用户名: 密码: 验证码:
子带技术研究及其在宽带信号处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着多媒体技术和通信前端接收技术的不断发展,无线通信的速率越来越高,可接收的信号带宽也越来越宽。宽带通信系统在提高通信容量的同时,也使得某些传统窄带信号处理技术在宽带信号处理上遇到了困难和挑战,单载波宽带信号的均衡处理与宽带多通道信道化接收就是其中较为突出的两个问题。一方面,宽带传输信道的冲激响应比较长,如果采用传统全频带均衡技术则要求均衡器的阶数很高。高阶均衡器收敛性能差、计算复杂度高,且难以工程实现。因此如何有效实现宽带信号的信道均衡已经成为提高宽带通信系统解调性能的关键问题之一。另一方面,随着接收机接收带宽的不断增加,宽带接收数据中信号的数量和种类越来越多。传统采用独立数字下变频技术的多通道信道化方法硬件耗费大、计算量大,且不能灵活地适应动态信道化接收。如何高效地实现宽带多通道信道化接收是提高宽带接收系统性能的另一个关键问题。
     子带技术可以将宽带数据进行分解和重构,避免了直接进行宽带信号处理的困难,为宽带信号接收处理提供了新的途径。深入研究子带系统的基本理论,并将其推广应用到宽带信号接收处理中,对解决宽带通信系统面临的难题具有重要的理论和现实意义。本文首先研究了均匀子带滤波器组和非均匀子带滤波器组的设计方法,在保证子带系统重构特性满足要求的同时,尽可能地简化了设计复杂度;然后重点研究了子带技术在单载波宽带信号均衡和宽带多通道信道化接收两方面的应用,改进了现有方法的不足,提高了宽带信号处理的性能和效率。
     本文的创新点主要包括以下4个方面。
     1、在均匀子带滤波器组设计方面,针对现有迭代设计方法中原型滤波器阶数过高、混叠误差较大等问题,提出了一种改进的原型滤波器迭代设计算法。该方法通过在代价函数中添加一阶混叠项因子,更好地抑制了系统混叠误差,放松了对原型滤波器阻带衰减特性和阶数的要求。本文将新的代价函数表示成滤波器系数的二次函数形式,并推导出其闭合解的数学表达式,利用迭代的方式逐渐逼近极值点,避免了直接求解高维非线性代价函数的困难。此外,本文将改进的原型滤波器迭代算法与内插思想相结合,提出了一种高效的均匀子带调制滤波器组迭代设计方法,可进一步减小优化算法中目标参数的个数、降低计算复杂度。
     2、在非均匀子带滤波器组设计方面,针对现有间接设计方法优化求解困难的问题,提出了一种基于两级合并的非均匀子带滤波器组迭代设计方法。该方法采用内外层滤波器分步优化的设计思路,以抑制系统误差项为准则构造代价函数,并通过化简将高维非线性代价函数转换成滤波器系数向量的二次函数形式,推导出其极值解的解析表达式,利用迭代逼近的方法得到最优解。该方法基于普遍意义建立代价函数,对抽样因子没有特别限制,相对传统直接优化求解设计方法具有易收敛、计算复杂度相对较低的优点。
     3、在单载波宽带信号子带均衡方面,给出了均匀子带与非均匀子带划分的实现方法,定义了子带划分的性能评估参数,推导了子带均衡系统中均衡权系数矩阵为对角阵的条件,分析了子带均衡并行结构的误差来源。针对子带均衡并行结构在抽样因子较大的系统中存在较大混叠误差的问题,提出了一种添加权值临近项的子带均衡结构。该结构利用均衡权系数矩阵次对角线上的临近项更好地抑制了系统的混叠误差,放松了对子带滤波器组阻带衰减特性和系统抽样因子的要求,改善了子带均衡的效果。实验证明本文添加权值临近项的子带均衡结构比子带均衡并行结构具有更快的收敛速度和更小的稳态误差。
     4、在宽带多通道信道化接收方面,针对现有非均匀子带信道化技术存在子带合并方法适用性有限以及对所关注信号信道化效率不高等问题,提出了一种基于子带信号特征的非均匀子带信道化结构。该结构利用子带编号匹配的综合滤波器进行非均匀合并,消除了对子带通道数目与抽样速率的取值限制。在子带信号特征提取方面,建立了单载波信号子带信道化输出的数学模型,推导给出了基于子带信号的波特率、载波频率参数估计算法。本文基于子带信号特征的非均匀子带信道化结构仅合并输出所关注的重要信号,可有效提高对所关注重点信号宽带信道化的效率,其子带特征提取算法对其它频谱失真情况下的信号参数估计也具有指导意义。
In the recent years, with the rapid development of multimedia and communicationreceiving technology, the rate of wireless communication is higher and higher, the band ofreceiving signal is wider and wider. While the communication capability is increasing, sometraditional narrowband signal processing technologies are challenged by the widebandprocessing. The equalization of single carrier wideband singal and wideband multi-channelreceiving are the two outstanding problems. On the one hand, because of the long impulseresponse of the wideband transmission channel, the equalizer order should be high using thetraditional equalization technologies. The high order equalizer has bad convergenceperformance and huge calculation complexity, which made it hard to be realization. How toeffectively realize the equalization of wideband signal becomes one of the key questions toimprove the demodulation performance in wideband communication systems. On the otherhand, the quantity and type of signals included in the wideband data become more and moreas the increasing of the receiving bandwidth. Parallel digital down conversion is used by thetraditional multi-channel channelization method, which has huge computation and can’t adaptin dynamic channelization. How to effectively realize wideband multi-channel receivingbecomes another key question to improve the performance of wideband receiving systems.
     Subband technology can avoid the wideband processing difficulties by decompositionand reconstruction of the wideband data. It provides a new solution for wideband signalprocessing. It has significant theoretic and practical meaning to research the subbandtechnology and its applications. This paper gives out the design methods of subband filterbanks. It can decrease the design complexity and meet the reconstruction performance of thesubband system. Then the paper focuses on the subband applications in wideband signalequalization and channelization. Some new methods are proposed which can improve theperformance and efficiency of the wideband signal processing.
     The innovation points of the thesis include the following four aspects.
     1. The design methods for uniform subband filter banks are researched. The prototypefilters generally have high order and bad alias error performance using trandition iterativedesign methods. In order to resolve this problem, a modified iterative design method forprototype filter is proposed. The new method can decrease the alias error and the length of thefilter by adding the first-order alias term for the cost function. The cost function is formulatedas a quadratic function of prototype filter coefficients. A mathematics closed-form solution isdeduced for the new cost function. Its minimum point is obtained by iterative approach avoiding the difficulty of direct solution. This modified iterative method and the interpolationdesign method are combined in order to decease the parameter number of the optimizationalgorithm. Therefore it can greatly decrease the computation in the iterative design process.
     2. The indirect design methods of nonuniform subband filter are usually difficult toobtain its optimum solution. Aiming at this problem, a new iterative design method fornonuniform subband filterbank is proposed based on two-stage merging processing. In thismethod, the outside basic filter banks are designed firstly, then the inner merging filter banksare designed. The cost function is constructed by suppressing of alias terms. The nonlinearcost function is predigested and expressed by a quadratic function of the prototype filtercoefficient vector. Then the closed form solution of the cost function is deduced so that theoptimal solution can be achieved by iterative approach. The new iterative method has nospecial limitation on the decimation rate. As to the traditional design methods, it has betterconvergence performance and lower computation complexity.
     3. The realization methods are given out for the uniform and nonuniform subbandpartition, which are used in the subband equalization. Two parameters for partitionperformance evaluation are defined. The condition is deduced when the equalizer coefficientmatrix is diagonal-matrix. The error analyse is carried out for subband equalization withparallel structure. A new subband equalization scheme with adding adjacent term is proposedto decease the alias error when the decimation rate is large. The new method can suppress thealias error and loose the limitations for the stopband attenuation performance of the subbandfilter banks. Simulation results prove that the new subband equalization structure has betterconvergence performance compared with the subband equalization parallel structure.
     4. Aiming at the problems of the conventional subband channelization structure, a newnonuniform subband channelization scheme based on the features of subband signals isproposed. This new scheme uses the matched suband filters to merge the subbands. Iteliminates the limitations on the decimation rate. Moreover, its subband combination processis carried out only for the subbands which have the special features. So the new scheme canimprove the channelization efficiency for special signals. The subband signal model for singlecarrier signal is established. The baud rate and carrier frequency estimation methods arededuced based on the subband signal. The above estimation methods can be consulted byother parameter estimation questions under spectrum distortion conditions.
引文
[1] Proakis J G著,张力军,张宗橙,郑宝玉等译.数字通信(第四版)[M].北京:电子工业出版社,2003.
    [2] Haykin S著,郑宝玉等译.自适应滤波器原理(第四版)[M].北京:电子工业出版社,2010.
    [3] Abdulazim M N, Gockler H G. Efficientt digital on-board de-and remultiplexing offdm signals allowing for flexible bandwidth allocation[A]. In: IEEE. Proceeding ofAIAA International Communications Satellite Systems Conference[C]. Rome: IEEESignal Processing Society Press,2005:1-12.
    [4] Abdulazim M N, Gockler H G. Joint Oversampling SBC-FDFMUX filter bank for Museful channels based on modified DFT filter banks with nearly perfectreconstruction[A]. In: IEEE. Proceeding of International Conference on Computer as ATool[C]. Belgrade: IEEE Signal Processing Society Press,2005:84-87.
    [5] Johansson H, Lowenborg P. Flexible frequency-band reallocation network based onvariable oversampled complex-modulated filter banks[A]. In: IEEE. Proceeding ofInternational Conference on Acoustics, Speech, Signal Processing[C]. Philadeiphia:IEEE Signal Processing Society Press,2005:973-976.
    [6] Abdulazim M N, Gockler H G. Design options of the versatile two-channel sbc-fdfmuxfilter bank[A]. In: IEEE. Proceeding of European Conference on Circuits Theory andDesign[C]. Ireland: IEEE Signal Processing Society Press,2005:441-444.
    [7]李冰.软件无线电中的信道化技术研究[D].郑州:解放军信息工程大学,2007.
    [8] Bin G, Woo W L, Dlay S S. Single-channel source separation using EMD-subbandvariable regularized sparse features[J]. IEEE Transactions on Audio, Speech, andLanguage Processing,2011,19(4):961-976.
    [9] Nuri V, Bamberger R H. Size-limited filter banks for subband image compression[J].IEEE Transactions on Image Processing,1995,4(9):1317-1323.
    [10] Li Q, Chen W G, He C. Design of oversampled DFT modulated filter banks optimizedfor acoustic echo cancellation[A]. In: IEEE. Proceeding of International Conference onAcoustics, Speech, Signal Processing[C]. China: IEEE Signal Processing Society Press,2009:197-200.
    [11] Ho K C, Gader P D. A linear prediction land mine detection algorithm for hand heldground penetrating radar[J]. IEEE Transactions on geosciences and remote sensing,2002,40(6):1374-1384.
    [12] Johannes R S, Jon A B. Almost translation invariant wavelet transformations for specklereduction of SAR images[J]. IEEE Transactions on geosciences and remote sensing,2003,41(10):2404-2408.
    [13]石光明.子带滤波器组的设计方法和应用[D].西安:西安电子科技大学,2001.
    [14]陶然,张惠云,王越.多抽样率数字信号处理理论及其应用[M].北京:清华大学出版社,2007.
    [15] Crochiere R E, Webber S A, Flanagan J L. Digital coding of speeeh in subbands[J]. BellSystem Technology Journal,1976,55:1069-1085.
    [16] Meyer R A, Burrus C S. A unified analysis of multirate and periodieally time varyingdigital filters[J]. IEEE Transactions on Circuits and Systems,1975,23:301-309.
    [17] Johnston J D. A filter family designed for use in quadrature mirror filter banks[A]. In:IEEE. Proceeding of International Conference on Acoustics, Speech, SignalProcessing[C]. Belgrade: IEEE Signal Processing Society Press,1980:291-294.
    [18] Nussbaumer H J. Pseudo QMF filter bank[J]. IBM Technology Disclosure Bulletin,1981,24:3081-3087.
    [19] Smith M J T, Barnwell III T P. Exact reconstruction techniques for tree-structuredsubband coders[A]. In: IEEE. Proceeding of International Conference on Acoustics,Speech, Signal Processing[C]. Tokyo: IEEE Signal Processing Society Press,1986:434-441.
    [20] Mintzer F. Filters for distorition-free two-band multirate filter banks[J]. IEEETransactions on Acoustics, Speech and Signal Processing,1985,33:626-630.
    [21] Vaidyanathan P P, Nguyen T Q. Eigenfilters: a new approach to least-squares FIR filterdesign and applications including Nyquist filters[J]. IEEE Transactions on Circuits andSystems,1985,32:918-924.
    [22] Vetterli M. Filter banks allowing for perfect reconstruction[J]. Signal Processing,1986,10:219-244.
    [23] Vaidynathan P P. Theory and design of M-channel maximally decimated quadraturemirror filters with arbitrary M, having the perfect-reconstruction property[J]. IEEETransactions on Acoustics, Speech and Signal Processing,1987,35(4):476-492.
    [24] Proakis J G, Manolakis D G. Introduction to Digital Signal Processing[M]. New York:Macmillan Publishing Company,1988.
    [25] Nguyen T Q, Vaidyanathan P P. Two-channel perfect-reconstruction FIR QMF structureswhich yield linear-phase analysis and synthesis filters[J]. IEEE Transactions onAcoustics, Speech and Signal Processing,1989,37:676-690.
    [26] Nguyen T Q, Vaidyanathan P P. Structures for M-channel perfect-reconstruction FIRQMF banks which yield linear-phase analysis filters[J]. IEEE Transactions on Acoustics,Speech and Signal Processing,1990,38(3):433-446.
    [27] Daubechies I. Orthonoramal bases of compactly supported wavelets[J]. Communicationon Pure and Application Mathematics,1966,4:909-996.
    [28] Mallat S. Multiresolution approximations and wavelet orthonormal bases of L2(R)[J].Transactions of American Mathematics Society,1989,315:69-87.
    [29] Mallat S G. Multifrequency channel decomposition of images and wavelet models[J].IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37:2091-2110.
    [30] Mallat S G. A theory for multiresolution signal decomposition the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11:674-693.
    [31] Vaidyanathan P P, Mitra S K. Polyphase networks, block digital filtering, LPTV system,and alias-free QMF banks: a unified approach based on pseudocirculants[J]. IEEETransactions on Acoustics, Speech and Signal Processing,1988,36:81-94.
    [32] Vetterli M, Cormac Herley. Wavelets and filter banks: theory and design[J]. IEEETransactions on Signal Processing,1992:2207-2232.
    [33] Cohen A, Daubechies I, Feauveau J. Biorthogonal bases of compactly supportedwavelets[J]. Communication on Pure and Application Mathematics,1992,45:485-560.
    [34] Steffen P, Heller P N, Gopinath R A. Theory of regular M-band wavelet based[J]. IEEETransactions on Signal Processing,1993,41:3497-3511.
    [35] Phoong S M, Kim C W, Vaidyanathan P P. A new class of two-channel biorthogonal filterbanks and wavelet bases[J]. IEEE Transactions on Signal Processing,1995,43:649-664.
    [36] Attallah S. The wavelet transform-domain LMS adaptive filter with partial subband-coefficient updating[J]. IEEE Transactions on Circuits and Systems II: Express Briefs,2006,53(1):8-12.
    [37] KoilPillai R D, Vaidyanathan P P. Cosine-modulated FIR filter banks satisfying perfectreconstruction[J]. IEEE Transactions on Signal Processing,1992:770-783.
    [38] Nayebi K, Barnwell T P, Smith M J T. Time-domain filter bank analysis: a new designtheory[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1992,40(6):1412-1429.
    [39] Chan S C, Kok C W. Perfect reconstruction modulated filter banks without cosineconstrain[A]. In: IEEE. Proceeding of International Conference on Acoustics, Speech,and Signal Processing[C]. Minneapolis: IEEE Signal Processing Society Press,1993:189-192.
    [40] Soman A K, Vaidyanathan P P, Nguyen T Q. Linear phase paraunitary filter banks: theory,factorization and design[J]. IEEE Transactions on Signal Processing,1993:3480-3496.
    [41] Nayebi K, Barnwell T P, Simith M. Low delay FIR filter banks: design and evaluation[J].IEEE Transactions on Signal Processing,1994,42(1):24-31.
    [42] Wada S. Design of nonuniform division multirate FIR filter banks[J]. IEEE Transactionson Circuits and Systems,1995,42(2):115-121.
    [43] Nguyen T Q, Heller P N. Biorthogonal cosine-modulated filter bank[A]. In: IEEE.Proceeding of International Conference on Acoustics, Speech, Signal Processing[C].Atlanta: IEEE Signal Processing Society Press,1996,(3):1471-1474.
    [44] Xu H, Lu W S, Antoniou A. Efficient iterative design method for cosine-modulated QMFbanks[J]. IEEE Transactions on Signal Processing,1996,44(7):1657-1668.
    [45] Li J L, Nguyen T Q. A simple design method for near perfect reconstruction nonuniformfilter banks[J]. IEEE Transactions on Signal Processing,1997,45(8):2105-2109.
    [46] Pinchon D, Siohan P. Analysis, design, and implementation of two-channel linear-phasefilter banks: a new approach[J]. IEEE Transactions on Signal Processing,1998:1814-1826.
    [47] Heller P N, Nguyen T Q. A general formulation of modulated filter banks[J]. IEEETransactions on Signal Processing,1999,(47):986-1002.
    [48] Akkarakaran S J, Vaidyanathan P P. New results and open problems on nonuniformfilter-banks[A]. In: IEEE. Proceeding of International Conference on Acoustics, Speech,Signal Processing[C]. Phoenix: IEEE Signal Processing Society Press,1999:1501-1504.
    [49] Cruz-Roldan F, Lopez-Ferreras F, Amo-Lopez P. Arbitrary-length spectral factor appliedto the design of pseudo-QMF cosine-modulated filter banks[J]. IEEE Transactions onCircuits and Systems II,2001,48(3):321-325.
    [50] Cruz-Roldan F, Amo-Lopez P, Maldonado-Bascon S. An efficient and simple method fordesigning prototype filters for cosine-modulated pseudo-QMF banks[J]. IEEE SignalProcessing Letters,2002,9(1):29-31.
    [51] Siohann P, Roche C. Cosine-modulated filter banks based on extended gaussianfunction[J]. IEEE Transactions on Signal Processing,2000,48(11):3052-3061.
    [52] Vaidyanathan P P, Bojan V. Biorthogonal partners and applications[J]. IEEE Transactionson Signal Processing,2001,5(2):1013-1027.
    [53] Bojan V, Vaidyanathan P P. MIMO biorthogonal partners and applications[J]. IEEETransactions on Signal Processing,2002,5(3):528-542.
    [54] Bojan V, Vaidyanathan P P. Theory of MIMO biorthogonal partners and their applicationsin channel equalization[A]. In: IEEE. Proceeding of International Conference onCommunications, Circuits and Systems[C]. USA: IEEE Signal Processing Society Press,2001:377-381.
    [55] Chan S C, Xie X M, Yuk T I. Theory and design of a class of cosine-modulatednonuniform filter banks[A]. In: IEEE. Proceeding of International Conference onAcoustics, Speech, Signal Processing[C]. Orlando: IEEE Signal Processing Society Press,2000:504-507.
    [56] Xiong Z X, Malvar H S. A nonuniform modulated complex lapped transform[J]. IEEESignal Processing Letters,2001,8(9):257-260.
    [57] Kim S G, Yoo C D. Highly selective M-channel IIR cosine-modulated filter banks[J].Electronics Letters,2003,39(20):1478-1479.
    [58] Feng Y T, Kok C W. Iterative least squares design of DC-leakage free paraunitary cosinemodulated filter banks[J]. IEEE Transactions on Circuits and Systems II,2003,50(5):238-243.
    [59] Lu W S, Saramaki T, Bregovic R. Design of practically perfect-reconstruction cosine-modulated filter banks: a second-order cone programming approach[J]. IEEETransactions on Circuits and Systems I,2004,51(3):552-563.
    [60] Charlotte Y F H. Efficient algorithm for solving semi-infinite programming problems andtheir applications to nonuniform filter bank designs[J]. IEEE Transactions on SignalProcessing,2006,54:4223-4232.
    [61] Zhang Z J. Efficient design of cosine modulated filter banks based on gradientinformation[J]. IEEE Signal Processing Letters,2007,14:940-943.
    [62] Tsui K M, Chan S C, Lim Y C. Design of multi-plet perfect reconstruction filter banksusing frequency-response masking technique[J]. IEEE Transactions on Circuits andSystems,2008,55(9):2707-2715.
    [63] Kha H H, Tuan H D, Nguyen T Q. Efficient design of cosine-modulated filter banks viaconvex optimization[J]. IEEE Transactions on Signal Processing,2009,57(3):966-976.
    [64] Fernando C R, Pilar M M, Jose S L. A fast windowing-based technique exploiting splinefunctions for designing modulated filter banks[J]. IEEE Transactions on Circuits andSystems I,2009,56(1):168-178.
    [65] Shui P L, Jiang J Z. Two-dimensional2×oversampled DFT moduluated filter banksand critically sampled modified DFT modulated filter banks[J]. IEEE Transactions onSignal Processing,2010,58(11):5597-5611.
    [66] Zhong W, Shi G M, Xie X M. Design of linear-phase nonuniform filter banks with partialcosine modulation[J]. IEEE Transactions on Signal Processing,2010,58(6):3390-3395.
    [67] Cruz-Roldan F, Blanco-Velasco M. Assessment of NPR MDFT filter banks for subbandcoding and data transmission[A]. In: the Proceeding of IEEE International Symposiumon Circuits and Systems[C]. Germany: IEEE Signal Processing Society Press,2011:1764-1767.
    [68]宗孔德.多抽样率信号处理[M].北京:清华大学出版社,1996.
    [69] Tran T D. Linear phase perfect reconstruction filter banks: theory, structure, design, andapplication in image compression[D]. Madison: University of Wisconsin,1999.
    [70] Zoran C, James D J. Nonuniform oversampled filter banks for audio signal processing[J].IEEE Transactions on Speech and Audio Processing,2003,11:393-399.
    [71] Ganapathy S, Thomas S, Hermansky H. Temporal envelope subtraction for robust speechrecognition using modulation spectrum[J]. IEEE Workshop on Automatic SpeechRecognition and Understanding.2009:164-169.
    [72] Park S II, Smith M J T, Mersereau R M. Improved structure of maximally decimateddirection filter banks for spatial image analysis[J]. IEEE Transactions on ImageProcessing,2004,13(11):1424-1431.
    [73] Park Y S, Park H W. Design and analysis of an image resizing filter in the block-DCTdomain[J]. IEEE Transactions on Circuits and Systems for Video Technology,2004,14(2):274-279.
    [74] Saito S, Furukawa T, Konishi K. A digital watermarking for audio data using banddivision based on QMF bank[A]. In: IEEE. Proceeding of International Conference onAcoustics, Speech, Signal Processing[C]. Orlando: IEEE Signal Processing Society Press,2002,4:3473-3476.
    [75] Park C H, Lee J J, Smith M J. Directional filter bank-based fingerprint feature extractionand matching[J]. IEEE Transactions on Circuits and Systems for Video Technology,2004,14(1):74-85.
    [76]王欣,王云霄,于晓.基于多小波阈值收缩与子带增强的图像去噪[J].哈尔滨工业大学学报,2008,40(1):152-154.
    [77] Tazebay M V. A performance analysis of interference excision techniques in directsequence spread spectrum communications[J]. IEEE Transactions on Signal Processing,1998,46(9):2530-2535.
    [78] Kemper G, Iano Y. An audio compression method based on wavelets subband coding[J].IEEE Latin America Transactions,2011,9(5):610-621.
    [79] Hetling K, Saulnier G, Das P. Optimized filter design for PR-QMF based spreadspectrum communication[A]. In: IEEE. Proceeding of International Conference onCommunications[C]. Seattle: IEEE Signal Processing Society Press,1995:1350-1354.
    [80] Hetling K, Saulnier G, Das P. Performance of filter banks-based spreading codes formulti-path/multi-user interference[J]. The International Society for Optical Engineering,1996,2672:501-512.
    [81] Petraglia M R, Batalheiro P B. Nonuniform subband adaptive filtering with criticalsampling[J]. IEEE Transactions on Signal Processing,2008,65(2):565-575.
    [82] Weiss S, Stewart R W, Schabert M., et al. An efficient scheme for broadband adaptivebeamforming[A]. In: IEEE. Proceeding of Asilomar Conference on Signals, Systems,Computing[C]. Monterey: IEEE Signal Processing Society Press,1999, I:496–500.
    [83] Weiss S, Garcia-Alis D, Stewart R W. A subband adaptive equalization structure[J]. TheInstitution of Electrical Engineers,1999,1-7.
    [84] Greg D, Seven N, Hai H Y D. Subband adaptive equalisation with optimised alignmentdelays[J]. IEEE Global Telecommunications,2004,4:2292-2296.
    [85] Lin Y P, Vaidyanathan. A Kaiser window approach for the design of prototype filters ofcosine modulated filter banks[J]. IEEE Signal Processing Letters,1998,5(6):132-134.
    [86] Pei S C, Tseng C C. A new eigenfilter based on total least squares error criterion[J]. IEEETransactions on Circuits and Systems,2001,48(6):699-709.
    [87] Argenti F, Enrico D R. Eigenfilter design of real and complex coefficient QMFprototypes[J]. IEEE Transactions on Circuits and Systems,2000,47(8):787-792.
    [88] Zhang Z J, Yun Y. A simple design method for nonuniform cosine modulated filterbanks[A]. In: IEEE. Proceeding of International Symposium on Microwave, Antenna,Propagation and EMC Technologies for Wireless Communications[C]. Hangzhou: IEEESignal Processing Society Press,2007:1052-1055.
    [89] Liu B L, Zhang Z J, Deng Z W. Design of perfect reconstruction cosine modulated filterbanks with linear phase[A]. In: IEEE. Proceeding of International Conference onCommunications, Circuits and Systems[C]. Korea: IEEE Signal Processing Society Press,2007:633-636.
    [90] Lu W S, Tapio S, Robert B. Design of practically perfect-reconstruction cosine-modulated filter banks: a second-order cone programming approach[J]. IEEETransactions on Circuits and Systems,2004,51(3):552-563.
    [91] Charles D C, Sanjit K M. A simple method for designing high-quality prototype filter forM-band pseudo QMF banks[J]. IEEE Transactions on Signal Processing,1995,43(4):1005-1007.
    [92] Khalil C. Design of two-channel equiripple FIR linear-phase quadrature mirror filtersusing the vector space projection method[J]. IEEE Signal Proeessing Letters,1998,57:167-170.
    [93] Zhu Y L, Tao W. Hybrid particle swarm optimization design of cosine modulated filterbanks[A]. In: the Proceeding of Chinese Control and Decision Conference[C]. China:IEEE Signal Processing Society Press,2008:4604-4607
    [94] Sriranganathan S, Bull D R. The design of low complexity two-channel lattice structureperfect-reconstruction filter banks using genetie algorithms[A]. In: IEEE. Proceeding ofInternational Conference on Circuits and Systerms[C]. Hong Kong: IEEE SignalProcessing Society Press,1997:2393.
    [95] Moritz H, Stephan W, Robert W. Design of near perfect reconstruction oversampled filterbanks for subband adaptive filters[J]. IEEE Transactions on Circuits and Systems,1999,46(8):1081-1085.
    [96] Fong Y T, Kok C W. Iterative least squares design of DC-leakage free paraunitary cosinemodulated filter banks[J]. IEEE Transactions on Circuits and Systems,2003,50(5):238-243.
    [97] Nayebi K, Barnwell T P, Smith M J T. Nonuniform filter banks: a reconstruction anddesign theory [J]. IEEE Transactions on Signal Processing,1993,41(3):1114-1127.
    [98] Kovacevic J, Vetterli M. Perfect reconstruction filter banks with rational sampling factors[J]. IEEE Transactions on Signal Processing,1993,41(6):2047–2066.
    [99] Nagai T, Futie T, Ikehara M. Direct design of nonuniform filter banks[A]. In: IEEE.Proceeding of International Conference on Acoustics, Speech, Signal Processing[C].Munich: IEEE Signal Processing Society Press,1997:2429-2432.
    [100] Pandharipande A, Dasguta S. On biorthogonal nonuniform filter banks and treestructures[J]. IEEE Transactions on Circuits and Systems,2002,49(10):1457-1467.
    [101] Omar A, Niamut, Richard H. Subband merging in cosine-modulated filter banks[J].IEEE Signal prograssing letters,2003,10(4):111-114.
    [102] Xie X M, Chan S C, Yuk T I. On the theory and design of nonuniform cosine-modulatedfilter banks[A]. In: IEEE Proceeding of IEEE International Symposium on Circuits andSystems[C]. Scottsdale: IEEE Signal Processing Society Press,2002:285-288.
    [103] Vetterlli I, Conrmac Herley. Wavelets and filter banks: theory and design[J]. IEEETransactions on Signal Processing,1992:2207-2232.
    [104] Xie X M, Chan S C, Yuk T I. A class of perfect-reconstruction nonuniform cosine-modulated filter-banks with dynamic recombination[J]. Europe Signal Processing,2002,2:549-552.
    [105] Xie X M, Chan S C. Design of perfect-reconstruction nonuniform recombination filterbanks with flexible rational sampling factors[J]. IEEE Transactions on Circuits andSystems,2005,42(2):1965-1981.
    [106] Xie X M, Chan S C. Theory and design of a class of nonuniform filter banks with linearphase filters[J]. IEICE Transactions on Information and System,2005, E88_D(7):1445-1452.
    [107] Xie X M, Chan S C. A new method for designing linear-phase recombinationnonuniform filter-banks[A]. In: IEEE. Proceeding of the47th Midwest Symposium onCircuits and Systems[C]. Hong Kong: IEEE Signal Processing Society Press,2004:101-104.
    [108] Xie X M, Chan S C. The theory and design of recombination nonuniform filter-bankswith linear-phase analysis/synthesis filters[A]. In: IEEE. Proceeding of the47thMidwest Symposium on Circuits and Systems[C]. Hong Kong: IEEE Signal ProcessingSociety Press,2004:113-116.
    [109] Yin W T, Mehr A S. Stochastic Analysis of the Normalized Subband Adaptive FilterAlgorithm[J]. IEEE Transactions on Circuits and Systems,2011,58(5):1020-1033.
    [110] Hafizal Mohamad, Weiss S, Markus Rupp. A fast converging fractionally spacedequalizer[A]. In the Thirty-Fifth Asilomar Conference on Signals, Systems andComputers[C]. USA: IEEE Signal Processing Society Press,2001,2:1460-1464.
    [111] H. Mohamad, S. Weiss, M. Rupp and L. Hanzo. Fast adaptation of fractionally spacedequalizers[J]. IEEE Electronics Letters,2002,38(2):96-98.
    [112] Greg Day, Sven Nordholm and Hai Huyen Dam. Subband adaptive equalisation withoptimised alignment delays[A]. In IEEE Global Telecommunications Conference[C].Australia: IEEE Signal Processing Society Press,2004, Vol.4:2292-2296.
    [113] Abu-Al-Saud W A and Studer G L. Efficient wideband channelizer for software radiosystems using modulated PR filterbanks[J]. IEEE Transactions on Signal Processing,2004,52(10):2807-2820.
    [114] Abu-Al-Saud W A. Efficient wideband digital front-end transceivers for software radiosystems[D]. Georgia, USA: Georgia Institute of Technology,2004.
    [115]崔占琴.具有子带噪声的M信道信号重构方法研究[D].西安:西北工业大学,2001.
    [116]廖明亮.均匀及非均匀滤波器组的设计[D].西安:西安电子科技大学,2007.
    [117] Xie J M, Qin Q. Study of image digital watermarking algorithm and robustness basedon the wavelet transform techniques[A]. In: IEEE. Proceeding of InternationalConference on Information Management and Engineering[C]. Canada: IEEE SignalProcessing Society Press,2010:529-532.
    [118] Zahraa F M, Alzubaydi D A, Ayman J A. Multiwavelet in comparison with Barkelwavelet and9/7wavelet in image compression[A]. In: IEEE. Proceeding ofInternational Conference on Signal and Image Processing Applications[C]. Honolulu:IEEE Signal Processing Society Press,2009:295-298.
    [119] Ai W H, Huang Y X, Hu M B. Ground clutter removing for wind profiler radar signalusing adaptive wavelet threshold[A]. In: IEEE. Proceeding of International Conferenceon Measuring Technology and Mechatronics Automation[C]. Changsha: IEEE SignalProcessing Society Press,2010:370-373.
    [120] Wu J, Zhou J J, Zhu J H. A radar target recognition method based on wavelet powerspectrum and power offset[A]. In: IEEE. Proceeding of International Asia Conferenceon Informatics in Control, Automation and Robotics[C]. Portugal: IEEE SignalProcessing Society Press,2010:130-134.
    [121]彭彬.多通道线性相位均匀滤波器组与近似小波滤波器组[D].西安:西安电子科技大学,2009.
    [122] Daubechies I. Orthonormal bases of compactly supported wavelets[J]. Communicationon Pure and Application Mathematics,1988,41:909-996.
    [123] Oraintara S, Tran T D, Heller P N. Lattice structure for regular paraunitary linear-phasefilterbanks and M-band orthogonal symmetric wavelets[J]. IEEE Transactions on SignalProcessing,2001,51:2659-2672.
    [124] Oraintara S, Trac T D, Nguyen T Q. A class of regular biorthogonal linear-phase filterbanks: theory, structure, and application in image coding[J]. IEEE Transactions onSignal Processing,2003,49:3220-3235.
    [125] Chen Y J, Oraintara S, Amaratunga K. Dyadic-based factorization for regularparaunitary filter banks and M-band orthogonal wavelets with structural vanishingmoments[J]. IEEE Transactions on Signal Processing,2005,53:193-207.
    [126] Chen Y J, Oraintara S, Amaratunga K. Theory and factorization for a class ofstructurally regular biorthogonal filter banks[J]. IEEE Transactions on SignalProcessing,2006,54:691-700.
    [127]冯象初,甘小冰,宋国乡.数值泛函与小波理论[M].西安:西安电子科技大学出版社,2002.
    [128] Mao J S. New design and factorization methods for perfect reconstruction filter banks[D]. Hong Kong: The University of Hong Kong,2000.
    [129] Daubechies I C, Sweldents W. Factoring wavelet transform into lifting steps[J]. FourierAnalyse Application,1998,4(3):247-269.
    [130] Pun K S, Chan S C, Xie X M. On the efficient realization and design of multiplier-lesstwo-channel perfect reconstruction FIR filter banks[A]. In: IEEE. Proceeding ofInternational Conference on Acoustics, Speech, Signal Processing[C]. Salt Lake: IEEESignal Processing Society Press,2001:4040-4045.
    [131]袁虎.任意长度线性相位余弦调制滤波器组的设计[D].重庆:重庆大学,2010.
    [132]李伟.基于余弦调制的子带滤波器组的设计[D].大连:大连理工大学,2007.
    [133] Malvar H S. Modulated QMF filter banks with perfect reconstruction[J]. ElectronicLetters,1990b,26:906-907.
    [134] Koilpilai R D, Nguyen T Q and Vaidyanathan P P. Some results in the theory ofcross-talk free transmultiplexers[J]. IEEE Transactions on Signal Processing,1991,39:2174-2183.
    [135] Koilpilai R D, Vaidyanathan P P. Cosine-modulated FIR filter banks satisfying perfectreconstruction[J]. IEEE Transactions on Signal Processing,1992:770-783.
    [136] Ramstad T A. Cosine modulated analysis synthesis filter bank with critical samplingand perfect reconstruction[A]. In: IEEE. Proceeding of International Conference onAcoustics, Speech, Signal Processing[C]. Orlando: IEEE Signal Processing SocietyPress,2002:1943-1947.
    [137] Zhu Y L, Huang C, Tao W G. Frequency Domain Optimization Design of Linear PhaseCosine Modulated Filter Banks[A].. In: IEEE. Proceeding of International Conferenceon Measuring Technology and Mechatronics Automation[C]. Changsha: IEEE SignalProcessing Society Press,2010:313-316.
    [138] Neela R, Neelam R P. An efficient IFIR filter based prototype filter design for cosinemodulated transmultiplexers[A]. In: IEEE. Proceeding of International Conference onSignal Acquisition and Processing[C]. India: IEEE Signal Processing Society Press,2010:315-318.
    [139] Gauthier J, Duval L, Pesquet J C. Optimization of synthesis oversampled complex filterbanks[J]. IEEE Transactions on Signal Processing,2009,57(10):3827-3843.
    [140] Zi-Jing Zhang, Peng-Lang Shui, Tao Su. Efficient design of high-complexity cosinemodulated filter banks using2Mth band conditions[J]. IEEE Transactions on SignalProcessing,2008,56(11):5414-5426.
    [141]赵艳,罗胜恩,万坚.余弦调制子带滤波器组迭代设计的改进算法[J].数据采集与处理,已录用。
    [142]张子敬,焦李成.余弦调制滤波器组的原型滤波器设计[J].电子与信息学报,2002,24(3):308-313.
    [143] Absar M J, George S. On the search for compatible numbers in the design of maximallydecimated perfect reconstruction non-uniform filter bank[J]. IEEE Workshop on SignalProcessing Systems,2001,26(28):141-148.
    [144] Min S K, Rodriguez M E. Generalized and parallelized a Trous and Mallat algorithmsto design non-uniform filter-banks[A]. In: IEEE. Proceeding of InternationalSymposium on Signal Processing and Information Technology[C]. Saigon: IEEE SignalProcessing Society Press,2003:38-41.
    [145] Samadi S, Ahmad M O, Swamy M N S. Characterization of nonuniform perfect-reconstruction filter banks using unit-step signal[J]. IEEE Transactions on SignalProcessing,2004,52(9):2490-2499.
    [146] Pendergast R S, Levy B C, Hurst P J. Reconstruction of band-limited periodicnonunifirmly sampled signals through multirate filter banks[J]. IEEE Transactions onCircuits and Systems,2004,51(8):1612-1622.
    [147] Cox R V. The design of uniformly and nonuniformly spaced speech coding[A]. In:IEEE. Proceeding of International Conference on Acoustics, Speech, SignalProcessing[C]. Tokyo: IEEE Signal Processing Society Press,1986:1090-1096.
    [148] Lee J J, Lee B G. A design of nonuniform cosine modulated filter banks[J]. IEEETransactions on Circuits and Systems,1995,42(11):732-737.
    [149] Boyd R W, Gauthier D J,Gaeta A L. Maximum time delay achievable on propagationthrough a slow-light medium[J].Physics Review,2005,71:023801-023804.
    [150] Michael D Stenner, Mark A Neifeld. Distortion management in slow-light pulse delay[J].Optics Express,2005,13:9995-10002.
    [151] Johnson C R, Philip S, Tomas J. Blind Equalization Using Constant Modulus Criterion:A Review[J]. Proceedings of the IEEE,1998,86(10):1927-1950.
    [152] Zhang P. A new DSP method for group delay measurement[J]. IEEE Transactions onInstrumentation and Measurement,1991,40(1):13-18.
    [153] Rajamani K, Lai Y L. A novel method for designing allpass digital filters[J]. IEEESignal Processing Letters,1999,6(8):207-209.
    [154]张炜.宽带线性盲均衡器的研究[D].合肥:中国科学技术大学,2008.
    [155] Mohamad H; Weiss S, Rupp M. MMSE limitations for subband adaptive equalizers[A].In: IEEE. Proceeding of The Thirty-Sixth Asilomar Conference on Signals, Systemsand Computers[C]. California: IEEE Signal Processing Society Press,2002,2:1233-1237.
    [156] Oguz T, Buyurman B, Anthony G. Residual echo signal in critically sampled subbandacoustic echo cancellers based on IIR and FIR filter banks[J]. IEEE Transactions onSignal Processing,1997,45(4):901-912.
    [157] Shynk J J. Frequency-Domain and Multirate Adaptive Filtering [J], IEEE SignalProcessing Magazine,1992,9(1):14-37.
    [158]赵艳,万坚.一种单载波宽带信号非线性均衡技术[J].计算机工程与应用,2012年,48(5):135-137.
    [159] Robert W S, Stephan W, Daniel G A. Subband adaptive equalization of time-varyingchannels[A]. In: IEEE. Proceeding of International Conference on Signals, Systems,and Computers[C]. California: IEEE Signal Processing Society Press,1999:534-538.
    [160] Noor A A, Samad S A, Hussain A. Convergence improvement of the LMS adaptivenoise canceller using low distortion filter banks[A]. In: IEEE. Proceeding ofInternational Conference on Signal and Image Processing Applications[C]. Malaysia:IEEE Signal Processing Society Press,2009:6-9.
    [161] Markus R, Rudi F. Analysis of LMS and NLMS algorithms with delayed coefficientupdate under the presence of spherically invariant processers[J]. IEEE Transactions onSignal Processing,1994,42(3):668-672.
    [162] Hentschel T, Henker M, Fettweis G. The digital frout-end of software radio terminals[J].IEEE Personal Commurmication,1999,6(4):40-46.
    [163] Harris F J. Dick C, Rice M. Digital receivers and transmitters using polyphase filterbanks for wireless communications[J]. IEEE Transactions on Microwave Theory andTechniques,2003,51(4):1395-1412.
    [164] Zahirniak D R, Sharpin D L, Fields T W. A hardware-efficient, multirate, digitalchannelized receiver architecture[J]. IEEE Transactions on Aerospace and ElectronicSystems,1998,34(1):137-152.
    [165] Kim C H, Shin Y, Im S and et al. SDR-based digital channelizer/de-channelizer formultiple CDMA signals[A], In: the Proceeding of IEEE Vehicular TechnologyConference[C]. Boston:2000,6:2862-2869.
    [166] Zangi K C, Kiolpillai R D. Software radio issues in celluar base stations[J]. IEEEJournal on Selected Areas in Communications,1999,17(4):561-573.
    [167] Yung W H, Jian M, Ho Y W. Polyphase decomposition channelizers for softwareradios[A]. In: IEEE. Proceeding of International Symposium on Circuits andSystems[C]. Switzerland:2000,2:353-356.
    [168]周欣,吴瑛.一种基于多相滤波的高效信道化算法研究及改进[J].信号处理,2008,24(1):45-48.
    [169] Hentschel T. Channelization for software defined base stations[J]. Annales desTelecommunications,2002,57(5-6):386-420.
    [170] Fung C Y and S C Chan. A multistage filterbank based channelizer and its multiplierlessrealization[A]. In: IEEE. Proceeding of International Symposium on Circuits andSystems[C]. Arizona:2002:429-432.
    [171] Gockler H G and Eyssele H. Study of on-board FDM-demultiplexing for mobile SCPCsatellite communications[J]. European Transactions on Telecommunications,1992,3(1):7-30.
    [172] Vinod A P, Lai E M, Premkumar A B and et al. A reconfigurable multi-standardchannelizer using QMF trees for software radio receivers[A]. In: the Proceeding ofIEEE Personal, Indoor and Mobile Radio Communications[C]. Beijing:2003:119-123.
    [173] Fliege N J. Multirate digital signal processing: multirate system, filter banks, wavelets[M]. Chichester: John Wiley&Sons,1994.
    [174] Abdulazim M N and Gockler H G. Efficient digital on-board de-and remultiplexing offdm signals allowing for flexible bandwidth allocation[A]. In: IEEE. Proceeding of the23rd AIAA International Communications Satellite Systems Conference AIAA[C].Rome: IEEE Signal Processing Society Press, Rome:2005:1-12.
    [175] T Hentschel, G Fettweis. Sample rate conversion for software radio[J]. IEEECommunications Magazine,2000,38(8):142-150.
    [176] Zhao Yan, Luo Sheng-en, Wan Jian. An adaptive broadband channelization schemeusing nonuniform subband decomposition[A]. In: IEEE. Proceeding of the6th WirelessCommunications, Networking and Mobile Computing[C]. Chengdu: IEEE SignalProcessing Society Press, Chengdu,2010:1-4.
    [177] Zahirniak D R, Sharpin D L and Fields T W. A hardware efficient, multirate, digitalchannelized receiver architecture[J]. IEEE Transactions on Aerospace and ElectronicSystems,1998,34(1):137-152.
    [178] Hentschel T. Chanelization for software defined basestation[J]. Annales desTelecommunications,2002,57(5-6):386-420.
    [179]樊昌信,张甫翊,徐炳祥,吴成柯.通信原理(第5版)[M].北京:国防工业出版社,2001:162-163.
    [180] Heinrich W. L llmann and Peter Vary. Least-Squares Design of DFT Filter-BanksBased on Allpass Transformation of Higher Order[J]. IEEE Transactions on SignalProcessing,2010,58(4):2393-2398.
    [181] W. A. Gardner Signal interception: a unifying theoretical frame-work for featuredetection[J]. IEEE Transactions on Communications,1988,36(8):897-906.
    [182]黄海,李长青,温志刚等.一种零前缀OFDM系统的符号同步和载频估计算法[J].电路与系统学报,2009,14(3):82-86.
    [183] P Ciblat, PLoubaton, ESerpedin, et al. Asymptotic analysis of blind cyclic correlationbased symbol rate estimation [J]. IEEE Transactions on Information Theory,2002,7(6):1922-1934.
    [184]张仔兵,李立萍,肖先赐.MPSK信号的循环谱检测及码元速率估计[J].系统工程与电子技术,2005,27(5):803-806.
    [185] Carlos Mosquera, SandroScalise, Roberto López-Valcarce. Non-Data-Aided SymbolRate Estimation of Linearly Modulated Signals[J]. IEEE Transactions on SignalProcessing,2008,56(2):664-674.
    [186]奚家熹,王宗欣.基于Hilbert变换的MQAM信号调制体制识别[J].通信学报,2007,28(6):1-6.
    [187]罗胜恩,苑小华,罗来源.基于子带处理的MPSK符号速率估计[J].信号处理,2010,27(2):304-308.
    [188] Koh B. S, Lee H. S.Detection of symbol rate of unknown digital communicationsignals[J].IEEE Electronics Letters,1993,29(3):278-279.
    [189]赵艳,罗胜恩,万坚.单载波信号波特率参数的宽带估计算法[J].电路与系统学报,已录用.
    [190] Elsayed Elsayed Azzouz, Asoke Kumar Nandi. Automatic modulation recognition ofcommunication signals[M]. Boston: Lkuwer academic publishers,1996.
    [191] Miao S, Yeheskel Bar-Ness, Wei S. Revisiting the timing and frequency offsetestimation based on cyclostationarity with new improved method[J]. IEEEcommunications letters,2009,13(7):537-539.
    [192] Patrick Henkel, Kaspar Giger, Christoph Günther. Multifrequency, Multisatellite vectorphase-locked loop for robust carrier tracking[J]. IEEE Journal of selected topics insignal processing,2009,3(4):674-681.
    [193] Xu J H, Liu Z S, Zhang Z P. A code-aided carrier synchronization algorithm based onAPPA[J]. Journal of Electronics&Information Technology,2009,31(12):2834-2837.
    [194] Vincenzo Lottici, Ruggero Reggiannini, Michele Carta. Pilot-Aided Carrier FrequencyEstimation for Filter-Bank Multicarrier Wireless Communications on Doubly-SelectiveChannels[J]. IEEE Transactions on Signal Processing,2010,58(5):2783-2794.
    [195] Gon alo N T, Luis M, Antonio Petrolino. On the true cramér-rao lower bound fordata-aided carrier-phase-independent frequency offset and symbol timing estimation[J].IEEE Transactions on communications,2010,58(2):442-447.
    [196] Lin B, Yin Q Y, Wang H. Analysis of Carrier Frequency Offset Estimation withMultiplePilot Block Sequences[J]. IEEE communications letters,2010,14(5):456-458.
    [197] Xiao, H F, Shi Y Q, Su W. Blind carrier frequency estimation for SSB-SC signals[A]. In:the Proceeding of IEEE Radio and Wireless Symposium[C]. New Orleans: IEEE SignalProcessing Society Press,2010:312-315.
    [198] Nelson M, Blachman, S, Hossein M. The spectrum of the square of a synchronousrandom pulse train[J]. IEEE Transactions on Communication,1990,38(1):13-16.
    [199]赵艳,罗胜恩,万坚.基于子带信号的MPSK载频估计算法[J].系统工程与电子技术,2012,34(3):592~597.
    [200] Bing Li, Lindong Ge, Jin Zheng. An efficient channelizer based on nonuniform filterbanks[A]. In: IEEE. Proceeding of the8th IEEE International Conference on SignalProcessing[C]. IEEE Signal Processing Society Press,2006:1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700