用户名: 密码: 验证码:
非衍射超声声源的仿真与实现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学超声由于具有实时性强、无创伤、无辐射和低成本等优点,被广泛应用于临床医学诊断中。传统的超声成像系统主要采用动态聚焦来提高成像质量,但是无论是发射聚焦还是接收聚焦,聚焦范围只能集中在一个很小的区域,获取一幅图像需要多次发射和接收聚焦,大大降低了超声的成像速度。非衍射波是一种能够把能量局限在一定空间和时间中的特殊超声波。理论上,它可以传播到无限远而不会产生发散。在实际应用中,非衍射波仍然可以保持在较深的范围内不发散。由于它是一种具有天然聚焦性的超声波,因此不需要像传统超声设备那样采用多次复杂的聚焦过程,如果将该特性应用到超声成像中将大大提高超声成像的速度,理论上可达3750帧/秒。
     本论文首先以最典型的非衍射波——X波(X-wave)作为研究对象,将非衍射波应用到超声成像系统。但由于X波的成像设备系统复杂度高,尤其是需要对每个阵元施加复杂的激励信号,导致其硬件成本高昂,影响了它的商业应用。为了降低产生X波的制造成本,本论文采用简单且易于实现的三角波或矩形波代替每个阵元上复杂的激励信号,通过L2范数来确定三角波和矩形波的参数,最终模拟产生X波。该方法为解决X波成本问题提供了新的思路,其优点为简便、有效,并大大减少了硬件及实现电路的复杂度,目前存在的主要问题是拟合精度有待进一步提高。
     其次,为了进一步提高拟合激励信号的精度,作者选择使用多个矩形波和三角波来近似拟合激励信号,并通过遗传算法优化这些三角波和矩形波所对应的系数。此方法对单个简单波拟合一个圆环传感器上的激励信号进行改进,通过遗传算法优化拟合结果,提高了声场拟合的质量,为非衍射波的商业应用奠定了基础。
     再次,对于X波声场的仿真计算,论文分别介绍了声场计算的线性理论和基于该理论的声场仿真软件Field II。Field II目前为医学超声领域应用最为广泛、影响最大的仿真软件,但是它并不能直接用来对圆环传感器进行声场仿真计算。传感器声场的分布主要由其激励信号和空间脉冲响应所决定,本论文对空间脉冲响应的理论进行分析和推导,提出一种专门针对圆环形传感器的空间脉冲响应计算的算法,并基于该算法计算的空间脉冲响应结果完成了整个探头声场分布的仿真计算。为了比较不同算法的拟合效果,本文从不同角度来设计声场仿真实验。实验结果表明无论是从轴向距离还是径向距离的角度进行考察,采用多个矩形波和三角波叠加拟合的激励信号所产生的声场结果与理论值是最接近的,证明了本文方案的优越性。
     最后,使用直接数字频率合成(Direct Digital Synthesizer,DDS)技术构造X波激励信号发生器,由多个三角波和矩形波叠加产生X波的激励信号,并从系统硬件和软件两个方面探讨了信号发生器的产生过程。信号发生器的系统硬件主要采用现场可编程门阵列(Field Programmable GateArray,FPGA)芯片实现,可获得频率、幅值可调的函数波形输出,系统软件通过对每个输入的矩形波和三角波幅值、时间进行量化和采样等操作实现多个三角波和矩形波的叠加。在硬件系统中增加矩形波和三角波个数只需要增加D/A转换器的个数,因此所增加的成本不高,但能有效地提高了拟合结果精度。
     本文通过对X波为代表的非衍射波的深入研究,使用矩形波和三角波的组合拟合复杂的激励信号,并根据拟合激励信号得到的声场仿真结果证明该方法的正确性;通过构造X波的激励信号发生器,从硬件上讨论该算法在实际应用中的可行性,并证明该技术能有效降低实现非衍射波的硬件成本,为将非衍射波引入超声成像,为医学高帧率成像(High Frame Rate,HFR)系统的商业应用奠定了基础。
Medical ultrasound imaging is widely used in clinical medical diagnosis because ofits advantages such as real-time imaging, non-invasive, no radiation and low cost etc. Thetraditional ultrasonic imaging utilizes dynamic-focusing to improve the quality of image;however both emitting-focusing and receiving-focusing can only be focused in a smallarea. Therefore, it requires multi-emitting and receiving focusing which greatly reducesthe frame rate of imaging. Limited diffracting waves are a kind of special ultrasonic wavewhich can curb energy in limited space and/or period time. Theoretically, it can propagateto an infinite distance in theory; experiment showed that they have a large depth of fieldeven produced with finite aperture and energy. The natural focus characteristic of Limiteddiffracting waves means they can avoid the multi-focusing of traditional ultrasound, whichgreatly increase the speed of imaging and frame rate. Theoretically, the high frame rateimaging system based on limited diffracting waves can be as high as3750frames persecond.
     The dissertation studies on the theory characteristics of X-wave which is consideredas the most typical kind of limited diffracting waves,in order to employ limited diffractingwaves theory into practice application. The generation of X-wave ultrasonic fields needs acomplex and expensive technology. In order to decrease the high cost, a new approach wasproposed by approximating the excitation driving pulse with rectangular or triangulardriving pulse and chose the pulses according to the optimization result from L2curvecriterion. The advantages of this method include simple, efficient and reducing thecomplexity of hardware implementation. The main challenge of the method is to increasethe accuracy of X-wave approximation.
     Secondly, in order to increase the accuracy of fitting driving signal,a new methodcalled multiple simple driving fitting (MSDF) is proposed, which is based on the approximation of emitting signal on a ring. It uses a combination of multiple rectangularand triangle to produce the original signal. The parameters of each simple driving waveare determined through genetic algorithm. Simulation results showed that our method cangreatly improve the precision of fitting and establishe a solid foundation for commercialapplication of the technology.
     Thirdly, acoustic field simulation is an important step to valid the feasibility of thealgorithm. The disseration introduced the theory of linear acoustic system and simulationsoftware-Field II. Field II is the most widely used field simulation software in ultrasonicsociety. However, it cannot be directly used in X-wave simulation for the complexity oftraducer combination. To solve this problem, an algorithm to calculate acoustic fieldaccording to the linear system theory is developped. The field pressure can be computedby the convolution between the driving velocity and spatial impulse response between thefield point and transducer. In the simulation, the MSDF method with others methods werecompared,simulation results showed that the MSDF is closest to theoretical values invarious aspects and suitable for its application.
     Finally, a signal generator of X-wave driving pulse based on the principle of DDS(Direct Digital Synthesizer) technology were designed,and the signal generator produceprocesses from the aspect of hardware and software were discussed. Hardware systembased on FPGA (Field Programmable Gate Array) chip mainly realizes the frequency,amplitude adjustable function waveform output. Software system combines themulti-signals by adjusting time and amplitude of different rectangular and triangle drivingpulse. Analysis shows that the increasing of numbers of simple driving waves caneffectively enhance the fitting precision of the results. That means the hardware systemonly need to increase the number of D/A converter which is not expensive to improve theperformance.
     In conclusion, in this work we focused on the theory, simulation, and implementationof X-wave which is considered as most prospective high frame imaging technology. The author proposes an algorithm to simply the implementation of X-wave by using simplewaves to fit the original complex excitation signal,and it can greatly reduce the cost ofgenerating limited diffracting waves. In order to verify the feasibility of the new algorithm,we designed a new the sound field calculation method based on spatial impulse response.The new simulation algorithm can be used to calculate the annular sensor array acousticfield simulation. Further, this dissertation studies the hardware implementation ofultrasonic system which be expected generate the real X-wave emitting signal by usingDDS technology. All above works lay a valuable theoretical and practical foundation forthe future application of limited diffracting waves used in high frame rate imagingultrasound system.
引文
[1]李鹏.医学超声成像中若干新技术的研究与实现:[博士学位论文],华中科技大学,2009.
    [2]彭虎.超声成像算法导论(第1版).合肥:中国科技大学出版社,2008.10.
    [3] J. A. Stratton, Electromagnetic Theory. New York and London: McGraw~Hill BookCompany,1941.
    [4] Jianyu Lu, Jiqi Cheng, and Jing Wang. High frame rate imaging system for limiteddiffraction array beam imaging with square-wave aperture weightings. IEEETransactions on Ultrasonics, Ferroelectrics, and Frequency Control, October2006,vol.53, no.10, pp.1796~1812.
    [5] Jiqi Cheng, Jianyu Lu. Extended high frame rate imaging method with limiteddiffraction beams. IEEE Transactions on Ultrasonics, Ferroelectrics, and FrequencyControl. May2006, vol.53, no.5, pp.880~899.
    [6] J. N. Brittingham. Focus wave modes in homogeneous Maxwell’s equations:transverse electric mode. J. Appl. Phys.1983, vol54, no.3, pp.1179~1189.
    [7] R. W. Ziolkowski. Exact solutions of the wave equation with complex sourcelocations. J. Math. Phys, April,1985, vol.26, no.4, pp.861~863.
    [8] R. W. Ziolkowski, D. K. Lewis, and B. D. Cook. Evidence of localized wavetransmission. Phys. Rev. Lett., Jan.9,1989, vol.62, no.2, pp.147~150.
    [9] A. M. Shaarawi, I. M. Besieris, and R. W. Ziolkowski. Localized energy pulse trainlaunched from an open, semi-infinite, circular waveguide. J. Appl. Phys.,1989, vol.65, no.2, pp.805~813.
    [10] I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski. A bidirectional travelingplane wave representation of exact solutions of the scalar wave equation. J. Math.Phys.,1989, vol.30, no.6, pp.1254~1269.
    [11] E. Heyman, B. Z. Steinberg, and L. B. Felsen. Spectral analysis of focus wavemodes. J. Opt. Soc. Am. A, Nov.,1987, vol.4, no.11, pp.2081~2091.
    [12] R. W. Ziolkowski. Localized transmission of electromagnetic energy. Phys. Rev. A.,Feb.15,1989, vol.39, no.4, pp.2005~2033.
    [13] J. V. Candy, R. W. Ziolkowski, and D. K. Lewis. Transient waves: reconstructionand processing. J. Acoust. Soc. Am., Nov.,1990, vol.88, no.5, pp.2248~2258.
    [14] J. V. Candy, R. W. Ziolkowski, and D. K. Lewis. Transient wave estimation: amulti-channel disconsolation application. J. Acoust. Soc. Am., Nov.,1990, vol.88,no.5, pp.2235~2247.
    [15] R. W. Stokowski and D. K. Lewis. Verification of the localized wave transmissioneffect. J. Appl. Phys., Dec.15,1990, vol.68, no.12, pp.6083~6086.
    [16] J. Durnin. Exact solutions for nondiffracting beams. The scalar theory. J. Opt. Soc.Am. A,1987, vol.4, no.4, pp.651~654.
    [17] J. Durnin, J. J. Miceli, and J. H. Eberly. Diffraction-free beams. Phys. Rev. Lett,April13,1987, vol.58, no.15, pp.1499~1501.
    [18] G. Indebetow. Nondiffracting optical fields: some remarks on their analysis andsynthesis. J. Opt. Soc. Am. Jan,1989, vol.6, no.1, pp.150~152.
    [19] F. Gori, G. Guattari, and C. Padovani. Model expansion for correlated Schell modelsources. Optics Commun, Nov.15,1987. vol.64, no.4, pp.311~316.
    [20] K. Uehara and H. Kikuchi. Generation of near diffraction free laser beams. Appl.Physics B,1989, vol.48, pp.125~129.
    [21] L. Vicari. Truncation of nondiffracting beams. Optics Commun, Mar.15,1989, vol.70, no.4, pp.263~266.
    [22] M. Zahid and M. S. Zubairy. Directionally of partially coherent Bessel~Gaussbeams. Optics Commun, April1,1989, vol.70, no.5, pp.361~364.
    [23] S. Y. Cai, A. Bhattacharjee and T. C. Marshall. Diffraction~free’ optical beams ininverse free electron laser acceleration. Nuclear Instruments and Methods in PhysicsResearch, Section A: Accelerators, Spectrometers, Detectors, and AssociatedEquipment, Oct,1988. vol.272, no.1-2, pp.481~484.
    [24] J. Ojeda Castaneda and A. Noyolalglesias. Nondiffracting wave fields in grin andfree~space. Microwave and optical technology letters, Dec,1990, vol.3, no.12, pp.430~433.
    [25] D. K. Hsu, F. J. Margetan, and D. O. Thompson. Bessel beam ultrasonic transducer:fabrication method and experimental results. Appl. Phys. Lett., Nov.13,1989, vol.55, no.20, pp.2066~2068.
    [26] J. A. Campbell and S. Soloway. Generation of a nondiffracting beam with frequencyindependent beam width. J. Acoust. Soc. Am., Nov,1990, vol.88, no.5, pp.2467~2477.
    [27] Jianyu Lu and J. F. Greenleaf. A computational and experimental study ofnondiffracting transducer for medical ultrasound. Ultrasonic Imaging, April,1990,vol.12, no.2, pp.146~147.
    [28] Jianyu Lu and J. F. Greenleaf. Effect on nondiffracting beam of deleting centralelements of annular array transducer. Ultrasonic Imaging, April,1991, vol.13, no.2,pp.203~204.
    [29] Desheng Ding and Jianyu Lu. Second harmonic generation of the nth-order Besselbeams. Physical Review E, February,2000, vol.61, no.2, pp.2038~2041.
    [30] Desheng Ding and Jianyu Lu. Higher order harmonics of limited diffraction Besselbeams. Journal of Acoustical Society of America, March,2000, vol.107, no.3, pp.1212~1214.
    [31] Paul Fox, Jiqi Cheng, and Jianyu Lu. Fourier Bessel field calculation and tuning of aCW annular array. IEEE Transactions on Ultrasonic, Ferroelectrics, and FrequencyControl, September,2002, vol.49, no.9, pp.1179~1190.
    [32] Paul D. Fox, Jiqi Cheng, and Jianyu Lu. Theory and experiment of Fourier Besselfield calculation and tuning of a PW annular array. Journal of Acoustical Society ofAmerica, May,2003, vol.113, no.5, pp.2412~2423.
    [33] Paul D. Fox, Jiqi Cheng, and Jianyu Lu. Ultrasound pulse modeling and tuning withFourier Bessel method for an annular array. Ultrasonic Imaging, October,2000, vol.22, no.4, pp.257~260.
    [34] Jianyu Lu. Designing limited diffraction beams. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control, January,1997, vol.44, no.1, pp.181~193.
    [35] Jianyu Lu, J. F. Greenleaf. Nondiffracting X waves exact solutions to free spacescalar wave equation and their finite aperture realizations. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control, January,1992, vol.39, no.1, pp.19~31.
    [36] Jianyu Lu, Hehong Zou and J. F. Greenleaf. A new approach to obtain limiteddiffraction beams. IEEE Transactions on Ultrasonics, Ferroelectrics, and FrequencyControl, September,1995, vol.42, no.5, pp.850~853.
    [37] Janne Salo, Ari T Friberg and Martti M. Salomaa. Orthogonal X waves. Journal ofPhysics A: Mathematical and General,2001, vol.34, pp.9319~9327.
    [38] Hu Peng and Jianyu Lu. Constructions of high frame rate images with Fouriertransform. Journal of Acoustical Society of America,2002, vol.111, no.5, pt.2, pp.2385~2386.
    [39] Jianyu Lu. Construction of limited diffraction beams with Bessel bases. in1995IEEE Ultrasonics Symposium Proceedings,95CH35844,1995, vol.2, pp.1393~1397.
    [40] Jianyu Lu. Designing limited diffraction beams. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control, January,1997, vol.44, no.1, pp.181~193.
    [41] Jianyu Lu and J. F. Greenleaf. Ultrasonic nondiffracting transducer for medicalimaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,September,1990, vol.37, no.5, pp.438~447.
    [42] Jianyu Lu and J. F. Greenleaf. Nondiffracting X waves exact solutions tofree-space scalar wave equation and their finite aperture realizations. IEEETransactions on Ultrasonics, Ferroelectrics, and Frequency Control, January,1992,vol.39, no.1, pp.19~31.
    [43] J. A. Campbell and S. Soloway. Generation of a nondiffracting beam with frequencyindependent beam width. J. Acoust. Soc. Am, Nov.,1990, vol.88, no.5, pp.2467~2477.
    [44] M. S. Patterson and F. S. Foster. Acoustic fields of conical radiators. IEEE Trans.Sonics Ultrasonic., March,1982, SU29, no.2, pp.83~92.
    [45] I. Besieris, M. Abdel-Rahman, A. Shaarawi and et al. Two fundamentalrepresentations of localized pulse solutions to the scalar wave equation. Prog.Electromagn.1998, Res.(PIER),19, pp.1~48.
    [46] Peeter Saari and Kaido Reivelt. Generation and classification of localized waves byLorentz transformations in Fourier space. Physical Review (2004), E,69,036612.
    [47] Jianyu Lu and Anjun Liu. An X-wave transforms. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control, November,2000, vol.47, no.6, pp.1472~1481.
    [48] Jianyu Lu and Anjun Liu. Representation of solutions to wave equation with Xwaves. Ultrasonic Imaging, January,1999, vol.21, no.1, pp.70.
    [49] R. Bracewell. The Fourier Transform and its Applications. New York: McGraw-Hill,1965, Ch.4and6.
    [50] Jianyu Lu and J. F. Greenleaf. Ultrasonic nondiffracting transducer. January21,1992, United States Patent, no.5081995.
    [51] Jianyu Lu and J. F. Greenleaf. Ultrasonic nondiffracting transducer for medicalimaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,September,1990, vol.37, no.5, pp.438~447.
    [52] Michel Zamboni-Rached. Stationary optical wave fields with arbitrary longitudinalshape by superposing equal frequency Bessel beams: Frozen Waves. Optics Express,August23,2004, vol.12, no.17, pp.4001~4006.
    [53] Michel Zamboni-Rached, Erasmus Recami, and Hugo E. Hernández Figueroa.Theory of frozen waves: modeling the shape of stationary wave fields. J. Opt. Soc.Am. A, November2005, vol.22, no.11, pp.2465~2475.
    [54] V. Garcés Chávez, D. McGloin, H. Melville, and et al. Simultaneousmicromanipulation in multiple planes using a self-reconstructing light beam. Nature,September12,2002, vol.419, pp.145~147.
    [55]李雅琴,花少炎,丁明跃等.一种新的X-wave仿真方法.北京生物医学工程(已录用).
    [56] Yaqin Li, MingYue Ding, Shaoyan Hua and et al. Generation of limited-diffractionwave by approximating theoretical X-waves with simple driving. SPIE MedicalImaging2012: Ultrasonic Imaging, Tomography, and Therapy.5February2012, v8320, pp.135~139.
    [57] Yaqin Li, MingYue Ding, Shaoyan Hua and et al. A new approach to generation of0-order X-waves by simple driving pulses. International Journal for Light andElectron Optics.(Accepted).
    [58] Jianyu Lu.2D and3D high frame rate imaging with limited diffraction beams. IEEETransactions on Ultrasonics, Ferroelectrics, and Frequency Control, July,1997,vol.44, no.4, pp.839~856.
    [59] Jianyu Lu. Experimental study of high frame rate imaging with limited diffractionbeams. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,January,1998, vol.45, no.1, pp.84~97.
    [60] Hu Peng and Jianyu Lu. High frame rate2D and3D imaging with a curved orcylindrical array. in2002IEEE Ultrasonics Symposium Proceedings,02CH37388,2002,vol.2, pp.1725~1728.
    [61] Hu Peng and Jianyu Lu. Constructions of high frame rate images with Fouriertransform. Journal of Acoustical Society of America,2002, vol.111, no.5, pt.2, pp.2385~2386.
    [62] Jianyu Lu and Shiping He. Reducing number of elements of transducer arrays inFourier image construction method. in1998IEEE Ultrasonics SymposiumProceedings,98CH36102, vol.2, pp.1619~1622,1998(ISSN:1051~0117).
    [63] Jianyu Lu and Shiping He. Effects of phase aberration on high frame rate imaging.Ultrasound in Medicine and Biology,2000,vol.26, no.1, pp.143~152.
    [64] Jianyu Lu. Assessment of phase aberration effects on high frame rate imaging.Ultrasonic Imaging, January,1997, vol.19, no.1, pp.53.
    [65] Jianyu Lu. A study of signal to noise ratio of the Fourier method for construction ofhigh frame rate images. in Acoustical Imaging,2000, vol.24, Hua Lee, Editor, pp.401~405.
    [66] Jianyu Lu and John L. Waugaman. Development of a linear power amplifier forhigh frame rate imaging system. in2004IEEE Ultrasonics Symposium Proceedings,04CH37553C,2004, vol.2, pp.1413~1416.
    [67] Jianyu Lu. A multimedia example. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control, September,2003, vol.50, no.9, pp.1078.
    [68] Khalil F. Dajani, Hugh G. Beebe, and Jianyu Lu. Ultrasonographic volumetry ofatherosclerotic plaques. Journal of Vascular Technology. June2002, vol.26, no.2,pp. pp.89~97.
    [69] Khalil F. Dajani, Robert K. Vincent, Jianyu Lu, et al. Multi-frequency ultrasoundimaging for carotid plaque characterization: a feasibility study, Ultrasonic Imaging,October,1999, vol.21, no.4, pp.292~293.
    [70] Jianyu Lu and J. F. Greenleaf. Evaluation of a nondiffracting transducer for tissuecharacterization. in1990IEEE Ultrasonics Symposium Proceedings,90CH2938~9,1990, vol.2, pp.795~798.
    [71] Jianyu Lu. A computational study for synthetic aperture diffraction tomography:Interpolation versus interpolation free. in Acoustical Imaging,1988, vol.16, L. W.Kessler, Editor, pp.421~443.
    [72] Jianyu Lu and Yu Wei. An improvement of the Fourier domain interpolationreconstruction algorithms for synthetic aperture diffraction tomography. AppliedAcoustics,(Chinese quarterly),1989, vol.8, no.1, pp.1~5.
    [73] Jianyu Lu and Yu Wei. A study of the Fourier domain interpolation reconstructionalgorithms for synthetic aperture diffraction tomography. Chinese Journal ofMedical Imaging Technology,1988, vol.4, no.1, pp.47~51.
    [74] Jianyu Lu and Yu Wei. Experiments for a new quantitative reflection imagingmethod. Physics in Medicine and Biology,1988, vol.33, Supplement1, pp.291.
    [75] Jianyu Lu. Improving accuracy of transverse velocity measurement with a newlimited diffraction beam. in1996IEEE Ultrasonics Symposium Proceedings,96CH35993,1996, vol.2, pp.1255~1260.
    [76] Shiping He, Khalil F, Dajani and Jianyu Lu. Doppler beam steering for blood flowvelocity vector imaging. in Acoustical Imaging,2000, vol.25, M. Halliwell and P. N.T. Wells, Editors, pp.443~448.
    [77] Jianyu Lu, Shiping He, and Khalil F. Dajani. Ultrasound storage correlator arraysfor real-time blood flow velocity vector imaging. in Acoustical Imaging,2000, vol.25, M. Halliwell and P. N. T. Wells, Editors, pp.427~436.
    [78] Jianyu Lu, Xiaoliang Xu, Hehong Zou, et al. Application of Bessel beam forDoppler velocity estimation. IEEE Transactions on Ultrasonics, Ferroelectrics, andFrequency Control, July,1995, vol.42, no.4, pp.649~662.
    [79] Jianyu Lu, XiaoLiang Xu, Hehong Zou, et al. Modeling and experiment of Dopplershift and its spectral broadening for a Bessel beam, Ultrasonic Imaging, January,1994, vol.16, no.1, pp.53~54.
    [80] Jianyu Lu and J. F. Greenleaf. Producing deep depth of field and depth~independentresolution in NDE with limited diffraction beams. Ultrasonic Imaging, April,1993,vol.15, no.2, pp.134~149.
    [81] Jianyu Lu and J. F. Greenleaf. Nondestructive evaluation of materials with a Besseltransducer. Ultrasonic Imaging, April,1992, vol.14, no.2, pp.203~204.
    [82] Jianyu Lu, Jiqi Cheng, and Brent Cameron. Low sidelobe limited diffraction opticalcoherence tomography. Proceedings of SPIE,2002, vol.4619, pp.300~311.
    [83] Jianyu Lu and Shiping He. Optical X-waves communications. OpticsCommunications, March15,1999, vol.161, pp.187~192.
    [84] Jianyu Lu. High speed transmissions of images with limited diffraction beams. inAcoustical Imaging,1997, vol.23, S. Lees and L. A. Ferrari, Editors, pp.249~254.
    [85] Jianyu Lu and J. F. Greenleaf. A study of sidelobe reduction for limited diffractionbeams. in1993IEEE Ultrasonics Symposium Proceedings,93CH3301-9, vol.2, pp.1077~1082.
    [86] Shiping He and Jianyu Lu. Sidelobe reduction of limited diffraction beams withChebyshev aperture apodization. Journal of Acoustical Society of America, June,2000, vol.107, no.6, pp.3556~3559.
    [87] Jianyu Lu, Jiqi Cheng, and Hu Peng. Sidelobe reduction of images with codedlimited diffraction beams. in2001IEEE Ultrasonics Symposium Proceedings,2001,vol.2, pp.1565~1568.
    [88]王小平,曹立明.遗传算法理论.应用与软件实现,西安交通大学出版社,2002.
    [89] Holland J H.Outline for a logical theory of adaptive system.Journal of theAssociation for Computing Machinery,1962,9(3):297~314.
    [90] Hollstien R B.Artificial genetic adaption in computer control system.Ph.DDissertation,University of Michigan,1971.
    [91] Cavicchio D J.Representative adaptive Plans.Proceedings of the ACM1972Annual Conference,1972,l:60~70.
    [92] Holland J H.Adaptation in natural and artificial system:An introductory analysiswith applications to biology, control,and artificial intelligence.The University ofMichigan Press,1975; Cambridge, MIT Press,1992.
    [93] DeJong K. A. An analysis of the behavior of a class of genetic adaptivesystem.PhD Dissertation,University of Michigan,1975.
    [94] Brindle A.Genetic algorithm for function optimization.Ph D dissertation,University of Alberta, Edmonton,1981.
    [95] Goldberg D E. Genetic algorithm in search, optimization and machinelearning.Addison-Wesley Publishing Company,1982.
    [96] Davis,L.Handbook of genetic algorithms.Van Nostrand Reinhold, New York,1991.
    [97] Koza J R. Introduction to genetic Programming. Koza J R(ed).1994,21~42.
    [98]陈定君,周志强,刘积仁.遗传程序设计模式理论的新进展.计算机科学,1998,25(3):93~94.
    [99] G. E. Tupholme. Generation of acoustic pulses by baffled plane pistons.Mathematika,1969,16. pp.209~224.
    [100] P. R. Stepanishen. The time-dependent force and radiation impedance on a piston ina rigid infinite planar baffle. J. Acoust. Soc. Am.,1971,49:841~849.
    [101] P. R. Stepanishen. Transient radiation from pistons in an infinite planar baffle. J.Acoust. Soc.Am.1971,49. pp.1629~1638.
    [102] P. R. Stepanishen. Speed accuracy trade offs in computing spatial impulse responsesfor simulating medical ultrasound imaging. Journal of Computational Acoustics,2001,9(3). pp.731~744.
    [103] J. A. Jensen. A model for the propagation and scattering of ultrasound in tissue. J.Acoust. Soc.Am,1991a,89:182~191.
    [104] L. E. Kinsler, A. R. Frey, A. B. Coppens, et al. Fundamentals of Acoustics.JohnWiley&Sons, New York, third edition,1982.
    [105] J. A. Jensen and N. B. Svendsen. Calculation of pressure fields from arbitrarilyshaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason.,Ferroelec. Freq. Contr.,1992(39):262~267.
    [106] J. A. Jensen. Ultrasound fields from triangular apertures. J. Acoust. Soc. Am.,100(4):2049~2056,1996a.
    [107] W. H. Press, B. P. Flannery, S. A. Teukolsky, et al. Numerical receipes in C. The artof scientific computing. Cambridge University Press, Cambridge,1988.
    [108] J. A. Jensen. A new calculation procedure for spatial impulse responses inultrasound. J. Acoust. Soc. Am.,1999, pages3266~3274.
    [109] Yaqin Li, MingYue Ding, Shaoyan Hua and et al. A new approach of calcuatingSpatial Impulse Responses Based on Limited diffracting waves. ICBMI2011, pp.1~3.
    [110] Yaqin Li, MingYue Ding, Shaoyan Hua and et al. A Novel Algorithm of CalculatingSpatial Impulse Responses Based on X-wave. Journal of Convergence InformationTechnology (Accepted).
    [111] Gravey J F,and Bubitch D.An Exact Analysis of Number Controlled scillatorBased on Synthesizer. Proceedings of44th Annual Frquency Control Symposium,1990:511~521.
    [112] J.Vankka.Methods of Mapping from Phase to Sine Amplitude in Direct DigitalSynthesis.IEEE Proc.50th AFCS,1996:942~950.
    [113] Nicholas H T,Samueli Hand kim B.An Analysis of the output Spectrum of DirectDigital Frequency Synthesizer in the Presence of Phase AccumulatorTruncation.Proceedings of41st Annual Frequency Control Symposium,1987:495~502.
    [114] Nicholas HT,Samueli Hand kim B.The Optimization of Direct Digital FrequencySynthesizer Performance in the Presence of Finite Word Length Effects.IEEEProc.42nd STCS,1988:357~363.
    [115]成都电讯工程学院七系. LC滤波器和螺旋滤波器的设计.北京:人民邮电出版社,1978.
    [116]阿瑟.B.威廉斯.电子滤波器设计手册.北京:电子工业出版社,1986
    [117]黄文兰,迟鲲,周细.单片机应用系统的软件抗干扰技术.计算机应用.1994(1):20~22.
    [118]杨秀敏.单片机系统的硬件抗干扰技术[J].微处理机.1996,No,4:38~41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700