATA-2 interact and functionally cooperate to activate the thyrotropin beta-subunit promoter. J Biol Chem 1997; 272:24339-47.
    Grapes L, Rothschild MF. Investigation of a QTL region for loin eye area and fatness on pig chromosome 1. Mamm Genome 2006; 17:657-68.
    Grindflek E, Szyda J, Liu ZT, Lien S. Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mammalian Genome 2001; 12:299-304.
    Guo YM, Lee GJ, Archibald AL, Haley CS. Quantitative trait loci for production traits in pigs:a combined analysis of two Meishan x Large White populations. Anim Genet 2008; 39:486-95.
    Gurr JA, Catterall JF, Kourides IA. Cloning of cDNA encoding the pre-beta subunit of mouse thyrotropin. Proc Natl Acad Sci U S A 1983; 80:2122-6.
    Hao K, Di X, Cawley S. LdCompare:rapid computation of single- and multiple-marker r2 and genetic coverage. Bioinformatics 2007; 23:252-4.
    Haraguohi K, Shimura H, Lin L, Endo T, Onaya T. Differentiation of rat preadipocytes is accompanied by expression of thyrotropin receptors. Endocrinology 1996; 137:3200-5.
    Harder S, Dammann O, Buck F, Zwiers H, Lederis K, Richter D, et al. Cloning of two thyrotropin-releasing hormone receptor subtypes from a lower vertebrate (Catostomus commersoni): functional expression, gene structure, and evolution. Gen Comp Endocrinol 2001; 124:236-45.
    Harder S, Lu XP, Wang W, Buck F, Gershengorn MC, Bruhn TO. Regulator of G protein signaling 4 suppresses basal and thyrotropin releasing-hormone (TRH)-stimulated signaling by two mouse TRH receptors, TRH-R-1 and TRH-R-2. Endocrinology 2001; 142:1188-1194.
    Harmegnies N, Davin F, De Smet S, Buys N, Georges M, Coppieters W. Results of a whole-genome quantitative trait locus scan for growth, carcass composition and meat quality in a porcine four-way cross. Animal Genetics 2006; 37:543-553.
    Hayashizaki Y, Miyai K, Kato K, Matsubara K. Molecular cloning of the human thyrotropin-beta subunit gene. FEBS Lett 1985; 188:394-400.
    Hirai T, Takikawa H, Kato Y. Molecular cloning of cDNAs for precursors of porcine pituitary glycoprotein hormone common alpha-subunit and of thyroid stimulating hormone beta-subunit. Mol Cell Endocrinol 1989; 63:209-17.
    Hovring PI, Matre V, Fjeldheim AK, Loseth OP, Gautvik KM. Transcription of the human thyrotropin-releasing hormone receptor gene-analysis of basal promoter elements and glucocorticoid response elements. Biochem Biophys Res Commun 1999; 257:829-34.
    Hsieh YL, Chatterjee A, Lee G, Yuh-Lin YJ. Molecular cloning and sequence analysis of the cDNA for thyroid-stimulating hormone beta subunit of Muscovy duck. Gen Comp Endocrinol 2000; 120: 336-44.
    Hsieh YL, Chowdhury I, Chien JT, Chatterjee A, Yu JY. Molecular cloning and sequence analysis of the cDNA encoding thyroid-stimulating hormone beta-subunit of common duck and mule duck pituitaries:in vitro regulation of steady-state TSHbeta mRNA level. Comp Biochem Physiol B Biochem Mol Biol 2007; 146:307-17.
    Huang YT, Chao KM. A new framework for the selection of tag SNPs by multimarker haplotypes. J Biomed Inform 2008; 41:953-61.
    Huhtaniemi I, Alevizaki M. Mutations along the hypothalamic-pituitary-gonadal axis affecting male reproduction. Reprod Biomed Online 2007; 15:622-32.
    Igarashi M, Nagata A. Molecular cloning, sequencing and functional expression of porcine thyrotropm (TSH) receptor cDNAl). Clin Chem Lab Med 2003; 41:796-803.
    Inoue M, Tawata M, Yokomori N, Endo T, Onaya T. Expression of thyrotropin receptor on clonal osteoblast-like rat osteosarcoma cells. Thyroid 1998; 8:1059-64.
    Iwasaki T, Yamada M, Satoh T, Konaka S, Ren Y, Hashimoto K, et al. Genomic organization and promoter function of the human thyrotropin-releasing hormone receptor gene. J Biol Chem 1996; 271:22183-8.
    Jonas E, Schreinemachers HJ, Kleinwachter T, Un C, Oltmanns I, Tetzlaff S, et al. QTL for the heritable inverted teat defect in pigs. Mamm Genome 2008; 19:127-38.
    Karmas E, Turk K. A gravimetric adaptation of the filter paper press method for the determination of water-binding capacity. Z Lebensm Unters Forsch 1975; 158:145-8.
    Kato Y, Ezashi T, Hirai T, Kato T. The gene for the common alpha subunit of porcine pituitary glycoprotein hormone. J Mol Endocrinol 1991; 7:27-34.
    Kendall SK, Samuelson LC, Saunders TL, Wood RI, Camper SA. Targeted disruption of the pituitary glycoprotein hormone alpha-subunit produces hypogonadal and hypothyroid mice. Genes Dev 1995; 9:2007-19.
    Kim JJ, Zhao H, Thomsen H, Rothschild MF, Dekkers JC. Combined line-cross and half-sib QTL analysis of crosses between outbred lines. Genet Res 2005; 85:235-48.
    Kim S, Edwards JR, Deng LY, Chung W, Ju JY. Solid phase capturable dideoxynucleotides for multiplex genotyping using mass spectrometry. Nucleic Acids Research 2002; 30.
    Kim S, Misra A. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 2007; 9:289-320.
    Knoll A, Stratil A, Schroffel J, Moser G, Dvorak J, Cepioa S. A rare PCR-RFLP within intron 2 of the porcine TSHB gene. Czech Journal of Animal Science 2000; 45:237-239.
    Knott SA, Marklund L, Haley CS, Andersson K, Davies W, Ellegren H, et al. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 1998; 149:1069-80.
    Knott SA, Nystrom PE, Andersson-Eklund L, Stern S, Marklund L, Andersson L, et al. Approaches to interval mapping of QTL in a multigeneration pedigree:the example of porcine chromosome 4. Animal Genetics 2002; 33:26-32.
    Kokubo Y, Tomoike H, Tanaka C, Banno M, Okuda T, Inamoto N, et al. Association of sixty-one non-synonymous polymorphisms in forty-one hypertension candidate genes with blood pressure variation and hypertension. Hypertens Res 2006; 29:611-9.
    Kumar RS, Ijiri S, Kight K, Swanson P, Dittman A, Alok D, et al. Cloning and functional expression of a thyrotropin receptor from the gonads of a vertebrate (bony fish):potential thyroid-independent role for thyrotropin in reproduction. Mol Cell Endocrinol 2000; 167:1-9.
    Kursawe R, Paschke R. Modulation of TSHR signaling by posttranslational modifications. Trends Endocrinol Metab 2007; 18:199-207.
    Lee GJ, Archibald AL, Garth GB, Law AS, Nicholson D, Barr A, et al. Detection of quantitative trait loci for locomotion and osteochondrosis-related traits in Large White X Meishan pigs. Animal Science 2003; 76:155-165.
    Lee GJ, Archibald AL, Law AS, Lloyd S, Wood J, Haley CS. Detection of quantitative trait loci for androstenone, skatole and boar taint in a cross between Large White and Meishan pigs. Anim Genet 2005; 36:14-22.
    Lee PH, Shatkay H. BNTagger: improved tagging SNP selection using Bayesian networks. Bioinformatics 2006; 22:e211-9.
    Li MD, Ford JJ. A comprehensive evolutionary analysis based on nucleotide and amino acid sequences of the alpha- and beta-subunits of glycoprotein hormone gene family. J Endocrinol 1998; 156: 529-42.
    Li MD, Matteri RL, Macdonald GJ, Wise TH, Ford JJ. Overexpression of beta-subunit of thyroid-stimulating hormone in Meishan swine identified by differential display. J Anim Sci 1996; 74:2104-11.
    Libert F, Lefort A, Gerard C, Parmentier M, Perret J, Ludgate M, et al. Cloning, sequencing and expression of the human thyrotropin (TSH) receptor: evidence for binding of autoantibodies. Biochem Biophys Res Commun 1989; 165:1250-5.
    Lin SC, Li S, Drolet DW, Rosenfeld MG. Pituitary ontogeny of the Snell dwarf mouse reveals Pit-1-independent and Pit-1-dependent origins of the thyrotrope. Development 1994; 120:515-22.
    Liu G, Jennen D, Tholen E, Juengst H, Kleinwachter T, Holker M, et al. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Animal Genetics 2007; 38:241-252.
    Liu G, Kim JJ, Jonas E, Wimmers K, Ponsuksili S, Murani E, et al. Combined line-cross and half-sib QTL analysis in Duroc-Pietrain population. Mamm Genome 2008; 19:429-38.
    Liu G, Wang Y, Wong L. FastTagger:an efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium. BMC Bioinformatics 2010; 11:66.
    Liu L, Wu Y, Lonardi S, Jiang T. Efficient genome-wide TagSNP selection across populations via the linkage disequilibrium criterion. J Comput Biol 2010; 17:21-37.
    Liu XG, Tan LJ, Lei SF, Liu YJ, Shen H, Wang L, et al. Genome-wide association and replication studies identified TRHR as an important gene for lean body mass. Am J Hum Genet 2009; 84: 418-23.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25:402-8.
    Lu X, Bidaud I, Ladram A, Gershengom MC. Pharmacological studies of thyrotropin-releasing hormone (TRH) receptors from Xenopus laevis:is xTRHR3 a TRH receptor? Endocrinology 2003; 144:1842-6.
    Luo L, Yano N, Luo JZ. The molecular mechanism of EGF receptor activation in pancreatic beta-cells by thyrotropin-releasing hormone. Am J Physiol Endocrinol Metab 2006; 290:E889-99.
    Luo LG, Yano N. Expression of thyrotropin-releasing hormone receptor in immortalized beta-cell lines and rat pancreas. J Endocrinol 2004; 181:401-12.
    Lyamichev V, Mast AL, Hall JG, Prudent JR, Kaiser MW, Takova T, et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol 1999; 17:292-6.
    MacKenzie DS, Jones RA, Miller TC. Thyrotropin in teleost fish. Gen Comp Endocrinol 2009; 161: 83-9.
    Magi R, Kaplinski L, Remm M. The whole genome tagSNP selection and transferability among HapMap populations. Pac Symp Biocomput 2006:535-43.
    Magner JA. Thyroid-stimulating hormone:biosynthesis, cell biology, and bioactivity. Endocr Rev 1990; 11:354-85.
    Malek M, Dekkers JC, Lee HK, Baas TJ, Prusa K, Huff-Lonergan E, et al. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm Genome 2001; 12:637-45.
    Malek M, Dekkers JC, Lee HK, Baas TJ, Rothschild MF. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mamm Genome 2001; 12:630-6.
    Mao HR, Guo YM, Yang GC, Yang B, Ren J, Liu SF, et al. A genome-wide scan for quantitative trait loci affecting limb bone lengths and areal bone mineral density of the distal femur in a White Duroc x Erhualian F-2 population. BMC Genetics 2008; 9.
    Matre V, Hovring PI, Fjeldheim AK, Helgeland L, Orvain C, Andersson KB, et al. The human neuroendocrine thyrotropin-releasing hormone receptor promoter is activated by the haematopoietic transcription factor c-Myb. Biochem J 2003; 372:851-9.
    Matre V, Hovring PI, Orstavik S, Frengen E, Rian E, Velickovic Z, et al. Structural and functional organization of the gene encoding the human thyrotropin-releasing hormone receptor. J Neurochem 1999; 72:40-50.
    Matre V, Karlsen HE, Wright MS, Lundell I, Fjeldheim AK, Gabrielsen OS, et al. Molecular-cloning of a functional human thyrotropin-releasing-hormone receptor. Biochemical and Biophysical Research Communications 1993; 195:179-185.
    Maurer RA, Kim KE, Schoderbek WE, Roberson MS, Glenn DJ. Regulation of glycoprotein hormone alpha-subunit gene expression. Recent Prog Horm Res 1999; 54:455-84; discussion 485.
    Medeiros-Neto G, Herodotou DT, Rajan S, Kommareddi S, de Lacerda L, Sandrini R, et al. A circulating, biologically inactive thyrotropin caused by a mutation in the beta subunit gene. J Clin Invest 1996; 97:1250-6.
    Mekuchi M, Saito Y, Aoki Y, Masuda T, Iigo M, Yanagisawa T. Molecular cloning, gene structure, molecular evolution and expression analyses of thyrotropin-releasing hormone receptors from medaka (Oryzias latipes). Gen Comp Endocrinol 2010.
    Milan D, Bidanel JP, Iannuccelli N, Riquet J, Amigues Y, Gruand J, et al. Detection of quantitative trait loci for carcass composition traits in pigs. Genet Sel Evol 2002; 34:705-28.
    Misrahi M, Loosfelt H, Atger M, Sar S, Guiochon-Mantel A, Milgrom E. Cloning, sequencing and expression of human TSH receptor. Biochem Biophys Res Commun 1990; 166:394-403.
    Mitsuma T, Rhue N, Sobue G, Hirooka Y, Kayama M, Yokoi Y, et al. Distribution of thyrotropin releasing hormone receptor in rats:an immunohistochemical study. Endocr Regul 1995; 29: 129-134.
    Moeller LC, Alonso M, Liao XH, Broach V, Dumitrescu A, Van Sande J, et al. Pituitary-thyroid setpoint and thyrotropin receptor expression in consomic rats. Endocrinology 2007; 148: 4727-4733.
    Montagne JJ, Ladram A, Nicolas P, Bulant M. Cloning of thyrotropin-releasing hormone precursor and receptor in rat thymus, adrenal gland, and testis. Endocrinology 1999; 140:1054-9.
    Moran C. Microsatellite repeats in pig (Sus domestica) and chicken (Gallus domesticus) genomes. J Hered 1993; 84:274-80.
    Murakami M, Hosoi Y, Negishi T, Kamiya Y, Miyashita K, Yamada M, et al. Thymic hyperplasia in patients with Graves' disease-Identification of thyrotropin receptors in human thymus. Journal of Clinical Investigation 1996; 98:2228-2234.
    Murani E, Muraniova M, Ponsuksili S, Schellander K, Wimmers K. Molecular characterization and evidencing of the porcine CRH gene as a functional-positional candidate for growth and body composition. Biochem Biophys Res Commun 2006; 342:394-405.
    Nagamine Y, Haley CS, Sewalem A, Visscher PM. Quantitative trait loci variation for growth and obesity between and within lines of pigs (Sus scrofa). Genetics 2003; 164:629-635.
    Nagayama Y, Kaufman KD, Seto P, Rapoport B. Molecular cloning, sequence and functional expression of the cDNA for the human thyrotropin receptor. Biochem Biophys Res Commun 1989; 165:1184-90.
    Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 1973; 70: 3321-3.
    Nei M. F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 1977; 41: 225-33.
    Nezer C, Moreau L, Wagenaar D, Georges M. Results of a whole genome scan targeting QTL for growth and carcass traits in a Pietrain x Large White intercross. Genet Sel Evol 2002; 34:371-87.
    Nillni EA, Aird F, Seidah NG, Todd RB, Koenig JI. PreproTRH(178-199) and two novel peptides (pFQ7 and pSE14) derived from its processing, which are produced in the paraventricular nucleus of the rat hypothalamus, are regulated during suckling. Endocrinology 2001; 142:896-906.
    Nillni EA, Sevarino KA. The biology of pro-thyrotropin-releasing hormone-derived peptides. Endocrine Reviews 1999; 20:599-648.
    Onoda N, Ohmura E, Tsushima T, Ohba Y, Emoto N, Isozaki O, et al. Autocrine role of insulin-like growth factor (IGF)-I in a human thyroid cancer cell line. Eur J Cancer 1992; 28A:1904-9.
    Ovilo C, Clop A, Noguera JL, Oliver MA, Barragan C, Rodriguez C, et al. Quantitative trait locus mapping for meat quality traits in an Iberian x Landrace F2 pig population. J Anim Sci 2002; 80: 2801-8.
    Parmentier M, Libert F, Maenhaut C, Lefort A, Gerard C, Perret J, et al. Molecular cloning of the thyrotropin receptor. Science 1989; 246:1620-2.
    Paszek AA, Wilkie PJ, Flickinger GH, Miller LM. Louis CF, Rohrer GA, et al. Interval mapping of carcass and meat quality traits in a divergent swine cross. Anim Biotechnol 2001; 12:155-65.
    Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294: 1719-23.
    Pecori GF, Pesce S, Maroni P, Pagliardini L, Lasio G, Losa M, et al. Inhibitory effect of prepro-thyrotrophin-releasing hormone (178-199) on adrenocorticotrophic hormone secretion by human corticotroph tumours. J Neuroendocrinol 2010; 22:294-300.
    Peeters RP, van der Deure WM, Visser TJ. Genetic variation in thyroid hormone pathway genes; polymorphisms in the TSH receptor and the iodothyronine deiodinases. Eur J Endocrinol 2006; 155:655-62.
    Pfleger KD, Kroeger KM, Eidne KA. Receptors for hypothalamic releasing hormones TRH and GnRH: oligomerization and interactions with intracellular proteins. Semin Cell Dev Biol 2004; 15: 269-80.
    Pierce JG, Parsons TF. Glycoprotein hormones:structure and function. Annu Rev Biochem 1981; 50: 465-95.
    Ponsuksili S, Chomdej S, Murani E, Blaser U, Schreinemachers HJ, Schellander K, et al. SNP detection and genetic mapping of porcine genes encoding enzymes in hepatic metabolic pathways and evaluation of linkage with carcass traits. Animal Genetics 2005; 36:477-483.
    Porterfield SP, White BA. Endocrine Physiology 3rd. Philadelphia, PA: Mosby Inc.,2007.
    Pritchard JK, Przeworski M. Linkage disequilibrium in humans:models and data. Am J Hum Genet 2001; 69:1-14.
    Prummel MF, Brokken LJ, Meduri G, Misrahi M, Bakker O, Wiersinga WM. Expression of the thyroid-stimulating hormone receptor in the folliculo-stellate cells of the human anterior pituitary. J Clin Endocrinol Metab 2000; 85:4347-53.
    Qin ZS, Gopalakrishnan S, Abecasis GR. An efficient comprehensive search algorithm for tagSNP selection using linkage disequilibrium criteria. Bioinformatics 2006; 22:220-5.
    Quintanilla R, Demeure O, Bidanel JP, Milan D, Iannuccelli N, Amigues Y, et al. Detection of quantitative trait loci for fat androstenone levels in pigs. J Anim Sci 2003; 81:385-94.
    Reiner G, Fischer R, Hepp S, Berge T, Kohler F, Willems H. Quantitative trait loci for white blood cell numbers in swine. Animal Genetics 2008; 39:163-168.
    Reiner G, Heinricy L, Muller E, Geldermann H, Dzapo V. Indications of associations of the porcine FOS proto-oncogene with skeletal muscle fibre traits. Anim Genet 2002; 33:49-55.
    Rohrer GA. Identification of quantitative trait loci affecting birth characters and accumulation of backfat and weight in a Meishan-White Composite resource population. J Anim Sci 2000; 78: 2547-53.
    Rohrer GA, Thallman RM, Shackelford S, Wheeler T, Koohmaraie M. A genome scan for loci affecting pork quality in a Duroc-Landrace F-2 population. Animal Genetics 2006; 37:17-27.
    Roselli-Rehfuss L, Robbins LS, Cone RD. Thyrotropin receptor messenger ribonucleic acid is expressed in most brown and white adipose tissues in the guinea pig. Endocrinology 1992;130: 1857-61.
    Sasson R, Luu SH, Thackray VG, Mellon PL. Glucocorticoids induce human glycoprotein hormone alpha-subunit gene expression in the gonadotrope. Endocrinology 2008; 149:3643-55.
    Sato S, Atsuji K, Saito N, Okitsu M, Sato S, Komatsuda A, et al. Identification of quantitative trait loci affecting corpora lutea and number of teats in a Meishan x Duroc F2 resource population. J Anim Sci 2006; 84:2895-901.
    Sato S, Hasebe H, Sato S, Asahi Y, Hayashi T, Kobayashi E, et al. High-resolution physical mapping and construction of a porcine contig spanning the intramuscular fat content QTL. Anim Genet 2006; 37:113-20.
    Sato S, Oyamada Y, Atsuji K, Nade T, Sato S, Kobayashi E, et al. Quantitative trait loci analysis for growth and carcass traits in a Meishan x Duroc F2 resource population. J Anim Sci 2003; 81: 2938-49.
    Sato T, Kitahara K, Susa T, Kato T, Kato Y. Pituitary transcription factor Prop-1 stimulates porcine pituitary glycoprotein hormone alpha subunit gene expression. J Mol Endocrinol 2006; 37: 341-52.
    Savage JJ, Yaden BC, Kiratipranon P, Rhodes SJ. Transcriptional control during mammalian anterior pituitary development. Gene 2003; 319:1-19.
    Sellar RE, Taylor PL, Lamb RF, Zabavnik J, Anderson L, Eidne KA. Functional expression and molecular characterization of the thyrotrophin-releasing hormone receptor from the rat anterior pituitary gland. J Mol Endocrinol 1993; 10:199-206.
    Sellitti DF, Akamizu T, Doi SQ, Kim GH, Kariyil JT, Kopchik JJ, et al. Renal expression of two 'thyroid-specific' genes:thyrotropin receptor and thyroglobulin. Exp Nephrol 2000; 8:235-43.
    Sellitti DF, Hill R, Doi SQ, Akamizu T, Czaja J, Tao S, et al. Differential expression of thyrotropin receptor mRNA in the porcine heart. Thyroid 1997; 7:641-6.
    Slawinska A, Siwek M, Knol EF, Roelofs-Prins DT, van Wijk HJ, Dibbits B, et al. Validation of the QTL on SSC4 for meat and carcass quality traits in a commercial crossbred pig population. J Anim Breed Genet 2009; 126:43-51.
    Slominski A, Wortsman J, Kohn L, Ain KB, Venkataraman GM, Pisarchik A, et al. Expression of hypothalamic-pituitary-thyroid axis related genes in the human skin. J Invest Dermatol 2002; 119: 1449-55.
    Sobrino B, Brion M, Carracedo A. SNPs in forensic genetics:a review on SNP typing methodologies. Forensic Sci Int 2005; 154:181-94.
    Spitzweg C, Joba W, Heufelder AE. Expression of thyroid-related genes in human thymus. Thyroid 1999; 9:133-141.
    Stahl CE, Redei E, Wang Y, Borlongan CV. Behavioral, hormonal and histological stress markers of anxiety-separation in postnatal rats are reduced by prepro-thyrotropin-releasing hormone 178-199. Neurosci Lett 2002; 321:85-9.
    Steinfelder HJ, Radovick S, Wondisford FE. Hormonal regulation of the thyrotropin beta-subunit gene by phosphorylation of the pituitary-specific transcription factor Pit-1. Proc Natl Acad Sci U S A 1992; 89:5942-5.
    Stevenin B, Lee S1. Hormonal-regulation of the thyrotropin-releasing-hormone (TRH) gene. Endocrinologist 1995; 5:286-296.
    Straub RE, Frech GC, Joho RH, Gershengorn MC. Expression cloning of a cDNA encoding the mouse pituitary thyrotropin-releasing hormone receptor. Proc Natl Acad Sci U S A 1990; 87:9514-8.
    Sun Y, Lu X, Gershengorn MC. Thyrotropin-releasing hormone receptors--similarities and differences. J Mol Endocrinol 2003; 30:87-97.
    Sun YM, Millar RP, Ho H, Gershengorn MC, Illing N. Cloning and characterization of the chicken thyrotropin-releasing hormone receptor. Endocrinology 1998; 139:3390-3398.
    Susa T, Ishikawa A, Kato T, Nakayama M, Kitahara K, Kato Y. Regulation of porcine pituitary glycoprotein hormone alpha subunit gene with LIM-homeobox transcription factor Lhx3. J Reprod Dev 2009; 55:425-32.
    Szkudlinski MW, Fremont V, Ronin C, Weintraub BD. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol Rev 2002; 82: 473-502.
    Takata M, Shimada Y, Ikeda A, Sekikawa K. Molecular cloning of bovine Thyrotropin-Releasing Hormone Receptor gene. Journal of Veterinary Medical Science 1998; 60:123-127.
    Thomsen H, Lee HK, Rothschild MF, Malek M, Dekkers JC. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. J Anim Sci 2004; 82: 2213-28.
    Twyman RM, Primrose SB. Techniques patents for SNP genotyping. Pharmacogenomics 2003; 4: 67-79.
    Uemoto Y, Sato S, Ohnishi C, Terai S, Komatsuda A, Kobayashi E. The effects of single and epistatic quantitative trait loci for fatty acid composition in a Meishan x Duroc crossbred population. Journal of Animal Science 2009; 87:3470-3476.
    Uhlenhuth E, Schwartzbach S. The morphology and physiology of the salamander tyroid gland Ⅱ. The anterior lobe of the hypophysis as a control mechanism of the function of the thyroid gland. British Journal of Experimental Biology 1927; 5:1-5.
    Valyasevi RW, Erickson DZ, Harteneck DA, Dutton CM, Heufelder AE, Jyonouchi SC, et al. Differentiation of human orbital preadipocyte fibroblasts induces expression of functional thyrotropin receptor. J Clin Endocrinol Metab 1999; 84:2557-62.
    van Wijk HJ, Buschbell H, Dibbits B, Liefers SC, Harlizius B, Heuven HC, et al. Variance component analysis of quantitative trait loci for pork carcass composition and meat quality on SSC4 and SSC11. J Anim Sci 2007; 85:22-30.
    Varona L, Ovilo C, Clop A, Noguera JL, Perez-Enciso M, Coll A, et al. QTL mapping for growth and carcass traits in an Iberian by Landrace pig intercross:additive, dominant and epistatic effects. Genet Res 2002; 80:145-54.
    Vassart G, Dumont JE. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 1992; 13:596-611.
    Walling GA, Archibald AL, Cattermole JA, Downing AC, Finlayson HA, Nicholson D, et al. Mapping of quantitative trait loci on porcine chromosome 4. Anim Genet 1998; 29:415-24.
    Walling GA, Visscher PM, Andersson L, Rothschild MF, Wang L, Moser G, et al. Combined analyses of data from quantitative trait loci mapping studies. Chromosome 4 effects on porcine growth and fatness. Genetics 2000; 155:1369-78.
    Wallis M. Molecular evolution of the thyrotrophin-releasing hormone precursor in vertebrates:insights from comparative genomics. J Neuroendocrinol 2010; 22:608-19.
    Wang L, Yu TP, Tuggle CK, Liu HC, Rothschild MF. A directed search for quantitative trait loci on chromosomes 4 and 7 in pigs. J Anim Sci 1998; 76:2560-7.
    Wang N, Akey JM, Zhang K, Chakraborty R, Jin L. Distribution of recombination crossovers and the origin of haplotype blocks:the interplay of population history, recombination, and mutation. Am J Hum Genet 2002; 71:1227-34.
    Wang WB, Jiang T. A new model of multi-marker correlation for genome-wide tag SNP selection. Genome Inform 2008; 21:27-41.
    Wang Y, Zhou L, Yao B, Li CJ, Gui JF. Differential expression of thyroid-stimulating hormone beta subunit in gonads during sex reversal of orange-spotted and red-spotted groupers. Mol Cell Endocrinol 2004; 220:77-88.
    Wattrang E, Almqvist M, Johansson A, Fossum C, Wallgren P, Pielberg G, et al. Confirmation of QTL on porcine chromosomes 1 and 8 influencing leukocyte numbers, haematological parameters and leukocyte function. Anim Genet 2005; 36:337-45.
    Wimmers K, Fiedler I, Hardge T, Murani E, Schellander K, Ponsuksili S. QTL for microstructural and biophysical muscle properties and body composition in pigs. BMC Genet 2006; 7:15.
    Wimmers K, Murani E, Ponsuksili S, Yerle M, Schellander K. Detection of quantitative trait loci for carcass traits in the pig by using AFLP. Mamm Genome 2002; 13:206-10.
    Wimmers K, Murani E, Schellander K, Ponsuksili S. QTL for traits related to humoral immune response estimated from data of a porcine F2 resource population. Int J Immunogenet 2009; 36: 141-51.
    Wondisford FE, Steinfelder HJ, Nations M, Radovick S. AP-1 antagonizes thyroid hormone receptor action on the thyrotropin beta-subunit gene. J Biol Chem 1993; 268:2749-54.
    Wondisford FE, Usala SJ, DeCherney GS, Castren M. Radovick S. Gyves PW, et al. Cloning of the human thyrotropin beta-subunit gene and transient expression of biologically active human thyrotropin after gene transfection. Mol Endocrinol 1988; 2:32-9.
    Yamada M, Hashimoto K, Satoh T, Shibusawa N, Kohga H, Ozawa Y, et al. A novel transcript for the thyrotropin-releasing hormone receptor in human pituitary and pituitary tumors. J Clin Endocrinol Metab 1997; 82:4224-8.
    Yamada M, Radovick S, Wondisford FE, Nakayama Y, Weintraub BD, Wilber JF. Cloning and structure of human genomic DNA and hypothalamic cDNA encoding human prepro thyrotropin-releasing hormone. Mol Endocrinol 1990; 4:551-6.
    Ye S, Dhillon S, Ke X, Collins AR, Day IN. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 2001; 29:E88-8.
    Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, et al. Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet 1998; 82:182-8.
    Yue G, Russo V, Davoli R, Sternstein I, Brunsch C, Schroffelova D, et al. Linkage and QTL mapping for Sus scrofa chromosome 13. Journal of Animal Breeding and Genetics 2003; 120Suppl.1: 103-110.
    Zhang JH, Xiong YZ, Zuo B, Lei MG, Jiang SW, Li FE, et al. Quantitative trait loci for carcass traits on pig chromosomes 4,6,7,8 and 13. J Appl Genet 2007; 48:363-9.
    Zhang K, Calabrese P, Nordborg M, Sun FZ. Haplotype block structure and its applications to association studies:Power and study designs. American Journal of Human Genetics 2002; 71: 1386-1394.
    Zhang K, Deng M, Chen T, Waterman MS, Sun F. A dynamic programming algorithm for haplotype block partitioning. Proc Natl Acad Sci U S A 2002; 99:7335-9.
    Zhang K, Qin Z, Chen T, Liu JS, Waterman MS, Sun F. HapBlock: haplotype block partitioning and tag SNP selection software using a set of dynamic programming algorithms. Bioinformatics 2005; 21:131-4.
    Zhang K, Qin ZS, Liu JS, Chen T, Waterman MS, Sun F. Haplotype block partitioning and tag SNP selection using genotype data and their applications to association studies. Genome Res 2004; 14: 908-16.
    Zhao D, Yang J, Jones KE, Gerald C, Suzuki Y, Hogan PG, et al. Molecular cloning of a complementary deoxyribonucleic acid encoding the thyrotropin-releasing hormone receptor and regulation of its messenger ribonucleic acid in rat GH cells. Endocrinology 1992; 130:3529-36.
    陈守良编著.动物生理学.北京:北京大学出版社,2005.
    迟素敏主编.内分泌生理学.西安:第四军医大学出版社,2006.
    方晓敏.猪CACNA1S基因的研究.浙江大学,2006.
    李建华.猪CACNA2D1基因的研究.浙江大学,2007.
    刘玉冰.大鼠TSHβ基因编码DNA序列原核表达载体的构建及其在大肠杆菌中的表达和纯化.天津医科大学,2007.
    刘玥,赵咏桔.TSH信号途径相关因子对甲状腺细胞的影响.上海第二医科大学学报2005:105-107.
    沈霞芬主编.家畜组织学与胚胎学.北京:中国农业出版社,2009.
    苏玉虹,熊远著,等.大白×梅山猪资源家系生长性状QTL的检测.遗传学报2002;29:607-611.
    苏玉虹,熊远著,蒋思文,张勤,雷明刚,郑嵘,等.大白×梅山杂交组合肉质性状的数量性状位点定位分析.遗传学报2004;31:132-136.
    文思远.单核苷酸多态性基因分型技术原理与进展.生物技术通讯2003:218-221.
    杨泉胜,杨岐生.放射杂交:一种人类染色体基因定位方法.生命的化学2000:127-129.
    张伟力.猪肉系水力测定方法.养猪2002:25-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700