用户名: 密码: 验证码:
TiAl/40Cr扩散焊界面超声信号特征分析与缺陷智能识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扩散焊在航空航天、电子及核工业等领域得到了广泛应用,在许多新材料的连接方面,其应用范围也日益扩大。扩散焊界面的缺陷严重影响界面的完整性、结构的力学性能进而影响焊接结构的在役服务性能。因此,采用无损检测手段,掌握缺陷的类型、大小和位置,对保证焊接结构的性能和使用寿命具有十分重要的意义。由于扩散焊接头中缺陷多为微米级,常规超声波检测该类缺陷非常困难,尤其对于异种材料扩散焊质量的检测,因界面两侧材料声阻抗的差异,进一步增加了检测的难度。
     采用改变扩散焊温度和焊接压力的方式,制备了不同焊接质量的试样。应用超声波C扫描成像技术,获得了试样的界面C扫描图像和包含界面信号的数据。从界面显微结构、接头强度、断口形貌和界面超声信号等角度出发,阐述了扩散焊界面未焊合缺陷、弱接合缺陷、微孔缺陷和焊接良好区域的各自特征。
     分析了超声波在钛铝金属间化合物(TiAl)和40铬钢(40Cr)之间空气间隙上的反射特性,揭示了反射系数的幅度和相位与超声波频率和空气间隙厚度之间的关系。采用傅立叶变换的方法研究了超声波在TiAl和40Cr扩散焊界面三种缺陷和焊接良好界面的幅频和相频特性,分析了检测增益和探头中心频率对反射特性的影响。未焊合、弱接合和微孔缺陷的幅频和相频特性曲线与焊接良好界面信号的有明显差别,利用幅频和相频特征可区分开三种缺陷和焊接良好界面。当增益增加未引起信号饱和采样时,对信号幅频和相频特性没有影响。探头的中心频率增加,信号幅频和相频特性保持不变。
     采用连续小波变换研究了TiAl和40Cr扩散焊界面缺陷和焊接良好信号的时频特征,分析了四种复值小波表征信号时频特征的性能以及小波参数、尺度与步长对时频特征的影响。采用时频能量模图像和时频相位图像表征了未焊合缺陷、弱接合缺陷、微孔缺陷和焊接良好界面信号的特征。时频分析揭示了扩散焊界面每一时刻的信号均具有相同的反射特性。
     建立了扩散焊界面缺陷智能识别模型,系统分析了训练样本数量、核函数、参数优化方法和特征值对模型性能的影响。实现了扩散焊界面未焊合、弱接合和微孔缺陷的智能识别,消除了界面回波对缺陷判断的影响。在此基础上,给出了试样抗剪强度与焊合率的经验公式,实现了接头强度的预测,预测强度与实测强度具有较好地对应关系。
Diffusion bonding has been widely used in aerospace, electronic and nuclear industry, especially in jointing of new materials. Diffusion bonding defects can significantly degrade integrity of interface, strength and service performance of bonding structures. Thus it is significant to evaluate type, size and location of the defects to guarantee the performance and life of the bonding structures. In general, the defects are only a few micrometers in size and very difficult to detect by conventional ultrasonic testing, especially in dissimilar bonding structures. Some ultrasonic energy is still reflected from perfectly bonded interface due to the effect of impedance mismatch between materials to be bonded.
     Diffusion bonding samples were prepared at various welding temperatures and press. Ultrasonic tests were performed by C-scan method to obtain C-scan images and signals of samples. Characteristics of unbonded, kissing bond, micropore and perfectly bonded area were represented on the points of view of microstructure, shear strength, fractography and ultrasonic interface signals.
     Characteristics of ultrasonic wave reflected from air gap between TiAl and 40Cr were analyzed. Relationships between reflection coefficient, ultrasonic frequency and air thickness were demonstrated. Amplitude-frequency and phase-frequency characteristics of three kinds of defects and the perfectly bonded interface of TiAl and 40Cr diffusion bonding were studied based on Fourier Transformation. Effects of gain and central frequency of transducers on the above characteristics were analyzed. Significant differences of the amplitude-frequency and phase-frequency characteristics are found between three kinds of defects and the perfectly bonded interface. Three kinds of defects and the perfectly bonded interface can be distinguished by the characteristics. The amplitude-frequency and phase-frequency characteristics aren’t influenced by the gain when the increasing of gain doesn’t result in the signal saturation. As the central frequency of the transducer increases, the amplitude-frequency and phase-frequency characteristics are still maintained.
     Time-frequency characteristics were studied based on Continuous Wavelets Transform. Effects of time-frequency characteristics of four complex wavelets, parameters of wavelets, scale and step were analyzed. The unbonded, the kissing bond, the micropore and the perfectly bonded interface can be characterized by time-frequency energy image and time-frequency phase image. Time-frequency analysis demonstrates that the signals have the same reflective characteristics at every second.
     Defects recognition models were established. Effects of numbers of train samples, kernel functions, parameter optimization methods and characteristics on the model performance were systematically analyzed. Defects of the unbonded, the kissing bond and the micropore are recognized successfully. Empirical formula of relationship between shear strength and bonding ratio is established to predict strength of samples. There is a good agreement between predicting strength and testing shear strength.
引文
1 J. C. Feng, P. He, Y. Y. Qian, et al. Microstructure and Strength of the TiAl/40Cr Joints Diffusion Bonded with Ti-V-Cu Filler Metal. China Welding. 2002, 11(2): 148~150
    2刚铁,高桥康夫.扩散连接接头质量评价现状.无损检测. 2003, 25(8): 410~414
    3轩福贞,张波,李淑欣.电阻法用于扩散焊接头微孔缺陷评价的数值模拟.焊接学报. 2007, 28(4): 9~12
    4 Y. S. Sato, H. Takauchi, S. H. C. Park, et al. Characteristics of the Kissing-bond in Friction Stir Welded Al Alloy 1050. Materials Science and Engineering A. 2005, 405(1-2): 333~338
    5 A. Oosterkamp, L. D. Oosterkamp, A. Nordeide.‘Kissing Bond’Phenomena in Solid-State Welds of Aluminum Alloys. Welding Journal. 2004, 83(8): 225~231
    6 C. J. Brotherhood, B. W. Drinkwater, S. Dixon. The Detectability of Kissing Bonds in Adhesive Joints Using Ultrasonic Techniques. Ultrasonics. 2003, 41(7): 521~529
    7 M. Wang, J. W. Dai, H.Z. Guo, et al. Fracture Analysis of Superplastic Diffusion Bonding Joints between Titanium Alloy and Stainless Steel. Proceedings of 6th Pacific Rim International Conference on Advanced Materials and Processing. Jeju, 2007: 1011~1014
    8 N. Takayuki, W. Fumihiro. Relationship between Tensile and Bending Strength in Superplastic Diffusion Bonded Bodies between ZrO2 and ZrO2/Al2O3 Composite. Journal of the Ceramic Society of Japan. 1994, 102: 986~989
    9 D. Pan, M. W. Chen, P. K. Wright, et al. Evolution of a Diffusion Aluminide Bond Coat for Thermal Barrier Coatings during Thermal Cycling. Acta Materialia. 2003, 51(8): 2205~2217
    10 S. J. Tuppen, M. R. Bachea, W. E. Voice. A Fatigue Assessment of Dissimilar Titanium Alloy Diffusion Bonds. International Journal of Fatigue. 2005, 27(6): 651~658
    11 N. L. Loh, Y. L. Wu, K. A. Khor. Shear Bond Strength of Nickel/Alumina Interfaces Diffusion Bonded by HIP. Journal of Materials Processing Technology. 1993, 37(1-4): 711~721
    12 S. Parthasarathi, M. D. Aesoph, K. Sampath, et al. Thermal Wave Imaging and Ultrasonic Characterization of Defects in Plasma Sprayed Coatings. Materials and Manufacturing Processes. 1995, 10(5): 1077~1086
    13 B. S. Wong, C. G. Tui, W. Bai, et al. Theromographic Evaluation of Defects in Composite Materials. Insight: Non-Destructive Testing and Condition Monitoring. 1999, 41(8): 504~509
    14 K. W. Lodge, G. A. Briggs. Potential Drop Across an Imperfect Diffusion Bond. Journal of Materials Science. 1983, 18(8): 2354~2360
    15何存富,周辛庚.扩散焊接件的非接触式激光超声检测.无损检测. 1997, 19(12): 331~332
    16 N. K. Kononov, S. M. Ignatov, V. N. Potapov, et al. A Digital System for Producing X-Ray Images with a High Spatial Resolution. Instruments and Experimental Techniques. 2006, 49(5): 739~741
    17刘建春.射线实时成象检验技术.无损检测. 1996, 18(2): 232~236
    18 P. Kapranos, R. Priestner. NDT of Diffusion Bonds. Metals and Materials. 1987, (4): 194~198
    19韩伟.无损检测技术现状及其发展现状.可编程控制器与工厂自动化. 2005, (1): 122~126
    20大桥修,桥本达哉,木村胜美,等.扩散溶接に关する研究(第7报),ステンレス钢扩散溶接部の超音波探伤.非破坏检查. 1979, 48(3): 182~186
    21 M. Onozawa, K. Tamura, H. Yamamoto. Defect Evaluation in Diffusion Bonding Interface of Dissimilar Metals Using Ultrasonic Testing Method. Proceedings of 7th European Conference on Non-Destructive Testing. Copenhagen, 1998:483~485
    22李洪亮.钢与铝原子扩散焊焊接面的超声检测.无损检测. 1995, 17(7): 198~199
    23张学雷.扩散连接钛构件的超声检测技术.成飞情报. 1991, (1): 26~31
    24刘松平,郭恩明,谢凯文,等.钛合金扩散焊中紧贴型缺陷的超声波检测.无损检测. 2004, 26(2): 62~65
    25 N. C. Chaggares, R. K. Tang, A. N. Sinclair, et al. Protection Circuitry and Time Resolution in High Frequency Ultrasonic NDE. Proceedings of the IEEE Ultrasonics Symposium. Caesars Tahoe, 1999: 819~822
    26 M. Kaname. Determination of Attenuation Coefficients of Ultrasonic Transverse Waves in Steels. Materials Evaluation. 2003, 61(10): 1148~1153
    27 J. Anushi. Use of Acceleration Spectra for Determining the Frequency Dependent Attenuation Coefficient and Source Parameters. Bulletin of the Seismological Society of America. 2006, 96(6): 2165~2180
    28 S. P. Sagar, B. R. Kumar, S. G. Chowdhury, et al. Determination of Crystallographic Texture in Cold-Rolled Copper and Stainless Steel by Spectrum Analysis of Ultrasonic Signal. Scripta Materialia. 2008, 58(7): 595~598
    29 S. W. Kercel, M. B. Klein, B. Pouet. Wavelet and Wavelet-Packet Analysis of Lamb Wave Signatures in Laser Ultrasonics. Proceedings of the International Society for Optical Engineering. Orlando, 2000: 308~317
    30 D. A. Hutchins, M. D. C. Moles, G. S. Taylor, et al. Non-Contact Ultrasonic Inspection of Diffusion Bonds in Titanium. Ultrasonics. 1991, 29(4): 294~301
    31 A. Cheng, W. Deutsch. Characterization of Diffusion Bonds of Titanium Plates Using Transmitted Ultrasonic Signals. NDT and E International. 1998, 31(3): 175~182
    32 F. Windels, O. Leroy. Air-Coupled Ultrasonic Testing of Diffusion Bonds. Ultrasonics. 2002, 40(1-8): 171~176
    33 L. R. Joseph, W. H. Zhu, M. Zaidi. Ultrasonic NDT of Titanium Diffusion Bonding with Guided Waves. Materials Evaluation. 1998, 56(4): 535~539
    34 L. R. Joseph. Guided Wave Nuances for Ultrasonic Nondestructive Evaluation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2000, 47(3): 575~582
    35 B. Farious, R. Tarek, B. Hamid. An Improved Automated Ultrasonic NDE Symtem by Wavelet and Neuron Networks. Ultrasonics. 2004, 42(1-9): 853~858
    36 B. Farious, H. Sofiane, A. Salim. Improving the Time Resolution and Signal Noise Ratio of Ultrasonic Testing of Welds by the Wavelet Packet. NDT and E International. 2005, 38(6): 478~484
    37陈建忠,史耀武,邱海.固相连接接头超声A扫描信号的小波变换.无损检测. 1999, 21(9): 385~388
    38 Y. W. Shi, J. Z. Chen. Wavelet Analysis of Ultrasonic A-scan Signal of Solid State Welded Joints. China Welding. 2000, 9(1): 20~27
    39 L. Lin, Y. W. Shi, J. Z. Chen, et al. Ultrasonic Testing of the Diffusion Bonding of Titanium Alloys. Insight: Non-Destructive Testing and Condition Monitoring. 2006, 48(7): 415~417
    40沈建中.超声成象技术及其在无损检测中的应用.无损检测. 1994, 16(7): 202~206
    41 H. Cho, S. J. Song, H. J. Kim. Enhancement of Ultrasonic C-Scan Images for Inspection of Multi-Layered Composite Panels. Key Engineering Materials. 2006, 326-328: 713~716
    42 J. Abdul, N. Guo, H. Du, et al. Non-Destructive Evaluation of the Interface between Silicon Dies and Copper Leadframes in Integrated Circuit Packing. Experimental Mechanics. 2004, 44(2): 113~120
    43 D. M. Matson, J. T. Lansaw, M. W. Suits, et al. Ultrasonic Inspection of a Diffusion-Bonded Platelet Rocket Chamber Liner. Materials Evaluation. 1993, 51(5): 545~551
    44 E. J. Nieters, M. F. X. Gigliotti, L. C. Perocchi, et al. Ultrasonic Evaluation of Titanium Alloy Diffusion Bonding. Review of Progress in Quantitative Nondestructive Evaluation. 1996, 15B: 1313~1320
    45 E. J. Nieters, R. S. Glimore, S. Robert, et al. Method for Ultrasonic Evaluation of Materials Using Time of Flight Measurements. United States Patent: 5631424, 1997
    46 O. Debbouz, F. Navai. Nondestructive Testing of 2017 Aluminum Copper Alloy Diffusion Welded Joints by Automatic Ultrasonic System. Materials Evaluation. 1999, 57(12): 1261~1267
    47 M. Katoh, K. Nishio, T. Yamaguchi. Materials Evaluation of Diffusion Bonded Steel Bar and Its Impact Characteristics. NDT and E International. 2002, 35(4): 263~271
    48张柯柯,陈怀东,杨蕴林,等.超塑性固相焊接接头质量的超声成像检测.西安交通大学学报. 2001, 35(11): 1143~1146
    49曹宗杰,王久洪,薛锦,等.场致扩散焊接界面结合质量的超声无损评价.西安交通大学学报. 2003, 37(1): 1163~1166
    50 Z. J. Cao, H. D. Chen, J. Xue, et al. Evaluation of Mechanical Quality of Field-Assisted Diffusion Bonding by Ultrasonic Nondestructive Method. Sensors and Actuators A. 2005, 118(1): 44~48
    51 T. Gang, Y. Takahashi. Study of Ultrasonic Evaluation Method for Al/Cu Bonded Interface. Proceedings of 8th Symposium on Microjoining and Assembly Technology in Electronics. Yokohama, 2002: 381~385
    52 T. Gang, Y. Takahashi. Ultrasonic Echo Signal Features of Dissimilar Material Bonding Joints. Transactions of Nonferrous Metals Society of China. 2004, 14(6): 1050~1054
    53 S. Mosey, P. C. Charlton, I. Wells. Iterative Method for Background Noise Removal in Ultrasonic B-Scan Images. Insight: Non-Destructive Testing and Condition Monitoring. 2006, 48(11): 677~681
    54 J. Jarmulak, E. J. H. Kerckhoffs. Hybrid Knowledge Based System for Automatic Classification of B-Scan Images from Ultrasonic Rail Inspection. Proceedings of the 1998 10th Conference on Innovative Applications of Artificial Intelligence. Madison, 1998: 1121~1126
    55 S. P. Liu, V. M. Levin, E. M. Guo. Acoustic Imaging of Microstructures of Carbon Fiber-reinforced Composite Laminates. Materials Research Society Symposium Proceedings. Boston, 2002: 365~375
    56刘松平,郭恩明,王瑞川,等.钛合金扩散连接界面完整性超声定量评估.航空制造技术. 2003, (5): 32~36
    57连红运,李燕山,刘新,等.小孔径扩散焊质量检测用超声换能器的研制.传感技术学报. 2007, 20(8): 1784~1787
    58连红运,吴定允,刘新.高频窄脉冲超声聚焦传感器的工艺及应用.仪器仪表学报. 2008, 29(2): 444~448
    59 S. W. Cheng, M. K. Chao. Resolution Improvement of Ultrasonic C-Scan Images by Deconvolution Using the Monostatic Point-Reflector Spreading Function (MPSF) of the Transducer. NDT and E International, 1996, 29(5): 293~300
    60 R. Zapp, B. Ho, L. Li. High Range Resolution Ultrasonic C-Scan for Nondestructive Evaluation of Composite Materials. Proceedings of the International Society for Optical Engineering. Newport Beach, 1987: 301~306
    61 B. Derby, G. A. Briggs, E. R. Wallach. Non-Destructive Testing and Acoustic Microscopy of Diffusion Bonds. Journal of Materials Science. 1983, 18(8): 2345~2353
    62杨立峰,王亚非.声学显微镜及其进展.声学与电子工程. 2006, (1): 50~53
    63 S. Takeshi, N. Masayuki. Analysis of Bonding State in Clad Contact Using Ultrasonic Microscope. IEICE Transactions on Electronics. 1994, 77(10): 1621~1626
    64 K. Tamura, M. Onozawa. Evaluation of Bonding Process in Diffusion Bonding Joints of Dissimilar Metal Using Ultrasonic Testing Method. Proceedings of the 7th European Conference on Non-Destructive Testing. Copenhagen, 1998: 480~482
    65 Y. Greenberg, D. Itzhak and G. Kohn. Ultrasonic Monitoring of a Low-Temperature Diffusion Bonding Process. Journal of Testing and Evaluation. 2000, 28(2): 88~95
    66王耀俊.固体性能研究中的非线性超声波.物理学进展. 1986, 6(4): 509-527
    67 Y. P. Zheng, R. G. Maev, I. Y. Solodov. Nonlinear Acoustic Applications for Material Characterization. Canadian Journal of Physics. 1999, 77(12): 927~967
    68 S. D. Holland, W. Sachse. A Time-Resolved Method for Nonlinear Ultrasonic Measurements. Ultrasonics. 2002, 40(1-8): 639~642
    69 A. Wegner, A. Koka, K. Janser, et al. Assessment of the Adhesion Quality of Fusion-Welded Silicon Wafers with Nonlinear Ultrasound. Ultrasonics. 2000, 38(1-8): 316~321
    70 D. Donskoy, A. Sutin, A. Ekimov. Nonlinear Acoustic Interaction on Contact Interfaces and its Use for Nondestructive Testing. NDT and E International. 2001, 34(4): 231~238
    71 D. J. Barnard, G. E. Dace, D. K. Rehbein, et al. Acoustic Harmonic Generation at Diffusion Bonds. Journal of Nondestructive Evaluation. 1997, 16(2): 77~89
    72 S. Hirata, T. Sugiura. Detection of a Closed Crack by Nonlinear Acoustics Using Ultrasonic Transducers. AIP Conference Proceedings. New York, 2006, 820: 277~282
    73 T. Ishikawa, S. Hirata, T Sugiura. Nonlinear Dynamics Caused by Incidence of Ultrasonic Waves into a Closed Crack. AIP Conference Proceedings. New York, 2007, 894: 1306~1311
    74 K. Kawashima, M. Murase, R. Yamada, et al. Nonlinear Ultrasonic Imaging of Imperfectly Bonded Interfaces. Ultrasonics. 2006, 44(1): 1329~1333
    75 Y. Ryuzo, K. Koichiro, M. Morimasa. Application of Nonlinear Ultrasonic Measurement for Quality Assurance of Diffusion Bonds of Gamma Titanium Aluminum Alloy and Steel. Research in Nondestructive Evaluation. 2006, 17(4): 223~239
    76 Y. Ohara, K. Kawashima, R. Yamada, et al. Evaluation of Amorphous Diffusion Bonding by Nonlinear Ultrasonic Method. AIP Conference Proceedings. New York, 2004, 700: 944~951
    77 J. Mirapeix, P. B. Garcia-Allende, A. Cobo, et al. Real-Time Arc-Welding DefectDetection and Classification with Principal Component Analysis and Artificial Neural Networks. NDT and E International. 2007, 40(4): 315~323
    78 A. A. Carvalho, J. M. A. Rebello, L.V. S, Sagrilo, et al. MFL Signals and Artificial Neural Networks Applied to Detection and Classification of Pipe Weld Defects. NDT and E International. 2006, 39(8): 661~667
    79 R. Romeu, P. Luiz, H. S. Marcio, et al. Pattern Recognition of Weld Defects Detected by Radiographic Test. NDT and E International. 2004, 37(6): 461~470
    80边肇祺,张学工.模式识别.北京:清华大学出版社, 2000: 2~15
    81 J. L. Rose, Y. H. Jeong, E. Alloway, et al. Methodology for Reflector Classification Analysis in Complex Geometric Welded Structures. Materials Evaluation. 1984, 42(1): 98~101
    82王凯,李冬青,张忠典,等.人工神经网络及其在焊接中的应用与展望.焊接. 2005(6): 5~9
    83柯常波,陈铁群.粗晶材料超声无损检测信号处理技术发展趋势.物理测试. 2006, 24(5): 37~41
    84 T. Y. Lim, M. M. Ratnam, M. A. Khalid. Automatic Classification of Weld Defects Using Simulated Data and an MLP Neural Network. Insight: Non-Destructive Testing and Condition Monitoring. 2007, 49(3): 154~159
    85 A. A. Carvalho, J. M. A. Rebello, L. V. S. Saqrilo, et al. MFL Signals and Artificial Neural Networks Applied to Detection and Classification of Pipe Weld Defects. NDT and E International. 2006, 39(8): 661~667
    86 A. Lombardo, A. Masnata, L. Settineri. In-Process Tool-Failure Detection by Means of AR Models. International Journal of Advanced Manufacturing Technology, 1997, 13(2): 86~94
    87 A. Masnata, M. Sunseri. Neural Network Classification of Flaws Detected by Ultrasonic Means. NDT and E International. 1996, 29(2): 87~93
    88 C. G. Windsor, F. Anselme, L. Capineri. Classification of Weld Defects from Ultrasonic Images. British Journal of Non-Destructive Testing. 1993, 35(1): 15~22
    89邸新杰,李午申,白世武,等.焊接裂纹金属磁记忆信号的神经网络识别.焊接学报. 2008, 29(3): 13~16
    90胡昕.应用人工神经网络模式识别技术建立X射线探伤底片的自动定级系统.无损检测. 2007, 29(1): 36~38
    91冯静,刘治华,马胜钢.摩擦焊接头超声波检测缺陷信号智能识别.微计算机信息(测控自动化). 2007, 23(6): 283~285
    92 C. N. Shitole, O. Zahran, A. Waleed. Combining Fuzzy Logic and Neural Networks in Classification of Weld Defects Using Ultrasonic Time-of-flight Diffraction. Insight: Non-Destructive Testing and Condition Monitoring. 2007, 49(2): 79~82
    93高顶,张长明,李国庆.基于粗糙-模糊神经网络的焊接图像缺陷识别.华东理工大学学报(自然科学版) . 2006, 32 (9): 1126~1129
    94 J. D. Wu, P. H. Chiang, Y. W. Chang, et al. An Expert System for Fault Diagnosis in Internal Combustion Engines Using Probability Neural Network. Expert Systems with Applications. 2008, 34(4): 2704~2713
    95 D. Hanbay, I. Turkoqlu, Y. Demir. An Expert System Based on Wavelet Decomposition and Neural Network for Modeling Chua’s Circuit. Expert Systems with Applications. 2008, 34(4): 2278~2283
    96 T. Mirzazadeh, F. Mohammadi, M. Soltanieh, et al. Optimization of Caustic Current Efficiency in a Zero-Gap Advanced Chlor-Alkali Cell with Application of Genetic Algorithm Assisted by Artificial Neural Networks. Chemical Engineering Journal. 2008, 140(1): 157~164
    97 V. N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer Verlag, 1995: 102~134
    98 V. N. Vapnik. Statistical Learning Theory. New York: Wiley, 1998: 18~25
    99陆波,慰询楷,毕笃彦.支持向量机在分类中的应用.中国图象图形学报. 2005, 10(8): 1029~1035
    100 C. Malon, S. Uchida, M. Suzuki. Mathematical Symbol Recognition with Support Vector Machines. Pattern Recognition Letters. 2008, 29 (9): 1326~1332
    101 I. Kotsia, P. Ioannis. Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines. IEEE Transactions on Image Processing. 2007, 16(1): 172~187
    102 K. Trontl, T. Smuc, D. Pevec. Support Vector Regression Model for the Estimation ofγ-Ray Buildup Factors for Multi-Layer Shields. Annals of Nuclear Energy. 2007, 34(12): 939~952
    103 J. D. Shen, Y. R. Syau, E. S. Lee. Support Vector Fuzzy Adaptive Network in Regression Analysis. Computers & Mathematics with Applications. 2007, 54(11-12): 1353~1366
    104 Y. L. Zhang, N. Guo, H. Du, et al. Automated Defect Recognition of C-SAM Images in IC Packaging Using Support Vector Machines. International Journal of Advanced Manufacturing Technology. 2005, 25(11-12): 1191~1196
    105罗爱民.基于数学形态学的射线检测数字图像处理技术.四川大学博士学位论文. 2007: 81~97
    106 D. Gao, Y. X. Liu, X. G. Zhang. Binary-tree Multi-classifier for Welding Defects and its Application Based on SVM. Proceedings of the World Congress on Intelligent Control and Automation. Dalian, 2006: 8509~8513
    107 X. G. Zhang, Z. C. Zhu, J. H. Xu, et al. The Classification Algorithm of Defects in Weld Image Based on Asymmetrical SVMs. Proceedings of the International Conference on Control and Automation. Budapest, 2005: 1215~1219
    108张晓光,肖兴明,任世锦,等.基于广义加权支持向量机的焊接缺陷分类方法.华东理工大学学报(自然科学版). 2005, 31(5): 644~648
    109高岚,宋庆国,王艳琼,等.基于机器视觉的船舶焊缝缺陷识别研究.交通科技. 2007, 225(6): 105~108
    110超声波探伤编写组.超声波探伤.电力工业出版社, 1980: 386~390
    111冉启文.小波变换与分数傅里叶变换理论及应用.哈尔滨:哈尔滨工业大学出版社, 2001: 18~20
    112张秀锋.基于时频分析的粗晶材料超声检测技术与系统.清华大学博士学位论文. 2005: 27~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700