用户名: 密码: 验证码:
双排抗滑桩受力影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济建设发展和全球气候变化,威胁人们生命财产安全的大型滑坡越来越多。在滑坡治理工程中,能提供较大抗滑力的双排抗滑桩得到了广泛的应用。但双排抗滑桩受力机理及其影响因素的研究一直落后于应用,很多实际工程只能借鉴单排抗滑桩的设计经验。本文以实际工程监测数据为基础,利用理论分析和数值模拟方法,建立能够考虑双排抗滑桩间“遮蔽效应”的计算模型;研究双排抗滑桩不同锚固深度组合对双排抗滑桩变形、内力、桩侧土压力和双排抗滑桩抗滑力的影响;探讨施工时间差对双排抗滑桩内力的影响;研究简便易行的抗滑桩裂缝判别方法,并对竖向预应力在抗滑桩中的应用进行系统的研究与验证,主要研究内容如下:
     (1)在假设滑体位移沿深度均匀分布的前提下,引入前排桩与后排桩桩周土体位移比,结合弹性地基梁理论,建立基于土体位移的有连梁双排抗滑桩理论计算模型.基于理论模型的解析解,利用Matlab编程,对双排抗滑桩的内力进行计算,并通过FLAC3D有限差分模型进行验证。
     (2)基于FLAC3D有限差分模型,探讨不同锚固深度组合对无连粱和有连梁双排刚性抗滑桩变形、内力、抗滑力和桩侧土压力的影响。
     (3)基于弹性地基梁理论,建立考虑施工时间差的双排抗滑桩计算模型,结合红岩滑坡的工程实测数据,研究施工时间差对双排抗滑桩内力的影响。
     (4)依据以桩顶位移为参量的抗滑桩计算模型,结合混凝土理论,提出一种基于桩顶位移的裂缝判别方法,用于判断抗滑桩中混凝土出现裂缝的时间及位置,并通过实测数据对判别模型进行验证。
     (5)基于前人对竖向预应力抗滑桩的研究,提出依据桩顶位移施加预应力的具体方法,实现对抗滑桩裂缝防治的动态控制,同时验证竖向预应力在实际工程中的可行性。
     通过上述研究,得到以下几点创新性结论:
     (1)基于土体位移的双排抗滑桩计算模型,通过前排抗滑桩与后排抗滑桩桩周土体位移比来考虑“遮蔽效应”是可行的。相比基于土压力的计算模型,基于位移的计算模型更容易得到解析解;
     (2)锚固深度对内力、变形、抗滑力和桩侧土压力有明显影响,且此影响与所施加的边界位移大小有关;
     (3)施工时间差对双排抗滑桩内力与变形有明显的影响,尤其是对先施工的后排抗滑桩。根据前后排抗滑桩最大拉应力比值接近,且最大弯矩之和最小,能够实现施工时间差的优化;
     (4)利用基于桩顶位移的裂缝判别式,对红岩滑坡抗滑桩裂缝出现的时间及位置进行了判断,通过钢筋应力数据对判断结果进行验证,证明了本文提出的裂缝判别式的可行性和准确性;
     (5)确定了根据桩顶位移对抗滑桩施加竖向预应力能够实现对抗滑桩裂缝的动态控制。
The occurrence of large landslides that threaten the life and poverty of people are becoming more and more frequent as the economic development and climate changing. As a result, the double-row stabilizing piles which can provide larger sliding resistance are widely used in the landslide-control projects. However the study of mechanism of double-row stabilizing pile is in appears of the application of the double-row stabilizing pile, many application cases of double-row stabilizing piles are based on the design experience of single-row stabilizing piles. In this thesis, based on the data of Hongyan landslide project and utilizing the theoretical and numerical methods, a theoretical model in which the "shadow effect" is considered is established. Influences of different scenarios of embedded length of the double-row stabilizing piles on the internal force, the deflection, the sliding resistance and the soil pressure around the piles are studied. Constructional time delay is also introduced in computational model of double-row stabilizing piles. A theoretical method used to predict crack initiation in stabilizing piles is established based on the head displacement data of stabilizing piles. Application of vertical pre-stressing force in the stabilizing piles is systematically studied and validated. The main research contents are:
     (1). Combined with elastic foundation beam theory, a computational model of double-row stabilizing pile is established by assuming that the displacement of sliding mass is uniformly distributed with depth. In the model, a concept of soil displacement ratio, which is defined as the soil displacement ratio around the rear stabilizing pile to the front stabilizing pile, is introduced. The computational process of the theoretical model is realized by MATLAB. Feasibility of the model is validated by comparing the results between the model and FLAC3D model.
     (2). Influences of different scenarios of embedded length on the deflection, internal force, sliding resistance and soil pressure are studied using three-dimensional numerical method.
     (3). Based on the elastic foundation beam theory, a computational model in which the constructional time delay is considered is established. Influences of constructional time delay on the internal force and deflection of double-row stabilizing piles are discussed based on the data of Hongyan landslide project.
     (4). Based on concrete theory and head displacement of stabilizing piles, a theoretical method used to predict crack initiation in stabilizing is established. The time and position of crack initiation can be determined by this method. The method is validated by data of Hongyan landslide.
     (5). Based on the researches on vertical pre-stressing force done by the former researchers, specific applied process of pre-stressing force according to head displacement of stabilizing piles is proposed, during which dynamic control of crack can be realized. The feasibility of vertical pre-stress force applied in practical engineering is verified.
     Some innovative conclusions are drawn through above mentioned researches:
     (1).The "shadow effect" can be properly considered in the computational method based on displacement of sliding mass. Analytical solution of the method based on the displacement of sliding mass is more convenient to be obtained than that of the method based on soil pressure.
     (2). Embedded length obviously affects the deflection, internal force, sliding resistance and soil pressure around the stabilizing piles. This kind of influence is dependent on the magnitude of the boundary displacement applied on sliding mass.
     (3). Construction time delay obviously affects the deflection and internal force of the double-row stabilizing piles, especially for the rear stabilizing pile which is installed earlier. The constructional time delay is optimized based on the principle that the maximum tensile stress in the front and rear stabilizing piles are approximate to each other and the sum of maximum bending moments are the smallest.
     (4). The time and position of the crack initiation of the stabilizing piles in Honayan landslide are determined by the crack discriminant proposed in this thesis. The results are validated by the stress data of the reinforcement bar, and the feasibility and accuracy are also verified at the same time.
     (5). Dynamic control of cracks can be realized by applying pre-stressing force according to the head displacement of stabilizing pile.
引文
[1]中华人民共和国国家统计局.中国统计年鉴—2012[M].北京:中国统计出版社,2012.
    [2]B. Clifford. The new South Wales fire brigades' critical incident stress management response to the Thredbo landslide. International Journal of Emergency Mentak Health,1999.1(2): 127-133.
    [3]G. T. Hancox. The 1979 Abbotsford Landslide, Dunedin, New Zealand:a retrospective look at its nature and causes[J]. Landslides,2007,5:177-188.
    [4]王兰生.意大利瓦依昂水库滑坡考察[J].中国地质灾害与防治学报,2007,18(3):145-148.
    [5]X. T. Feng, H. B. Zhao, S. J. Li. A new displacement back analysis to identify mechanical geo-material parameters based on hybrid intelligent methodology [J]. International Journal for Numerical and Analytical Method in Geomechanics,2004,28(11):1141-1165.
    [6]Y. R. Zheng, L. Kong. Generalized plastic mechanics and its application[J]. Engineering Science,2006,4(1):6-26.
    [7]尹顺德,冯夏庭,张友良,等.滑坡加固方案优化的并行神经网络方法研究[J].岩石力学与工程学报,2004,23(16):2698-2702.
    [8]周翠英,刘祚秋,尚伟,等.门架式双排抗滑桩设计计算新模型[J].岩土力学,2005,26(3):441-445.
    [9]吕美君,晏鄂川.埋入式双排抗滑桩滑坡推力分配研究[J].岩石力学与工程学报,2005,24(1):4866-4871.
    [10]申永江,吕庆,尚岳全.桩排距对双排抗滑桩内力的影响[J].岩土工程学报,2008,30(7):1033-1038.
    [11]万力.向家滑坡双排抗滑桩加固的数值模拟研究[J].矿业快报,2008,473(9):6-9.
    [12]陈曦.双排抗滑桩滑坡推力计算方法研究[D].四川成都,西南交通大学,2007.
    [13]刘鸿.双排抗滑桩滑计算方法研究[D].四川成都,西南交通大学,2007.
    [14]张泽坤.h型抗滑桩的有限元分析[D].四川成都,西南交通大学,2008.
    [15]肖世国.边(滑)坡治理中h型组合抗滑桩的分析方法及工程应用[J].岩土力学,2010,31(7):2146-2151.
    [16]傅强,孙飞飞,唐承铁,等.双排微型抗滑桩的抗滑效果[J].中南大学学报(自然科学版),2013,44(4):185-190.
    [17]G C. Kang, Y. S. Song. T. H. Kim. Behavior and stability of a large-scale cut slope considering reinforcement stages[J]. Landslides,2009,6(3):263-272.
    [18]王恭先.滑坡支挡建筑物的发展动向[A]滑坡文集(第十三集)[C].北京:中国铁道出版社,1998:60-64.
    [19]铁道部第二勘测设计院.抗滑桩设计与计算[M].北京:中国铁道出版社,1983.
    [20]E. E. DeBeer. M. Wallays. Forces induced in piles by unsymmetrical surcharges on the soil around the piles[C].Proc.5th Int. Conf. Soil Mech., Madrid,1972,1:325-332.
    [21]G P. Tschebotariof. Foundations, Retaining, and Earth Structures[M]. New York:McGraw-Hill,1973.
    [22]T. Ito, T. Matsui. Methods to estimate lateral force acting on stabilizing piles[J]. Soils and Foundation,1975,15(4):43-59.
    [23]T. Ito, T. Matsui, and W. P. Hong. Design method for the stabilizing piles against landslide-one row of piles[J]. Soils and Foundations,1981,21(1):21-37.
    [24]T. Ito, T. Matsui, and W. P. Hong. Extended design method for multi-row stabilizing piles against landslide[J]. Soils and Foundations,1982,22(1):1-13.
    [25]G. M. Norris. Theoretically based BEF laterally loaded pile analysis[J]. Proc. Third Int. Conf. on Numerical Methods in Offshore Piling, Editions Technip, Pairs. France:361-386.
    [26]M. Ashour, P. Pilling, G. Norris. Lateral behavior of pile groups in layered soils[J]. Journal of geotechnical and geoenvironmental engineering,2004,130(6):580-592.
    [27]W. Y. Shen, C. I. The, F. Basile. Analysis of laterally loaded pile groups using a variational approach[J]. Geotechnique,2003,53(5):525-526.
    [28]E.Winkler. Theory of elasticity and strength[M]. Czechoslovakia:Prague,1867.
    [29]M. Hetenyi. Beams on elastic foundation [M], University of Michigan Press, Michigan, USA,1946.
    [30]H. G. Poulos, E. H. Davis. Pile foundation analysis and design[M]. New York:John Wiley & Sons,1980.
    [31]K. Terzaghi. Evaluation of coefficients of subgrade reaction[J]. Geotechnique,1955,5(4): 297-326.
    [32]孙勇.西部山区双排抗滑桩的机理及设计研究[J].工程地质学报,2008,16(3):383-387.
    [33]孙勇,张广栋.双排抗滑桩的机理及工程应用研究[J].矿业研究与开发,2008,28(5):23-26.
    [34]祁斌,常波,吴益平.双排抗滑桩滑坡推力分配影响因素分析[J].工程地质学报,2011,19(3):359-363.
    [35]刘新荣,欧明喜,郑颖人,等.h型抗滑桩抗滑机制模型试验研究[J].土木建筑与环境工程,2013,35(2):33-37,91.
    [36]L. C. Reese. Laterally loaded piles:program documentation[J]. Journal of Geotechnical and Geoenviromental engineering,1977,103(4):287-305.
    [37]胡松,杨明辉.双排抗滑桩桩土相互作用分析模型及其应用[J].公路工程,2012,37(1):7-11.
    [38]F. Bourges, and C. Mieussens. Deplacements lateraux a proximite des remblais sur sols compressibles, methode de prevision[J]. Bulletin de Liaison des Laboratoires des Ponts et Chaussees, Paris,1979,101:73-100. (in French)
    [39]J. P. Carter, M. F. Randolph, and C. P. Wroth. Some aspects of the performance of open and close-ended piles[J]. Proc. Int. Conf. on Numer. Methods in Offshore Piling, Inst. Of Civ. Engrs., London, England,165-170.
    [40]A. I. Mana, and G. W. Clough. Prediction of movements for braced cuts in clay[J]. Journal of the Geotechnical Engineering Division,1981,107(6):759-777.
    [41]A. J. Whittle, Y. M. A. Hashash, and R.V. Whitman. Analysis of deep excavation in Boston[J]. Journal of geotechnical engineering,1993,119(1):69-90.
    [42]L. T. Chen. Effects of lateral soil movements on pile foundations[D]. Sydney, Australia, University of Sydney,1994.
    [43]H. G. Poulos. Design of reinforcing piles to increase slope stability[J]. Canadian Geotechnical Journal,1995,32(5):808-818.
    [44]H. G. Poulos. Analysis of piles in soil undergoing lateral movement[J]. Journal of the soil mechanics and foundations division,1973,99(5):391-406.
    [45]T. S. Hull. The behaviour of laterally loaded piles[D]. Sydney, Australia, University of Sydney,1987.
    [46]C. Y. Lee, H. G. Poulos, T. S. Hull. Effect of seafloor instability on offshore pile foundations[J]. Canadian Geotechnical Journal,1991,28(5):729-737.
    [47]H. G. Poulos. Design of reinforcing piles to increase slope stability[J]. Canadian Geotechnical Journal,1995,32(5):808-818.
    [48]T. S. Hull, C. Y. Lee, H. G. Poulos. Behaviour of fixed and free head piles in laterally sliding soil[C]. Proc.6th ANZ Conf. Geomech, Christchurch,1992:151-156.
    [49]T. S. Hull, P. Mcdonald. Lateral soil movement loading on bridge foundation piles[C]. Proc. 6th ANZ Conf. Geomech, Christchurch,1992:146-150.
    [50]H. G Poulos, L. T. Chen, T. S. Hull. Model tests on single piles subjected to lateral soil movement[J]. Soils and Foundations,1995,35(4):85-92.
    [51]H. G. Poulos, L. T. Chen. Pile response due to unsupported excavation-induced lateral soil movement[J]. Canadian geotechnical journal,1996,33(4):670-677.
    [52]H. G. Poulos, and L. T. Chen. Pile response due to excavation-induced lateral soil movement[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(2):94-99.
    [53]L. T. Chen, H. G. Poulos, T. S. Hull.Model tests on pile groups subjected to lateral soil movement[J]. Soils and foundations,1997,37(1):1-12.
    [54]R. Marche. Discussion to spec. sess.5[C]. Proc.8th ICSMFE, Moscow,1973,4:247-252.
    [55]F. Bourges, R. Frank, C. Mieussens. Calcul des efforts et des deplacements engenders par des poussees laterals de sol sur les pieux[M]. Note Technique. Paris:Laboratoire Central des Ponts et Chausdes. (in French)
    [56]G. Bigot, F. Bourges, R. Frank. Guegan Y. Action du deplacement lateral du sot sur un pieu[C]. Proc.9th ICSMFE, Tokyo,1977,1:407-410. (in French)
    [57]李国豪.桥梁与结构理论研究[M].上海:上海科学技术文献出版社,1983:236-244.
    [58]M. Maugeri, E. Motta(张颖钧译).加固滑坡时作用在桩上的应力[J].路基工程,1996,69(6): 35-39.
    [59]G Cartier, and J. P. Gigan. Experiments and observations on soil nailing structures[C]. Proc. 8th European Conference on Soil Mechanics and foundation engineering, Helsinki,1983.
    [60]C. F. Leung, Y. K. Chow, R. F. Shen. Behavior of pile subject to excavation-induced soil movement[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(11): 947-954.
    [61]C. F. Leung, J. K. Lim, R. F. Shen, et al. Behavior of pile groups subject to excavation-induced soil movement[J]. Journal of geotechnical and geoenvironmental engineering,2002,129(1):58-65.
    [62]F. Cai, K. Ugai. A subgrade reaction solution for piles to stabilize landslides[J]. Geotechnique, 2011,61(2):143-151.
    [63]M. F. Randolph. A theoretical study of the performance of piles[D]. London, England, University of Cambridge,1977.
    [64]R. K. Rowe, H. G. Poulos. A method for predicting the effect of piles on slope behaviour[C]. Proc.3 rd Int. Conf. on Numerical Mechods in Geomechanics, A. A. Balkema, Rotterdam, Netherlands,1979,3:1073-1085.
    [65]R. L. Kuhlemeyer. Static and dynamic laterally loaded floating piles[J]. Journal of the Geotechnical Engineering Division,1979a,105(2):289-304.
    [66]R. L. Kuhlemeyer. Bending element for circular beams and piles[J]. Journal of Geotechnical and Geoenvironmental Engineering,1979b,105(ASCE 14372).
    [67]M. W. Oakland, J. L. A. Chameau. Finite-element analysis of drilled piers used for slope stabilization[J]. Laterally loaded deep foundations:Analysis and performance,1984: 182-193.
    [68]M. F. Bransby, S. M. Springman.3-D finite element modeling of pile groups adjacent to surcharge loads[J]. Computer and Geotechnics,1996,19(4):301-324.
    [69]O. C. Zienkiewicz, C. Humpheson, R. W. Lewis. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Geotechnique,1975,25(4):671-689.
    [70]D. J. Naylor. Finite element and slope stability[C]. Num Meth Geomech. In:Proceedings of the NATO Advanced Study Institute, Lisbon, Portugal,1981.
    [71]I. B. Donald, S. K. Giam. Application of the nodal displacement method to slope stability analysis[C]. In:Proceedings of the 5th Australia-New Zealand conference on geomechanics, Sydney, Australia,1988:456-460
    [72]T. Matsui, K. C. San. Finite element slope stability analysis by shear strength reduction technique[J]. Soils and Foundations,1992,32(1):59-70.
    [73]K. Ugai, D. Leshchinsky. Three-dimensional limit equilibrium and finite element analyses:a comparison of results[J]. Soils and Foundations,1995,35(4):1-7.
    [74]E. M. Dawson, W. H. Roth, A. Drescher. Slope stability analysis by strength reduction[J]. Geotechnique,1999,49(6):835-840.
    [75]D. V. Griffiths, P. A. Lane. Slope stability analysis by finite elements[J]. Geotechnique,1999, 49(3):387-403.
    [76]Y. M. Cheng, T. Lansivaara, W. B. Wei. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods[J]. Computers and Geotechnics,2007,34(3): 137-150.
    [77]W. B. Wei, Y. M. Cheng, L. Li. Three-dimensional slope stability analysis by the strength reduction and limit equilibrium methods[J]. Computers and Geotechnics,2009,36:70-80.
    [78]F. Cai, K. Ugai. Numerical analysis of the stability of a slope reinforced with piles[J]. Soils and Foundations,2000,40(1):73-84.
    [79]J. Won, K. You, S. Jeong, et al. Coupled effects in stability analysis of pile-slope systems[J]. Computers and Geotechnics,2005,32(4):304-315.
    [80]Y. K. Chow. Analysis of piles used for slope stabilization[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1996,20(9):635-646.
    [81]T. Yamagami, J. C. Jiang, K. Ueno. A limit equilibrium stability analysis of slopes with stabilizing piles[C]. Proceedings of sessions of Geo-Denver 2000, Denver,2000.
    [82]E. Ausilio, E. Conte, G. Dente. Stability analysis of slopes reinforced with piles[J]. Computers and Geotechnics,2001,28(8):591-611.
    [83]J. Kim, R. Salgado, J. Lee. Stability analysis of complex soil slopes using limit analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(7):546-557.
    [84]S. Kanagasabai. Three dimensional numerical modeling of rows of discrete piles used to stabilize large landslides[D]. Southampton, UK, University of Southampton,2010.
    [85]S. Kanagasabai, J. A. Smethurst, W. Powrie. Three-dimensional numerical modelling of discrete piles used to stabilize landslides[J]. Canadian Geotechnical Journal,2011,48(9): 1393-1411.
    [86]C. Viggiani. Ultimate lateral load on piles used to stabilize landslides[C]. In Proceedings of the 10th International Conference on Soil Mechnics and Foundation Engineering, Stockholm, Sweden,3:555-560.
    [87]M. R. Kahyaoglu, G. Imancli, O. Onal, et al. Numerical analyses of piles subjected to lateral soil movement[J]. KSCE Journal of Civil Engineering,2012,16(4):562-570.
    [88]R. Kourkoulis, F. Gelagoti, I. Anastasopoulos, et al. Slope stabilizing piles and pile-groups: parametric study and design insights[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(7):663-677.
    [89]R. Kourkoulis, F. Gelagoti, I. Anastasopoulos, et al. Hybrid method for analysis and design of slope stabilizing piles[J]. Journal of Geotechnical and Geoenvironmental Engineering,2012, 138(1):1-14.
    [90]张泽坤.h型抗滑桩的有限元分析[D].四川成都,西南交通大学,2008.
    [91]邓夷明.双排抗滑桩抗滑机理的研究[D].四川成都,西南交通大学,2008.
    [92]申永江,吕庆,尚岳全.桩排距对双排抗滑桩内力的影响[J].岩土工程学报,2008,30(7):1033-1037.
    [93]申永江.边坡工程中抗滑桩的效果评价与优化设计[D].浙江杭州,浙江大学,2009.
    [94]杨波,郑颖人,赵尚毅等.双排抗滑桩在三种典型滑坡的计算与受力规律分析[J].岩土力学,2010,31(增1):237-244.
    [95]刘金龙,王吉利,袁凡凡.不同布置方式对双排抗滑桩土拱效应的影响[J].中国科学院研究生院学报,2010,27(3):364-369.
    [96]唐芬,郑颖人,杨波.双排抗滑桩的推力分担及优化设计[J].岩石力学与工程学报,2010,29(增1):3162-3168.
    [97]钱同辉,陈芳,程周炳,等.框架式双排抗滑桩结构性能研究[J].长江科学院院报,2011,28(11):91-95.
    [98]朱华,邓成发.门架式双排桩围护结构的三维有限元分析[J].工程勘察,2011,39(1):20-24.
    [99]刘鸣,黄华,韩冰,等.延安地区某边坡双排抗滑桩支护分析[J].长安大学学报:自然科学版,2011,31(2):63-67.
    [100]黄小艳,徐年丰,王汉辉,等.双排抗滑桩受力规律的数值研究[J].人民长江,2012,43(1):4-8.
    [101]邹盛堂,戴自航.双排抗滑桩与门架抗滑桩的有限元分析对比[J].广西大学学报(自然科学版),2012,37(4):769-774.
    [102]王士川,陈立新,抗滑桩的弹塑性理论分析(Ⅱ)[J].西安建筑科技大学学报:自然科学版,1997,29(4):426-429.
    [103]常保平.抗滑桩的桩间土拱和临界桩间问题探讨[A]滑坡文集(第十三集)[C].背景:中国铁道出版社,1998:73-78.
    [104]王成华,陈永波,林立相.抗滑桩间土拱力学特性与最大桩间距分析[J].山地学报,200 1,19(6):556-559.
    [105) 周德培,肖世国,夏雄.边坡工程中抗滑桩合理桩间距的探讨[J].岩土工程学报,2004,26(1):132-135.
    [106]张建华,谢强,张照秀.抗滑桩结构的土拱效应及其数值模拟[J].岩石力学与工程学报,2004,23(4):699-703.
    [107]卢坤林,韩晓雷,杨扬.抗滑桩最大桩间距确定方法[J].合肥工业大学学报(自然科学版),2006,29(8):1029-1031.
    [108]周志刚.土层抗滑桩锚固深度探讨[J].路基工程,1997,(3):31-35.
    [109]蒋建国,邹银生,周绪红.刚性抗滑桩锚固深度的简化计算[J].工程力学,2001,(增2):457-460.
    [110]周强,袁铜森,向洪.刚性抗滑桩锚固深度计算研究[J].湖南交通科技,2006,32(2):7-8.
    [111]张文居,赵其华,刘晶晶.抗滑桩锚固深度的可靠性设计[J].岩土工程学报,2006,28(12):2153-2155.
    [112]周春梅,殷坤龙.三峡库区滑坡治理中抗滑桩锚固深度的研究[J].武汉理工大学学报,2006,28(2):38-41.
    [113]年廷凯,栾茂田,郑德凤,等.抗滑桩锚固深度的极限分析下限方法[J].水利学报,2007,38(6):743-748.
    [114]年廷凯,栾茂田,郑德凤,等.基于极限分析下限方法的抗滑桩锚固深度检算[J].武汉理工大学学报,2007,29(8):82-86.
    [115]张俊,陈志新,门玉明.锚杆抗滑桩嵌固深度研究[J].东北大学学报:自然科学版,2008,29(11):1637-1640.
    [116]杨旭,彭雄志,王倩.西攀路永郎昔格达滑坡抗滑桩嵌固深度分析[J].建筑安全,2008,23(8):36-38.
    [117]叶鹏.土质软岩堑坡半坡抗滑桩锚固深度数值分析[J].铁道标准设计,2010,(11):33-35.
    [118]陈亮.地基系数优化法确定埋入式抗滑桩嵌固深度[J].山西建筑,2010,36(23):149-150.
    [119]S. K. Yang, X. H. X. Ren, J. Zhang. Study on embedded length of piles for slope reinforced with one row of piles[J]. Journal of Rock Mechanics and Geotechnical Engineering,2011,3(2):167-178.
    [120]张松,吴坤铭,谭晓慧.基于加固边坡的可靠性分析设计抗滑桩锚固深度[J].皖西学院学报,2011,27(5):128-131.
    [121]胡晓军,吴延枝.抗滑桩锚固深度的可靠度与参数敏感性[J].河海大学学报:自然科学版,2011,39(1):49-53.
    [122]焦赞.高烈度地震区抗滑桩锚固深度可靠度分析[J].路基工程,2012,(5):5-8.
    [123]雷国平,唐辉明,李长冬,等.抗滑桩嵌固段设计修正方法研究[J].岩石力学与工程学报,2013,32(3):605-614.
    [124]李俊飞.双排埋入式抗滑桩工作机理分析与研究[硕士学位论文].重庆,重庆大学,2009.
    [125]申永江,黄立,严克伍.悬臂双排桩桩排距的计算方法研究[J].水文地质工程地质,2012,39(5):59-63.
    [126]王首智.微型组合抗滑桩工作机理分析及优化设计研究[硕士学位论文].四川成都,成都理工大学,2011.
    [127]马清文,宋书志,孔纪名.双排抗滑桩中单桩侧向承载实验[J].地质灾害与环境保护,2011,22(3):78-83.
    [128]黄治云,张永兴,董捷.岩体拱效应与抗滑桩合理桩间距分析[J].铁道学报,2013,35(3):83-88.
    [129]崔伟.h型抗滑桩模型试验及数值模拟研究[硕士学位论文].广西南宁,广西大学,2009.
    [130]涂征宇,杨明辉,万智.基于有限差分解的双排抗滑桩内力及位移分析[J].公路交通科技,2012,(2):40-44.
    [131]杨世如.超声波透射法在钻孔灌注桩检测中的应用[J].上海地质,2003,(4):47-51.
    [132]陈国栋.超声波在混凝土桩基础无损检测中的应用研究[硕士学位论文].湖北武汉,武汉理工大学,2005.
    [133]周屹,李业君.声波透射法在灌注基桩完整性检测中的应用[J].矿产与地质,2006,20(3):294-97.
    [134]韩亮.基桩声波透射法检测新技术及其应用[J].工程力学,2007,24(6):141-145.
    [135]邹俊,罗有春,王怀坤,等.声波透射法基桩完整性检测[J].内蒙古石油化工,2008,34(10):76-77.
    [136]黄大勇.超声波桩基检测技术在遵崇线上的应用[J].科技信息,2008,(7):201-202.
    [137]邢哲,宛新林,宛传虎,等.超声波透射法在基桩检测中PSD评定的应用研究[J].工程与建设,2011,25(4):520-521.
    [138]蔡为武.混凝土坝钻孔取芯试验方法与成果探讨[J].大坝与安全,1997,11(4):31-37.
    [139]张小平.如何用钻孔取芯法检测桩身质量[J].科技信息,2007,(4):71.
    [140]俞湘娟,高明军,王玉国.钻芯法检测钻孔灌注桩混凝土强度中注意的几个问题[J].华东公路,2003,(1):57-59.
    [141]周德泉,张可能,张宏.超长桩钻芯检测的可行性[J].桥梁建设,2003,(5):12-14.
    [142]周德泉,张可能.钻芯检测超长桩的最大桩长计算与关键技术[J].岩土力学,2003,24(增刊):535-537.
    [143]田建平.钻芯法检测基桩质量施工中的若干问题[J].福建建筑高等专科学校学报,2002,4(3):29-31.
    [144]林辉,吕宜嫒,戴民.低应变反射波法在灌注桩桩身完整性检测中的应用田.浙江水利科技,2007,(6):60-63,66.
    [145]李火榆,严学开.灌注桩低应变反射波法与钻芯法检测结果比较[J].人民长江,2005,36(4):30-31.
    [146]吴建忠.低应变反射波法在桥梁工程桩检测中应用[J].福建地质,2005,(1):57-59.
    [147]卢海林,黄孝斌,李友新.静载试验桩的高低应变测试分析[J].江汉石油学院学报,1999,21(3):79-81.
    [148]卢贵清,杨占东.高应变CASE法动力试桩应用探讨[J].中南冶金地质,1996,(2):69-73.
    [149]谭开建.某花园的桩基高低应变法检测工程实践[J].广东建材,2006,(9):86-87.
    [150]周东明,姚琪阳.高低应变法在基桩缺陷判定中的综合运用[J].土工基础,2008,22(5):31-34.
    [151]徐明江.高、低应变法在基桩完整性检测中的对比分析[J].广州建筑,2008,36(4):36-29.
    [152]李锡昌.高应变法在PHC管桩桩身质量检测中的应用优势[J].广东土木与建筑,2009,(7):57-59.
    [153]L. Y. Wang, and L. Guo. Crack Prevention in Concrete Structures with Pipe-Cooling System. Proceedings of the 12th International Conference on Inspection Appraisal Repairs and Maintenance of Structures, CI-Premier Pteltd, Singapore,2010:1125-1129.
    [154]J. Z. Li, H. Q. Yang, K. T. Xiao. Study on formation and prevention of shrinkage cracks in the massive concrete of hydraulic structures. Proceedings of the 6th International Symposium on Cement & Concrete and CANMET/ACI International Symposium on Concrete Technology for Sustainable Development, Foreign Languages Press, Beijing, China, 2006,1(2):999-1005.
    [155]S. Qiang, Y. M. Zhu, T. Hu, et al. Temperature crack control analysis for pedestal in Jinping-1 high arch dam engineering. Geotechnical Engineering for Disaster Mitigation and Rehabilitation, Science press Beijing, Beijing, China,2008:735-741.
    [156]张雄,习志臻,王胜先,等.仿生自愈合混凝土的研究进展[J].混凝土,2001,(3):10-13.
    [157]朱耀台,詹树林.混凝土裂缝成因与防治措施研究[J].材料科学与工程学报,2003,21(5):727-730.
    [158]缪钱江,方征平,蔡国平.自修复复合材料研究进展[J].材料科学与工程学报,2004,22(2):301-303.
    [159]刘小艳,姚武,郑晓芳,等.混凝土损伤自愈合性能的试验研究[J].建筑材料学报,2005,8(2):184-188.
    [160]侯子义.裂缝自愈合混凝土研究现状与发展趋势[J].中南公路工程,2005,30(1):165-167.
    [161]刘鹏,贾平,周宗辉,等.自修复混凝土研究进展[J].济南大学学报(自然科学版),2006,20(4):287-291.
    [162]匡亚川,欧进萍.混凝土裂缝的仿生自修复研究与进展[J].力学进展,2006,36(3):406-414.
    [163]范晓明,李卓球,宋显辉,等.混凝土裂缝自修复的研究进展[J].混凝土与水泥制品,2006,(4):13-16.
    [164]杨卉.混凝土裂缝自愈合的研究与进展[J].中国建材科技,2011,(1):66-70.
    [165]周北,赵明华.预应力锚索抗滑桩结构设计理论与应用研究[D].湖南大学,2006
    [166]李瓤玲,门备明.锚索抗滑桩系统内力变形研究[J].地球科学与环境学报,2007,29(4):400-403.
    [167]田小波.预应力锚索抗滑桩优化设计及应用[J].铁道科学与工程学报,2012,9(4):89-93.
    [168]宋勤怀.简议预应力锚索抗滑桩施工工艺[J].中国科技博览,2013(5):69-70.
    [169]杨志法,祝介旺,张路青,等.可用于川藏公路高陡边坡的两种加固新技术[J].中国科学(E辑),2003,33(增1):41-46.
    [170]杨建国,贾学明,赖思静.桩身预应力抗滑桩设计方法分析[J].地下空间与工程学报,2006,2(4):650-653.
    [171]贾学明,柴贺军,杨建国.桩身预应力抗滑桩的三维有限元分析[J].公路交通技术,2005,(5):40-45.
    [172]金波,程方方,陈宁宁.偏心预应力锚索抗滑桩模拟试验研究[J].岩土工程技术,2008,22(3):131-135,138.
    [173]黄宝权.竖向预应力锚索抗滑桩在滑坡治理中的应用[J].广西城镇建设,2010,(7):41-44.
    [174]蒋楚生,李庆海.新型竖向预应力“锚索”抗滑桩设计理论初探[J].路基工程,2010,(B04):109-111.
    [175]蒋洋,王晓谋,胡元鑫.预应力混凝土抗滑桩在滑坡治理工程中的应用[J].南水北调与水利科技,2010,8(3):110-113.
    [176]管品武,唐国斌,孟会英.先张法预应力混凝土管桩受弯承载力试验研究[J].郑州大学学报(工学版),2006,27(3):6-8.
    [177]李远宁,石胜伟,吴保和.预应力混凝土抗滑桩试验与数值计算[J].中国地质灾害与防治学报,2006,17(4):159-160.
    [178]韦万正.竖向预应力锚索抗滑桩结构优化设计[硕士学位论文].广西南宁,广西大学,2010.
    [179]粱俊勋,卢玉南,许英姿.竖向预应力锚索抗滑桩的优化设计[J].工程勘察,2010,(增1):529-533.
    [180]钟庆华.Ⅱ型抗滑桩治理滑坡的研究[J].合肥工业大学学报:自然科学版,1998,21(增1):102-105.
    [181]祝辉,唐红梅,李明,等.重庆—贵州高速公路向家滑坡稳定性分析及防治对策研究[J].岩石力学与工程学报,2006,25(增1):2687-2693.
    [182]王凯,郑颖人,王其洪,等.捆绑式抗滑桩优越性初步研究[J].地下空间与工程学报,2008,4(3):533-538.
    [183]邵广彪,孙剑平,崔冠科.某永久边坡双排桩支护设计及应用[J].岩土工程学报,2010,32(增1):21 5-218.
    [184]Chen, C.Y., Martin, G. R. (2002). Soilstructure interaction for landslide stabilizing piles[J]. computers and Geotechnics,29(5),363-386.
    [185]Jeong, S., Kim, B., Won, J. et al. (2003). Uncoupled analysis of stabilizing piles in weathered slopes[J].30(8),671-682.
    [186]中华人民共和国铁道部TB100252006.铁路路基支挡结构设计规范[S].北京:中国铁道出版社,2006.
    [187]P. K. Banerjee, T. G. Davies. The behaviour of axially and laterally loaded single piles embedded in nonhomogeneous soils[J]. Geotechnique,1978,28(3):309-326.
    [188]Itasca.2005. Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 3.0: Users Manual. Itasca Consulting Group, Minneapolis, Minn.
    [189]B. B. Broms. Lateral resistance of piles in cohesive soils. Journal of the Soil Mechanics and Foundations Division,1964,90:27-63.
    [190]F. Esu, B. D'Elia. Interazione terreno-struttura in un palo sollectato dauna frana tipo colata. Rivsita Italiana di Geotechica,1974,8(1):27-38.
    [191]Y. Fukumoto. The behaviour of piles for preventing landslide. Soils Found.,1976,16(2): 91-103. (in Japanese).
    [192]E. M. Comodromos, M. C.Papadopoulou, I. K Rentzeperis. Effect of cracking on the response of pile test under horizontal loading. Journal of Geotechnical and Geoenvironmental engineering,2009,135(9):1275-1284.
    [193]E. Conte, A. Troncone, M. Vena. Nonlinear three-dimensional analysis of reinforced concrete piles subjected to horizontal loading[J]. Computers and Geotechnics,2013,49: 123-133.
    [194]舒士霖.钢筋混凝土结构[M].杭州:浙江大学出版社,2005.
    [195]程良奎,范景伦,韩军,等.岩土锚固[M].北京:中国建筑工业出版社,2002.
    [196]中华人民共和国住房和城乡建设部GB50010-2010.混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
    [197]杨杨,江晨晖,许四法.高性能混凝土早龄期抗拉性能试验研究[J].建筑材料学报,2008,11(1):94-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700