用户名: 密码: 验证码:
火烧油层室内实验及驱油机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火烧油层是一种具有明显技术优势和潜力的采油方法,具有油藏适应范围广、物源充足、采收率高、成本低的优势。但由于火驱机理十分复杂,火驱油藏工程设计及矿场动态管理上还存在很多问题,特别是对储层中发生的燃烧和驱油过程缺乏直观准确的认识,很难采取有效手段准确判断地下燃烧状况、监测和控制火驱前缘。因此,开展火驱机理和实验研究十分必要。
     合适的相似准则是开展比例物理模拟的基础。国外学者提出的相似准则,都是建立在简化火烧条件的基础上提出的,没有考虑燃烧反应动力学参数等。由于火烧油层机理的复杂性,若不考虑燃烧反应动力学等参数,就无法有效地认识火烧驱油机理、预测火驱效果、优化火烧驱参数。因此,本项目在综合考虑燃烧特性的基础上,建立了火烧油层4相7组分数学模型,提出了以油的燃烧转化率为主线的燃烧动力学模型及燃油比、输氧准则,创建了火烧油层物理模拟相似准则。该相似准则是迄今为止考虑影响因数最多的相似准则群。
     火驱物理模拟装置是直观准确认识千米地下发生燃烧和驱油过程最为有效手段。针对国内外已有模型模拟压力低、模型较小的现状,自主研制了一套大型多功能火烧油层比例物理模拟装置。物理模型最高工作温度1000℃,最高工作压力15MPa,可开展多井组、多方式火驱模拟研究,在技术及功能上达到了国际先进水平。
     实验研究了火烧油层物理模拟实验方法,解决了油层点火、注气操控、复杂气体分析、火驱前后原油性质变化等多项技术难题,并开展了多组火烧油层物理模拟实验,为驱油机理研究奠定有力基础。
     实验研究了不同原油(曙1-38-330超稠油、高3-2-75井普通稠油;冷37-45-562井特稠油天然油砂和高检1井普通稠油天然油砂)燃烧基础特性,分析了其原油的点火温度、通风强度、氧气利用率、视H/C原子比等燃烧指标,比较了不同油品燃烧前缘推进速率,预测了火驱的驱油效率。
     通过比例模拟实验研究了火驱推进过程中温度场发育和不同燃烧区带的分布特征,不同油层厚度火驱波及状况和驱油效果,尝试了厚油层火驱改善火线波及范围、提高采出程度的调控方法。同时,在试验中发现了能反映火驱燃烧深层机理的重要标记化合物,进而揭示了燃烧反应过程中原油粘度、密度降低等参数变化的主要原因。
     本项目取得的成果为高3-6-18块、冷41块火驱试验方案的编制、现场合理实施提供可靠的依据。
As an obvious advanced and favorable oil recovery technique, in-situ combustion has the advantage of wide reservoir adaptation, sufficient material resource, high recovery ratio, low cost. Because very complex oil displacement mechanism, it has much problem on reservoir engineering design and field dynamic mange, for example, there was poor recognition in combustion and oil displacement in reservoir bed, and it was very difficult to judge combustion situation and monitor/control combustion front. So it was very necessity to develop laboratory experiment and research oil displacement mechanism of in-situ combustion.
     The reasonable similarity criterion was based on scaled physical simulation. The similarity criteria that foreign scholar suggested was simplified combustion situation and omitted kinetics of combustion reaction, owing to very complex oil displacement mechanism, if kinetics of combustion reaction was omitted, there was very difficult to mechanism recognition, effect predication and parameter optimization. On the base of integrated research of combustion characteristic, a new ISC similarity criterion was built that it owned four phases and seven components mathematical mode, established a dynamic model of in-situ combustion process and the ratio of oxygen consumption rate and oxygen transport rate. The involved affecting factors of ISC similarity criterion were the most comprehensive up to now.
     The most effective method that researched combustion and oil displacement underground was ISC scaled physical simulation. In view of low pressure and small size of existing model, A suit big multi-purpose ISC scaled physical model system was developed independent. This system had very high technical description that the maximum pressure was 15MPa, the maximum temperature was 1000℃,it could be used researched multiwell and multimode ISC physical simulation, its technology and function attained to international improved level.
     The physical simulation experimental method was found that many technique problems were resolved such as oil layer ignition, gas injection operation and control, complex gas analysis, crude oil character upgrade, and through this method, many ISC physical simulation experiments were developed. The method laid the foundation for the oil displacement mechanism research.
     Different block crude oil such as Shul138-330 Well super heavy oil, Gao3-2-75 Well normal heavy oil, Len 37-45-562 Well natural oil sand, GaoJian 1 Well natural oil sand was used developing ISC physical simulation experiment. The combustion characteristic was researched, and combustion index such as ignition temperature, air flux, oxygen use factor, apparent H/C atomic ratio was analyzed, combustion front driving rate about different block crude oil was compared, and ISC displacement efficiency was predicted.
     Through scaled physical simulation experiments, temperature field development In the process of combustion drive and pattern of combustion district was researched, combustion sweep condition and displacement characteristics under the influence of different thickness was investigated, the production operation and control method that could be improved combustion sweep condition was attempted. in addition, A new chemical compound that could be reflected ISC mechanism was discovered in the experiment,which could be revealed reasons that crude oil viscosity upgraded and density decreased.
     The results of the paper could be provided assured basis for field test programming of Gao3-6-18 Block and Len 41Bolck and reasonable implementation of the scene.
引文
[1]刘永建,胡绍彬,闻守斌,等.地质催化稠油水热裂解反应可行性研究[J].2007,14(5):84-87.
    [2]刘永建,钟立国.水热裂解开采稠油技术研究的进展[J].燃料化学学报,2004,32(1):117-122.
    [3]刘喜林.难动用储量开发稠油开采技术[M].北京:石油工业出版社,2005.
    [4]张方礼,刘其成,刘宝良,等.稠油开发实验技术与应用[M].北京:石油工业出版社,2007.
    [5]刘其成,张勇,张鹰.多功能高温高压三维比例物理模拟试验装置[J].石油仪器,2006,20(1):17-20.
    [6]赵晓非,刘永建,范洪富,等.稠油的水热裂解可行性的研究[J].燃料化学学报,2002,30(4):381-385.
    [7]Zhang Fangli, Ma Desheng, Liu Qicheng, Zhang Yong. Physical Simulation test Study of Steam-Assisted Gravity Drainage with Combination of Straight Well and Horizontal Well (2006-647).The Proceedings of the Technical Sessions of the First World Heavy Oil Conference,2006 12-15th.Nov.2006 Beijing,China.China Modern Economic Publishing House.
    [8]Liu Qicheng, Ma Desheng, Liu Baoliang, Experiment study of formation variation in heavy oil thermal recovery (2006-649). The Proceedings of the Technical Sessions of the First World Heavy Oil Conference,2006 12-15th.Nov.2006 Beijing,China.China Modern Economic Publishing House.
    [9]Ma Chunhong,Wu xiaodong,Liu Qicheng,Gao Yiheng.An Experimental Research on the Flowage Characteristics of Super Heavy Oil in the Pipeline Transportation.The Second International Symposium on Multiphase, Non-Newtonian and Reacting Flows'04.2004: 473-477.
    [10]Xia T X, Greaves. M Thai-A'short-distance displace-ment'in situ combustion process for the recovery and upgrading of heavy oil. Transactions of the Institution of Chemical Engineers.2003, Part A,81:295-304.
    [11]Javier E. Sanmiguel, S.A. Mehta, An experimental study of controlled gas-phase combustion in porous media recovery of oil and gas.2001 Engineering Technology Conference on Energy(ETCE 2001), Part A, Houston, Texas,USA, February 5-7,2001.
    [12]钟立国,刘喜林,范洪富,等.稠油的水热裂解反应及其降粘机理[J].大庆石油学院学报,2002,26(3):95-98.
    [13]王弥康,张毅,黄善波,等.火烧油层热力采油[M].东营:石油大学出版社,1998.
    [14]关文龙,马德胜,梁金中,等.火驱储层区带特征实验研究[J].石油学报,2010,31(1):100-104.
    [15]牛嘉玉,刘尚奇,门存贵,等.稠油资源地质与开发利用[M].北京:科学出版社,2002:284-1289.
    [16]崔玉峰,杨德伟,陈玉丽,等.火烧油层热力采油过程的数值模拟[J].石油学报,2004,25(5):99-110.
    [17]蔡文斌,李友平,李淑兰,等.胜利油田火烧油层现场试验[J].特种油气藏,2007,14(3):88-90.
    [18]王世虎.水敏性稠油油藏火烧驱油机理研究[D].东营:中国石油大学(华东),2007.
    [19]关文龙,蔡文斌,王世虎,等.郑408块火烧油层物理模拟研究[J].石油大学学报(自然科学版),2005,29(5):58-61.
    [20]关文龙,王世虎,蔡文斌等.新型火烧油层物理模型的研制与应用[J].石油仪器,2005,19(4):5-7.
    [21]Guan Wenlong,Wu Shuhong,Wang Shihu,et al. Physical simulation of in-situ combustion of sensitive heavy oil reservoir [R]. SPE110374,2007.
    [22]雷占祥,蒋海岩,张琪,等.火烧油层传热特性室内实验研究[J].油气地质与采收率,2006,13(6):86-88.
    [23]李少池,沈燮泉,王艳辉.火烧油层物理模拟的研究[J].石油勘探与开发,1997,22(2):73-79.
    [24]张毅,谢志勤,王弥康,等.预测火烧油层开发参数的工程计算法[J].油气地质与采收率,2001,8(1)::48-50.
    [25]李迎春,邱国清,袁明琦,等.乐安油田南区火烧驱油提高采收率试验[J].油气地质与采收率,2002,9(4):72-74.
    [26]关文龙,王世虎,曹钧合,等.郑408块火驱物理模拟结果与模型解析解差异分析[J].油气地质与采收率,2006,13(1):87-89.
    [27]赵东伟,蒋海岩,张琪.火烧油层干式燃烧物理模拟研究[J].石油钻采工艺,2005,27(1):36-39.
    [28]Mandel Brot B B,Wallis J R. Some long-run p roperties of geo-physical records[J]. Water Resource Research,1969,5(2):321-340.
    [29]刘岩.砂砾油层的引燃与燃烧特性的实验研究[D].南京:东南大学,2003.
    [30]杨德伟,王世虎,王弥康,等.火烧油层的室内实验研究[J].石油大学学报(自然科学版),2003,27(2):51-54.
    [31]BURGER J G Laboratory research on wet combustion[J]. Journal of Petroleum Technology,1993,25(10):1130-1136.
    [32]蒋海岩,张琪,袁士宝,等.火烧油层干式燃烧数值模拟及参数敏感性分析[J].石油大学学报(自然科学版),2005,29(5):67-70.
    [33]GRABOWSKI Janusz W,VINSOME Paul K, L IN Ran C, et al. A fully implicit general purpose finite-difference thermal model for in situ combustion and steam[R]. SPE 396, 1979.
    [34]周校平,张晓男.燃烧理论基础[M].上海:上海交通大学出版社,2001.
    [35]L IN C Y,CHEN W H,CULHAM W E.New kinetic models for thermal cracking of crude oils in in-situ combustion processes[R].SPE 13074,1987.
    [36]ONYEKONWU M O,PANDE K, RAMEY HJ,et al.Experimental and simulation studies of laboratory in-situ combustion recovery[R].SPE 15090,1986.
    [37]姜汉桥,姚军,姜瑞忠.油藏工程原理与方法[M].东营:石油大学出版社,2000.
    [38]杜殿发,姚军.乐安油田注汽后火烧油层开发参数敏感性研究[J].石油大学学报(自然科学版),2003,27(2):47-50.
    [39]蔡文斌,李友平,李淑兰.火烧油层技术在胜利油田的应用[J].石油钻探技术,2004,32(2):53-55.
    [40]陈军斌,肖述琴,周芳德,等.火烧油层驱油特征的参数敏感性分析[J].应用力学学报,2003,20(1):18-23.
    [41](苏)10.п.日尔托夫.油田开发[M].北京:石油工业出版社,1992.
    [42]张崇甫.国外火烧油层采油概述[J].采油工艺情报,1988,(4):1-35.
    [43]何祖荣.火烧油层专题调研[J].石油勘探开发情报,1992,(4):80-89.
    [44]王艳辉,陈亚平,李少池.火烧驱油特征的实验研究[J].石油勘探与开发,2000,27(1):69-71.
    [45]龚希堂译.各种燃烧法的特征——油层动态和采收率[J].国外油田工程,1994,10(1):20-24.
    [46]史元正译.火驱的数值模拟研究(一)[J].江汉石油学院情报,1989,(2):128-134.
    [47]史元正,刘立力译.火驱的数值模拟研究(二)[J].江汉石油学院情报,1991,(2):54-65.
    [48]张蕙兰.火烧油层新方法的实验和数值模拟[J].世界石油科学,1997,(3):48-55.
    [49]Taber J.J. & Martin F.D. Technical Screening Guides for the Enhanced Recovery of Oil.SPE 12069,1983.
    [50]Taber J.J, etc.EOR Screening Criteria Revisited.SPE/DOE 35385,1996.
    [51]White P.D.In-situ combustion appraisal and states. J.P.T.Nov,1985.
    [52]Chu.c.A study of fireflood field prohects.J.P.T.Feb,1977.
    [53]Dietz D.N & Weijdema J.Wet and partially queuched combustion.J.P.T.Apr,1968.
    [54]Moore R.D.New strategies for in-situ combustion.J.C.P.T.Dec,1993.
    [55]Craig F.F. & parish D.R.A multipilot evaluation of the COFCAW process. J.P.T.July,1974.
    [56]Dietz D.N.Wet Underground Combustion State of the Art. J.P. T.May,1970.
    [57]Poettmann F.H.In-situ combustion:a current appraisal,World Oil.Apr.&May 1964:124-128 & 95-98.
    [58]Tadema H.J.& Weijdema J. Spontaneous ignition of oil sands. O.G..J.Dec,14,1970.
    [59]Burger J.Spontaneous Ignition in an Oil Reservoir.S.P.E.J.Apr,1976:73-81.
    [60]Nelson T.W. & McNeil J.s.How to Engineer an in-situ combustion Project.O.G.J. June 5, 161.
    [61]Thomas G.W.A Study of Forward Combustion in a Radial System Bounded by Permeable Media.J.P.T.Oct,1963:1145-1149.
    [62]Chu C.Two-dimensional Analysis of a Radial Heat Wave. J.P.T. Oct,1963:1137-1144.
    [63]Gottfried B.S.A Mathematical Model of Thermal Oil Recovery in Linear Systems.S.P.E.J. Vol5,1965:196-210.
    [64]Kuo C.H.A Convective Heat Transfer Model for Underground Combustion.S.P.E.J. Dec, 1968.
    [65]Smith J.T. & Farouq Ali S.M.Simulation of In-situ Combustion in a Two-dimensional System.SPE3594 Oct,1971.
    [66]Grabowski J.W, et al.A Fully Implicit General Purpose Finite Difference Thermal Model for In-situ Combustion and Steam.SPE 8396, Sept,1979.
    [67]Crookston R.B,et al.A Numerical Simulation Model for Thermal Recovery Process.S.P.E.J.Vol19,1979:37-58.
    [68]Youngren G..K.Development and Appellation of an In-situ Combustion reservoir Simulator.S.P.E.J.Vol20,1980:39-51.
    [69]Coats K.H.In-situ Combustion Model.S.P.E.J.Dec,1980:533-544.
    [70]Smith F.W.Experimental and Numerical Simulation Studies of the Wet Combustion Recovery Process.J.C.P.T. July & Sept1973:44-54.
    [71]Parrish D.R et al.Laboratory Study of a Combination of Forward Combustion and Water Flooding the COFCAW Process.J.P.T. June,1969:753-761.
    [72]Farouq Ali S.M.Multiphase, Multidimensional simulation of In-situ Combustion.SPE 6898.
    [73]Farouq Ali S.M.A Current Appraisal of In-situ Combustion Field Tests.J.P.T. Apr, 1972:477-786.
    [74]Oganov K.A.Fundamentals of Thermal Stimulation of Oil Reservoirs.Nedra Press. Moscow,1967.
    [75]Chu C.State-of-the-art Review of Fireflood Field Projects.J.P.T.Jan,1982:19-36.
    [76]Showalter W.E.Combustion-drive Tests.S.P.E.J March,1963:53-58.
    [77]Sat man A. et al. In-situ Combustion Models for the Steam Plateau and for Field wide Oil recovery. DOE/ET/12056.
    [78]Gates C.F. & Ramey H.J.A Method for Engineering in-situ Combustion Oil Recovery Projects.J.P.T. Feb,1980:285-294.
    [79]Geffen T.M. Oil Production to Expect from Know Technology.O.G.J.May,1973:66-76.
    [80]Wilson L.A & Root P.J.Cost Comparison of Reservoir Heating Using Steam and Air. J.P.T. Feb,1966:233-239.
    [81]Simm C.N.Improved Firefloods May Cut Steam Advantages.World Oil. March,1972: 59-62.
    [82]Terwilliger P.L.Fireflood of the P2-3 Sand Reservoir in the Mega Field of Eastern Venezuela. J.P.TJan,1975:9-14.
    [83]Gates C.F & Holmes B.G. Thermal Well Completions and Operation. Paper Presented at the Seventh World Pet.Cong, Mexico city,1967.
    [84]Wolcott,E.R.Method of Increasing the Yield of Oil Wells.U.S.Patent NO.1457479.
    [85]White P.D. & Moss J.T. High Temperature Thermal Techniques for Stimulating Oil Recovery.J.P.T. Vol17:1007-1011.
    [86]Meldau R.F.Gas-steam Injection in Heavy Oil Wells. SPE8911.
    [87]Moore T.V.U.S.Patent 208519.
    [88]Moss J.T. & Cady G.V.Laboratory investigation of the Oxygen Combustion Process for Heavy Oil Recovery.SPE10706.
    [89]Howard J.W. Enhanced Oil Recovery through Oxygen-enriched in-situ Combustion.Test results from the Forest Hill Field in Texas.J.P.T. Vol35:1061-1070.
    [90]Fairfield W.H & White P.D.Lloyd Minster Fireflood Performance,Modifications,Promise good Recovers.O.G.J Feb,1982.
    [91]Marjerrison D.M & Fassihj M.R.Performance of Morgan Pressure Cycling In-situ Combustion.SPE/DOE27793.
    [92]Thornton B.Horizontal Well Cyclic Combustion.Wabasha Air in Injection Pilot.J.C.P.T NOV.1996 Vol35(9):40-44.
    [93]Carrigy M.A.Thermal Recovery from Tar Sands.J.P.T. Dec,1983:2149-2157.
    [94]Huffman G.A.Pressure Maintenance by In-situ Combustion,West Heidelberg Unit.Jasper County.Mississippi.J.P.T. Oct,1983:1877-1883.
    [95]Gates C.F & Sklar I.Combustion as A Primary Recovery Process-Midway Sunset Field.J.P.T. Aug,1971:981-986.
    [96]Duncan G.Enhanced Recovery Engineering---Combustion Processes.World Oil.Jan, 1996:65-72.
    [97]Farouq Ali S.M.The Promise and Problems of Enhanced Oil Recovery Methods.J.C.P.T. Sept,1996:57-63.
    [98]Greaves M.Horizontal Producer wells in In-situ Combustion Processes.J.C.P.T. April, 1993.
    [99]Vossoughi S.Automation of an In-situ Combustion Tube and Study of the Effect of Clay on the in-situ Combustion process.SPE reprint series No.7"Thermal Recovery Processes" 1985 edition Published by the S.P.E:299-308.
    [100]Hall am R.J.Thermal Recovery of Bitumen at Wolf lake.SPE R.E. May 1989:178-186.
    [101]Binder G..G.Scaler-Model Test of In-situ Combustion in Mossive Unconsolidated Sands.Proc. Seventh World Pet. Cong. Maxico City,1967:477-485.
    [102]Garon A.M. A Laboratory Investigation of Sweep during Oxygen and Air Fireflooding. SPERE,1986,11.
    [103]马代鑫,刘慧卿,邵连鹏.火烧油层注气井试井分析理论模型[J].油气地质与采收率.2006,13(5):72-74.
    [104]刘安源,刘中良.含油多孔介质热气流点火临界着火温度的理论研究[J].石油大学学报(自然科学版).2000,24(2):76-78.
    [105]布而热J,苏赫尤P,贡巴努尔M.热力法提高石油采收率[M].杨承志等译.北京:石油工业出版社,1991.
    [106]刘慧卿,范玉平,赵东伟等.热力采油技术原理与方法[M].东营:石油大学出版社,2000.
    [107]Stehfest H.Numerical inverse of Laplace transforms [J].Communication of the ACM, 1970,13 (1):47-49.
    [108]Stanislav J F, Easwaran C V, Kokal S L. Interpretation of thermal well testing[R]. SPE 16747,1989.
    [109]王艳辉,朱志宏,李桂霞.克拉玛依油田火驱开发参数的数值模拟研究[J].油气采收率技术,2000,7(1):10-12.
    [110]张毅.火烧油层湿式燃烧的室内研究[J].西安石油学院学报(自然科学版),2000,15(5):34-36.
    [111]胡士清.火烧油层技术在庙5块低渗透稠油油藏中的应用[J].特种油气藏,1998,5(4):33-37.
    [112]周燕,李迎春.敏感性稠油油藏火烧驱油油藏工程设计——以王庄-宁海地区郑408块为例[J].海洋石油,2004,24(1):67-70.
    [113]余刚,刘岩.沙砾油层的着火与燃烧特性[J].上海交通大学学报,2004,38(10):1711-1714.
    [114]霍广荣,李献民,张广卿.胜利油田稠油油藏热力开采技术[M].北京:石油工业出版社,1999:442-454.
    [115]Bagci S, Kok M V. In-situ combust ion laboratory studies of Turkish heavy oil reservoirs[J]. Fuel Processing Technology,2001,74 (2):65-79.
    [116]唐纳森EC,奇尼加赖恩G V,晏T F.高石油采收率(第二分册工艺过程和应用) [M].闫熙照,张卫国译.北京:石油工业出版社,1992:278-294.
    [117]蔡文斌,谢志勤.胜利王庄油田火烧驱油试验研究[J].石油天然气学报(江汉石油学院学报),2005,27(2):397-398.
    [118]杨玉梅.套保稠油油田火烧油层可行性分析[J].特种油气藏,2006,13(2):53-55.
    [119]董晓玲,钟显彪,谷武,等.套保稠油油藏出砂冷采实践与认识[J].特种油气藏,2004,11(增刊):84-86.
    [120]谢志勤,贾庆升,蔡文斌,等.火烧驱油物理模型的研究及应用[J].石油机械,2002,30(8).
    [121]PENBERTHY W L, RAMEY H J. Design and Operation of Laboratory Combustion Tubes[R],SPE1290,1966.
    [122]COATS R, LORIMER S,IVORYJ. Experimental and Numerical Simulations of a Novel Top Down In-Situ Combustion Process. SPE 30295,1995.
    [123]Lapene A. & Castanier L.M.Effects of Water on Kinetics of Wet In-situ Combustion. SPE121180.
    [124]Xiaomeng Yang & Ian D. Gates. Design of Hybrid Steam-In Situ Combustion Bitumen Recovery Processes. Natural Resources Research,V6118,No.3,sept,2009.
    [125]戴树高,崔波,祈亚玲,等.高粘度稠油开采技术的国内外现状[J].化工技术经济,2004,22(11):21-25.
    [126]韩显卿.提高石油采收率基础[M].北京:石油工业出版社,1993,(13)157-160.
    [127]帕拉茨(美).热力采油[M].北京:石油工业出版社,1989.
    [128]P.D.怀特,J.T.莫斯.热采方法[M].北京:石油工业出版社,1988.
    [129]博贝格(美)著.辽河石油勘探局译.热力采油工程方法[M].北京:石油工业出版社,1980.
    [130]张敬华,杨双虎,王庆林.火烧油层采油[M].北京:石油工业出版社,2000.
    [131]巴特勒(加)著,王秉璋等译.重油和沥青的热力开采方法[M].北京:石油工业出版社,1994.
    [132]M. Greaves.高益桁,张冰,马雁编译.开采稠油并原地提高原油品位的新技术[J].特种油气藏,2002,9(1):75-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700