用户名: 密码: 验证码:
水下爆炸冲击问题的物质点法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开展水下爆炸以及结构在水下爆炸载荷作用下的动力响应研究在军事国防和民用建设领域均具有重要意义。水下爆炸及其结构的冲击响应研究是十分复杂的问题,它涉及爆轰物理学、冲击动力学、流固耦合、弹塑性动力学等诸多学科,对其进行理论分析和实验研究是一个巨大的挑战。近年来,随着计算机技术的不断提高以及各种数值方法的迅速发展,数值模拟已经成为水下爆炸问题研究领域中的重要研究手段。
     流场或结构的极大变形、运动物质交界面、多相介质耦合作用以及自由表面等特性存在于水下爆炸整个过程中,这使得采用传统基于网格的数值方法对水下爆炸问题进行研究成为一项非常困难的工作。物质点法(Material Point Method, MPM)是一种新型的无网格粒子算法,它结合了基于物质描述的拉格朗日方法和基于空间描述的欧拉方法二者的优点,在处理大变形时不存在基于网格的数值方法出现的网格畸变问题,而且物质点法能方便的跟踪材料的变形历史以及实现对物质界面的精确描述,这些优点使物质点法在冲击动力学诸多领域中得到了广泛应用。本文在前人研究的基础上,进一步发展了物质点算法,并将物质点法扩展到水下爆炸冲击研究领域中。
     推导了物质点法控制方程的空间以及时间离散格式,给出了物质点法显式积分算法,编写了基于物质点法基本理论的计算程序。建立了高能炸药爆轰计算模型,采用物质点法数值模拟了高能炸药爆轰过程,计算得到的爆轰波主要表征参数与解析解和实验数据吻合较好,为下一步水下爆炸冲击问题研究奠定了基础。针对水下爆炸冲击波在自由场中传播具有球面对称性质这一特点,本文提出了球对称形式的物质点法,为了验证所提方法的准确性,对球形炸药水下爆炸问题进行了数值计算,计算结果与实验数据以及经验公式计算结果吻合较好。在此基础上提出了基于物质点法的重映射算法,采用此方法可有效提高三维水下爆炸问题的求解效率。建立了二维水下爆炸计算模型,数值模拟了二维水下爆炸问题,数值计算结果与光滑粒子流体动力学方法(Smoothed ParticleHydronamics, SPH)计算结果以及经验公式计算结果进行了比较,结果吻合较好,物质点法与SPH算法计算精度相当,但在物质交界面的处理上物质点法具有明显的优势。
     对近自由面水下爆炸一系列物理现象进行了数值模拟。给出了物质点法多介质耦合求解过程,研究了自由表面对冲击波的切断现象,并成功再现了近自由水面上水冢的形成过程。采用物质点法定量研究了空气隔层削波规律,结果表明空气隔层可以有效削减水下爆炸冲击波强度。
     建立了金属材料的弹塑性本构模型及其在爆炸冲击状态下的状态方程,研究了结构在水下爆炸载荷作用下的瞬态塑性动力学响应。由于柯西应力材料导数会受到刚体转动的影响,本文引入了客观的Jaumann应力率进行应力的更新,并给出了物质点法显式应力更新算法。在物质点法中引入了多种材料失效准则,并在计算中考虑了材料的动态失效问题。为了克服冲击波造成的强间断给数值求解带来的困难,引入人工粘性对间断面进行光滑处理。并对引入人工粘性后的物质点法应力更新格式进行了修正。给出了基于物质点法的流固耦合求解格式,物质点法将流体和固体在同一求解域内进行计算,流固耦合算法简单直接,十分适合求解与近场水下爆炸相关的流固耦合问题。
     当前无网格法的研究仍处于起步阶段,还有很多需要完善的地方。在分析软件的开发方面,有些商用软件已经集成了一些基于无网格算法的程序模块,然而这些计算模块功能简单仅仅作为程序的辅助功能出现,其核心算法仍然是传统基于网格的数值方法。本文基于物质点法开发了具有一定通用性的数值计算程序,为水下爆炸冲击问题研究提供了全新的数值计算平台。
The research of underwater explosion and structural dynamic response under underwaterexplosion load has important significance in the field of military defense and civilconstruction. Due to underwater explosion and shock response is a complex questioninvolving detonation physics, impact dynamics, fluid-structure interaction and theelastic-plastic dynamic, there is a huge challenge in its theoretical analysis and experimentalresearch. In recent years, with the rapid development of computer technology and numericalmethods, numerical simulation has become an important means to study the underwaterexplosion.
     In the whole process of underwater explosion, there exist special features such as largedeformations, moving material interfaces, fluid-structure interaction and so on which makingthe application of the traditional numerical method based on grid for simulation study ofunderwater explosion problem is a very difficult job. The material point method is a novelmeshless algorithm. it inherits the advantages of both Lagrangian method and Euler method,overcoming mesh distortion problem associated with the traditional grid-based numericalmethods in dealing with large deformation problems. The material point particles haveLagrangian nature, so that it can facilitate the tracking material deformation history as well asan accurate description of the material interface. These advantages make the material pointmethod has been widely used in the field of impact dynamics. The material point method hasbeen further developed and extended to the field of underwater explosion in this paper.
     The space and time discrete format of the control equation of material point method isdeduced and the explicit integral algorithm of material point method is given. Based on thebasic theory of material point method the corresponding calculation program is developed.The simulation model of high explosive detonation is established. The detonation process ofhigh explosive is simulated using the material point method. The calculated results are ingood agreement with analytical solutions and experimental data and laid the foundation forthe next research of underwater explosion and shock problems. For underwater explosionshock wave propagation in free field with spherical symmetry properties characteristics, aspherically symmetric form of material point method is presented. In order to verify theaccuracy of the proposed method, the spherical charge underwater explosion in the free field is numerical calculated. The calculation results are in good agreement with the experimentaldata and calculation results obtained by the empirical formula. On this basis, the remappingalgorithm based on the material point method is presented. The use of this method caneffectively improve the efficiency in solving the three-dimensional underwater explosionproblem. Two-dimensional underwater explosion is simulated and the calculated results arecompared with the results by the SPH method and empirical formula. The results indicate thatthe calculation accuracy is as high as that of SPH, but the material point method has obviousadvantages in dealing with the material interfaces.
     A series of phenomenon of underwater explosion near the free surface is numericalcalculated. The solving process of multi-material coupling in material point method ispresented. The cut-off effect of the free surface to the shock wave is studied, and theformation process of water mound near the free surface is reproduced successfully. Thephenomenon of air interlayer decay the shock wave has carried on the quantitative research.The results showed that the air interlayer can reduce the shock waves effectively.
     Elastoplastic constitutive model of materials as well as the equation of state in thecondition of explosion shock is established and the transient plastic dynamic response ofstructure under explosion shock load is studied. Because of the Cauchy stress materialderivative is affected by the rotation of rigid body, the objective of Jaumann stress rate isintroduced to update stress and the stress update algorithm in the material point method ispresented. Material failure model was introduced to the material point method, and thedynamic failure problems is taken into account in the calculation. In order to overcome thenumerical difficulties of solving the strong discontinuity caused by shock wave, artificialviscosity is introduced in the pressure term. The stress update algorithm is modified after theartificial viscosity was introduced. The solving process of fluid-structure interaction in thematerial point method is presented. The fluid and solid is in the same computational domainin material point method and the fluid-structure interaction solution algorithm is simpe anddirect. It is very suitable for solving fluid-structure interaction problem associated with theunderwater explosion in near field.
     The meshless method research is still in the initial stage and not perfect yet. Althoughsome commercial software already contains some meshless method calculation module, thefunction of these simple calculation module only as auxiliary functions of the program, its core is still the traditional numerical method based on grid algorithm. The calculationprogram developed based on the material point method provides a new numerical computingplatform for study of underwater explosion problems.
引文
[1]恽寿榕,赵衡阳.爆炸力学.北京:国防工业出版社,2005:219-220页
    [2]高建华,陆林,何样扬.浅水中爆炸及其破坏效应.北京:国防工业出版社,2010:9-10页
    [3]韩旭,杨刚,强洪夫译.光滑粒子流体动力学——一种无网格粒子法.湖南长沙:湖南大学出版社,2005:1-4页
    [4]刘欣.无网格方法.北京:科学出版社,2011:1-12页
    [5]张雄,刘岩.无网格法.北京:清华大学出版社,2004:1-6页
    [6]刘更,谢琴,刘天祥.无网格法及其应用.西安:西北工业大学出版社,2005:1-9页
    [7]恽寿榕,涂侯杰,梁德寿,张汉萍.爆炸力学计算方法.北京:北京理工大学出版社,1995:1-7页
    [8]Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overviewand recent developments. Comput. Methods Appl. Mech. Engrg.1996,139:P3-47
    [9]Li S, Liu W K. Meshfree and particle methods and their applications. Applied MechanicsReview.2002,55:P1-34
    [10]Sulsky D, Chen Z, Schreyer H L. A particle method for history-dependent materials.Computer Methods in Applied Mechanics and Engineering.1994,118(1-2):P179-196
    [11]王建明,周学军译.无网格法及其程序设计.济南:山东大学出版社,2007:1-2页
    [12]Benson, D., Computational Methods in Lagrangian and Eulerian hydrocodes. ComputerMethods in Applied Mechanics and Engineering.1992,99: P235-394
    [13]Hans U Mair. Review:hydrocodes for structure response to underwater explosions, Shockand Vibration.1999,6(2):P81-96
    [14]Hirt C. W., Amsden A. A. and Cook J. L. An arbitrary Lagrangian-Eulerian computingmethod for all flow speeds, Journal of Computational Physics.1974,14:P227-253
    [15]Belytschko T., Liu W. K. and Moran B. Nonlinear finite elements for continua andstructures. New York, John Wiley and Sons.2000
    [16]郑磊,李俊峰,王天舒,岳宝增.计算液体晃动ALE网格速度的高精度方法.力学与实践.2007,29(1):14-16页
    [17]杨蔓,李俊峰,王天舒,王为.带环形隔板的圆柱储箱内液体晃动阻尼分析.力学学报.2006,38(5):660-667页
    [18]张奇,张若京. ALE方法在爆炸数值模拟中的应用.力学季刊.2005,26(4):639-642页
    [19]岳宝增,刘延柱,王照林.非线性流固耦合问题的ALE分步有限元数值方法.力学季刊.2001,22(1):34-39页
    [20]G Touzot, B Nayroles, P Villon. Generalizing the finite element methods: Diffuseapproximation and diffuse elements. Computational Mechanics.1992,10:P307–318
    [21]T Belytschko, Y Y Lu, L Gu. Element-free Galerkin methods. Int. J. Numer. Mech. Engng.1994,37:P229-256
    [22]S. N. Atluri and T. Zhu. A new meshless local Petrov-Galerkin (MLPG) approachincomputational mechanics. Computational Mechanics.1998,22:P117–127
    [23]Lucy L B. A Numerical approach to the testing of the fission hypothesis. The Astron.J.1977,8(12):P1013-1024
    [24]Gingold R A, Monaghan J J. Smoothed Particle Hydrodynamics: theory and applicationsto non-spherical stars. Mon. Not. Roy. Astron. Soc.1997,18:P375-389
    [25]Swegle J W, Hicks D L, Attaway S W. Smooth particle hydrodynamics stability analysis.J. Comput. Phys.1995,116:P123-134
    [26]P W Randles, L D Libersky. Smoothed Particle Hydronamics: Some RecentImprovements and Applications. Computer Methods in Applied Mechanics andEngineering.1996,139(1-4):P375-408
    [27]S. Jun, W. K. Liu and Y.F. Zhang. Reproducing kernel particle methods. InternationalJournal for Numerical Methods in Fluids.1995,20:P1081–1106
    [28]Liu GR, Gu YT. A point interpolation method for two-dimensional solids. Int. J. Muner.Meth. Engng.2001,50:P937-951
    [29]Liu G R, Gu Y T. A local radial point interpolation method(LR-PIM) for free vibrationanalyses of2-D solids. J. of Sound and Vibration.2001,246(1):P29-46
    [30]Wang J C, Liu G R. Radial point interpolation method for elastoplastic problems. Proc. ofthe1st. Conf. On Structural Structural Stability and Dynamics. Dec,7-9,Taipei,Taiwan.2000:703-708
    [31]Melenk J M, Babuska I. The partition of unity finite element methods:basic theory andapplications. Computer Methods in Applied Mechanics and Engineering.1996,139:P289-314
    [32]Babuska I, Melenk J M. The partition of unity method. Int J. Numer. Meth Eng.1997,40(4):P727-758
    [33]Duarte C A, Oden J T. Hp-cloud-a meshless method to solve boundary value problems.Texas Institute for Computational and Applied Mathematics. University of Texas at Austin,Technical Report95-05.1995
    [34]Duarte C A, Oden J T. An hp adaptive method using clouds. Comut. Methods Appl. Mech.Engrg.1996,139:237-262
    [35]F H Harlow. Hydrodynamic problems involving large fluid distortion. J. Assoc. Compos.1957,4(2):P137-142
    [36]F H Harlow. The particle-in-cell method for numerical solutions of problems in fluiddynamics. Methods in Computatinoal Physics.1964,3:P319–343
    [37]Brackbill, J.U., and Ruppel, H.M.,“FLIP: A Method for Adaptively Zoned,Particle-in-Cell Calculations of Fluid Flows in Two Dimensions,” Journal ofComputational Physics,1986,65:P314-343
    [38]Sulsky D, Zhou S J, Schreyer H L. Application of a Particle-in-Cell Method to SolidMechanics. Computer Physics Communications.1995,87(1-2):P236–252.
    [39]黄鹏,张雄.显示物质点法的计算格式比较.第五届全国爆炸力学实验技术学术会议论文集.2008:220-229页
    [40]Guilkey, J. E.; Weiss, J. A. Implicit time integration for the material point method:quantitative and algorithmic comparisons with the finite element method. InternationalJournal for Numerical Methods in Engineering.2003,57:P1323-1338
    [41]Sulsky D, Schreyer HL. MPM simulation of dynamic material failure with a decohesionconstitutive model. European Journal of Mechanics A/Solids.2004;23: P423–45
    [42]Love E, Sulsky D L. An unconditionally stable, energy-momentum consistentimplementation of the material-point method. Computer Methods in Applied Mechanicsand Engineering.2006,195(33-36):P3903-3925
    [43]Tan H L, Nairn J A. Hierarchical, adaptive, material point method for dynamic energyrelease rate calculations. Computer Methods in Applied Mechanics and Engineering.2002,191(19-20):P2095–2109
    [44]Love E, Sulsky D L. An energy-consistent material-point method for dynamic finitedeformation plasticity. International Journal for Numerical Methods in Engineering.2006,65(10):P1608–1638
    [45]Wieckowski Z, Youn S K, Yeon J H. A particle-in-cell solution to the silo dischargingproblem. International Journal for Numerical Methods in Engineering.1999,45(9):P1203-1225
    [46]Wieckowski Z. The material point method in large strain engineering problems. ComputerMethods in Applied Mechanics and Engineering.2004,193(39-41):P4417-4438
    [47] Shin, W., Miller, G. R., Arduino, P.,&Mackenzie-helnwein. Dynamic Meshing forMaterial Point Method Computations. World Academy of Science, Engineering andTechnology I: Mathematical and Computational Sciences.2010
    [48] Ma S, Zhang X, Lian Y, Zhou X. Simulation of high explosive explosion using adaptivematerial point method. CMES-Computer Modeling In Engineering&Sciences.2009,39:P101-123
    [49] S. Bardenhagen, E. Kober, The generalized interpolation material point method,Computer Modeling in Engineering and Sciences5.2004:P477-495
    [50]Jin Ma. Multiscale simulation using the generalized interpolation material point method,discrete dislocations and molecular dynamics. Ph.D. thesis, Oklahoma State Universitythesis,2006
    [51]陈卫东,杨文淼.高能炸药爆轰过程的广义插值物质点法模拟.哈尔滨工程大学学报.2012,33(9):1110-1115页
    [52]Wei dong Chen, Fan Zhang, Xian De Wu, Wen Miao Yang.1D and2D Gas DynamicsSimulation Based on Generalized Interpolation Material Point Method. The InternationalSymposium on Shock&Impact Dynamics-2011.
    [53]Wallstedt P, Guilkey J. An evaluation of explicit time integration schemes for use with thegeneralized interpolation material point method. Journal of Computational Physics2008,227:P9628-9642
    [54]Ma J, Lu H, Komanduri R. Structured mesh refinement in generalized interpolationmaterial point method (GIMP) for simulation of dynamic problems. Computer Modelingin Engineering and Sciences.2006,12:P213-227
    [55]Zhang, D. Z., Ma, X.,&Giguere, P. T. Material point method enhanced by modifiedgradient of shape function. Journal of Computational Physics.2011,230(16):P6379-6398
    [56]Sadeghirad, A., Brannon, R. M.,&Burghardt, J. A convected particle domaininterpolation technique to extend applicability of the material point method for problemsinvolving massive deformations. International Journal for Numerical Methods inEngineering.2011,86(12):P1435-1456
    [57]Yonggang Zhang, Fei Gao, Hongwu Zhang, Mengkai Lu. Improved Convected particledomain interpolation method for coupled dynamic analysis of fully saturated porousmedia involving large deformation.Computer methods in applied mechanics andengineering. in press.
    [58]Lian Y P, Zhang X, Zhou X, Ma Z T. A FEMP method and its application in modelingdynamic response of reinforced concrete subjected to impact loading. Computer Methodsin Applied Mechanics and Engineering.2011,200(17-20):P1659-1670
    [59]Zhang X, Sze K Y, Ma S. An explicit material point finite element method forhyper-velocity impact. International Journal for Numerical Methods in Engineering.2006,66:P689-706
    [60]Bryan T. Bewick. A combined FEM and MPM simulation of impact-resistant design.University of Missouri.PhD thesis,2004
    [61] Guilkey J E, Harman T B, Banerjee B. An Eulerian-Lagrangian approach for simulatingexplosions of energetic devices. Computers&Structures.2007,85(11-14):P660-674
    [62] Gilmanov A, Acharya S. An immersed boundary and material point methodology formoving/compliant surfaces with heat transfer. International Mechanical EngineeringCongress and Exposition6.2006
    [63]Gilmanov A, Acharya S. A hybrid immersed boundary and material point method forsimulating3D fluid–structure interaction problems. Int. J. Numer. Meth. Fluids2008,56:P2151-2177
    [64]Gilmanov A, Acharya S. A computational strategy for simulating heat transfer and flowpast deformable objects. International Journal of Heat and Mass Transfer.2008,51:P4415-4426
    [65]Z Guo, W Yang. MPM/MD handshaking method for multiscale simulation and itsapplication to high energy cluster impacts. International Journal of Mechanical Sciences.2006,48(2):P145-159
    [66]D Sulsky, H L Schreyerb. Axisymmetric form of the material point method withapplications to upsetting and Taylor impact problems. Comput. Methods Appl. Mech.Engrg.1996,139:P409-429
    [67]Lee W H, Painter J W. Material void-opening computation using particle method.International Journal of Impact Engineering.1999,22:P1-22
    [68]Ma S, Zhang X, Qiu X M. Comparison study of MPM and SPH in modelinghypervelocity impact problems. International Journal of Impact Engineering.2009,36:P272-282
    [69]Hu W Q, Chen Z. Model-based simulation of the synergistic effects of blast andfragmentation on a concrete wall using the MPM. International Journal of ImpactEngineering.2006,32(12):P2066-2096
    [70]王宇新,陈震,孙明.多相介质爆炸冲击响应物质点法数值模拟.爆炸与冲击.2008,28(2):154-160页
    [71]王宇新,陈震,张洪武,等.多层抗爆结构冲击响应无网格MPM法分析.工程力学.2007,24(12):186-192页
    [72]张忠,陈卫东,杨文淼.非均质固体炸药冲击起爆的物质点法.爆炸与冲击.2011,31(1):25-30页
    [73]Burghardt, J., Leavy, B., Guilkey, J., Xue, Z.,&Brannon, R. Application of Uintah-MPMto shaped charge jet penetration of aluminum. IOP Conference Series: Materials Scienceand Engineering.2010,10(1):P1-9
    [74] Bardenhagen S G. The Material Point Method and Simulation of Wave Propagation inHeterogeneous Media. AIP Conference Proceedings.2004,706:P187-192
    [75] Biswajit Banerjee, James E. Guilkey, Todd B. Harman, John A. Schmidt, Patrick A.McMurtry. Simulation of impact and fragmentation with the material point method.Proceedings of11th International Conference on Fracture.2005
    [76]Wi ckowski, Z. The material point method in large strain engineering problems.Computer Methods in Applied Mechanics and Engineering.2004,193(39-41):P4417-4438
    [77]Ambati, R., Pan, X., Yuan, H.,&Zhang, X. Application of material point methods forcutting process simulations. Computational Materials Science.2012,57:P102-110
    [78]Nairn J A, Guo Y, Material Point Method Calculations with Explicit Cracks, FractureParameters, and Crack Propagation,11th Int. Conf. Fracture, Turin, Italy, Mar20-25,2005.
    [79]Nairn J A, Material Point Method Calculations with Explicit Cracks, Computer Modelingin Engineering&Sciences.2003,4:P649-664
    [80]Guo Y, and Nairn J A, Calculation of J-Integral and Stress Intensity Factors using theMaterial Point Method, Computer Modeling in Engineering&Sciences, submitted2004
    [81]Li F, Pan J, Sinka C. Modelling brittle impact failure of disc particles using material pointmethod. International Journal of Impact Engineering.2011,38(7):P653-660
    [82]York A R, Sulsky D, Schreyer H L. Fluid-membrane interaction based on the materialpoint method. International Journal for Numerical Methods in Engineering.2000,48(6):P901-924
    [83]Gan Y, Chen Z, Montgomery-smith S. Improved material point method for simulating thezona failure response in piezo-assisted intracytoplasmic sperm injection. CMES.2011,73(1):P45-75
    [84]Lenardic, A.; Moresi, L.; M¨ uhlhaus, H. The role of mobile belts for the longevity ofdeep cratonic lithosphere: the crumpled zone model. Geophys. Res. Lett.2000,27:P1235-1238
    [85]Andersen, M. Material-Point Analysis of Large-Strain Problems: Modelling ofLandslides. Aalborg University, PhD thesis,2009.
    [86]Colom, A. Y. Solving hydro-mechanical problems with the material point method.Geotechnical Engineering: New Horizons:P318-323
    [87]Vermeer, P. A., Beuth, L.,&Benz, T. A Quasi-Static Method for Large DeformationProblems in Geomechanics,The12th International Conference of InternationalAssociation for Computer Methods and Advances in Geomechanics2008,1-6.
    [88]Keita ABE, Masahiro SHINODA, Masaaki MURATA, Hidetaka NAKAMURA andSusumu NAKAMURA. Simulation of landslides after slope failure using the materialpoint method in shaking table tests. Japan Nuclear Energy Safety Organization, Tokyo,Japan. Nuclear Energy,3-8,2009
    [89]Sulsky D, Schreyer H, Peterson K, Kwok R, Coon M. Using the material-point method tomodel sea ice dynamics. Journal of Geophysical Research.2007,112(C2):P1-18
    [90]Peterson K, Bochev P. Arctic Sea Ice Modeling with the Material-Point Method,a reportApplied Mathematics and Applications, Sandia National Laboratories.2007
    [91]Ionescu I, Guilkey J E, Berzins M, Kirby R M, Weiss J A. Simulation of soft tissue failureusing the material point method. Journal of biomechanical engineering.2006,128(6):P917-924
    [92]Ionescu I, Weiss J A, Guilkey J, Cole M, Kirby R M, Berzins M. Ballistic injurysimulation using the material point method. Studies in health technology and informatics.2006,119:P228-233
    [93]L Tran, J Kim, M Berzins. Solving time-dependent PDEs using the material point method,a case study from gas dynamics. International Journal for Numerical Methods in Fluids.2010,62:P709-732
    [94]H K Wang, Y Liu, X Zhang. The carbon nanotube composite simulation by material pointmethod. Computational Materials Science.2012,57:P23-29
    [95] Rehak M, Smilowitz R, Kagel R. FRAM Cavitation. AD-A181193,1986
    [96] Kamegai M, Klein L S, Rosenkilde C E. Computer Simulation studies on Free SurfaceReflection of Underwater Shock Wave. UCRL-96960,1987
    [97]Chan S K. An Improvement in the Modified Finite Element Procedure for UnderwaterShock Analysis. Proceeding of62nd Shock and Vibration Symposium,1992
    [98]Chisum J E, Shin Y S. Multi-material Eulerian and Coupled Lagrangian-Eulerian FiniteElement Analysis of Underwater Shock. AD-A2298206,1995
    [99]Matsumoto K. Boundary Curvature Effects on Gas Bubble Oscillations in UnderwaterExplosion. AD-A308087,1996
    [100]孙百连,等.水下爆炸冲击波传播的二维数值模拟.工程装备研究,1998
    [101]Brett J M. Numerical Modeling of Shock Wave and Pressure Pulse to UnderwaterExplosion Phenomena. AD-A128734,1998
    [102]Theodore Trevino. Applications of Arbitrary Lagrangian Eulerian(ALE) analysisapproach to underwater and air explosion problems. AD-A384983,2000
    [103]柏劲松,陈森华,李平,等.水下爆炸过程的高精度数值计算.应用力学学报.2003,20(1):103-106
    [104]张振华,朱锡,白雪飞.水下爆炸冲击波的数值模拟研究.爆炸与冲击.2004,24(2):182-188页
    [105]K. E. Afanasiev, I V Grigorieva. Numerical investigation of three-dimensional bubbledynamics. Journal of Engineering Mathematics.2006,55:P65-80
    [106]张阿漫,姚熊亮.近自由面的多个水下爆炸气泡相互作用研究.力学学报.2008,40(1):26-34页
    [107]胡毅亭,贾宪振,饶国宁,刘家骢.水下爆炸冲击波和气泡脉动的数值模拟研究.舰船科学与技术.2009,31(2):134-140页
    [108]荣吉利,项大林,李健,杨荣杰.含铝炸药水下爆炸特性研究.北京理工大学学报.2012,32(3):221-225页
    [109]G. Barras, M. Souli, N. Aquelet, N. Couty. Numerical simulation of underwaterexplosions using an ALE method. The pulsating bubble phenomena. Ocean Engineering.2012,41:P53-66
    [110]师华强,汪玉,宗智,贾敬蓓.近水面水下爆炸二维Level-set数值模拟.计算力学学报.2010,27(3):409-414页
    [111]李健,荣吉利,项大林.近自由面水下爆炸气泡运动的数值计算研究.工程力学.2011,28(6):200-205页
    [112]T. L. Geers. Residual Potential and Approximate Methods for Three DimensionalFluid-Structure Interaction Problem. J. Acoust. Soc. Am.1971,49:P1505-1510
    [113]P K Fox. Nonlinear dynamic response of cylindrical shells subjected to underwaterside-on explosions. A-A252856,1992
    [114]Robert E. Kaufman. Effects of geometric and material imperfections on the dynamicresponse of cylindrical shells subjected to underwater explosion. AD-A299939,1995
    [115]Philip E. Malonem, Young S. Shin. Surface ship shock modeling andsimulation:extended investigation. AD-A371731,2001
    [116]谌勇,童宗鹏,汪玉,唐平. DAA方法在商业有限元软件ABAQUS中的实现.噪声与振动控制.2008,8(2):1-5页
    [117]刘建湖.舰船非接触水下爆炸动力学的理论与应用.中国舰船科学研究中心博士学位论文.2002:1-22页
    [118]李磊,冯顺山,董永香,蒋建伟.水下爆炸对船底结构毁伤效应的数值仿真.舰船科学技术.2007,29(1):91-94页
    [119]Lee SangGab. Fluid Mesh modeling on surface ship shock response under underwaterexplosion. PRADS2001, Practical Design of Ships and Other Floating Structures.Shanghai, China,2001:P1315-1321
    [120]Fox P K, Kwon Y K, Shin Y S. Nonlinear Response of Cylinderical Shells ToUnderwater Explosion. Testing’s And Numerical Prediction Using USA/DYNA3D.AD-A251945,1992
    [121]张振华,朱锡,冯刚.水下爆炸冲击波作用下自由环肋圆柱壳动态响应的数值仿真研究.振动与冲击.2005,24(1):45-48页
    [122]朱锡,牟金磊,王恒,张振华.水下爆炸载荷作用下加筋板的毁伤模式.爆炸与冲击.2010,30(3):225-231页
    [123]贾宪振.基于通用程序的水下爆炸及其对结构作用的数值模拟研究.南京理工大学博士学位论文.2008
    [124]姚熊亮,张阿漫,许维军,汪玉.基于ABAQUS软件的舰船水下爆炸研究.哈尔滨工程大学学报.2006,27(1):37-41页
    [125]M B Liu, G R Liu, K Y Lam, Z Zong. Smoothed particle hydrodynamics for numericalsimulation of underwater explosion. Computational Mechanics.2003,30:P106-118
    [126]A M Zhang, W S Yang, C Huang, F R Ming. Numerical simulation of column chargeunderwater explosion based on SPH and BEM ombination. Computers&Fluid.2013,71:P169-178
    [127]宗智,邹丽,刘谋斌,王喜军.模拟二维水下爆炸问题的光滑粒子(SPH)方法.水动力学研究与进展:A辑.2007,22(1):61-67页
    [128]姚熊亮,于秀波,张阿漫,陈娟.基于SPH方法的水下爆炸初始爆轰过程研究.中国舰船研究.2008.04.3(2):7-10页
    [129]杨刚,韩旭,龙述尧.应用SPH方法模拟近水面爆炸.工程力学.2008,25(4):204-219页
    [130]刘翠丹,明付仁,丛刚,王超.基于SPH方法的浅水爆炸研究.舰船科学技术.2012,34(12):7-14页
    [131]Swegle J W, Attaway S W. Feasibility of Using Smoothed Particle Hydro-dynamics forUnderwater Explosion Calculations. DE95008799,1995
    [132]A M Zhang, W S Yang, X L Yao. Numerical simulation of underwater contact explosion.Applied Ocean Research.2012,34:P10-20
    [133]M Steffen, R M Kirby, M Berzins. Analysis and reduction of quadrature errors in thematerial point method(MPM). Int. J. Numer. Meth. Engng2008,76:P922-948
    [134]Bardenhagen S G. Energy Conservation Error in the Material Point Method. J.Comp.Phys.2002,180:P383-403
    [135]Von Neumann J, Richtmyer R D. A method for the numerical calculation ofhydrodynamical shocks.Journal of Applied Physics.1950,21(21):P232-257
    [136]Landshoff R. A Numerical Method for Treating Fluid Flow in the Presence of Shocks.Los Alamos Scientific Laboratory, Rept. LA-1930,1955
    [137]Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematicalphysics. AEC Research and Development Report.1956
    [138]AUTODYN Theory Manual revision4.3. USA:Century Dynamics, Inc.2005:P149-152
    [139]Hallquist J O. LS-DYNA Theory Manual. Livemore Software TechnologyCorporation,2005
    [140]Luming Shen. Multi-scale modeling and simulation of multi-physics in filmdelamination. University of Missouri-Columbia, Paper of Phd degree.2004:P33-41
    [141]张守中.爆炸与冲击动力学.北京:兵器工业出版社,1993:4-6页
    [142]宁建国,王成,马天宝.爆炸与冲击动力学.北京:国防工业出版社,2010:79-82页,90-91页
    [143]孙锦山,朱建士.理论爆轰物理.北京:国防工业出版社,1995:401-409页
    [144]C L Mader, C A Foest. Two-dimensional homogeneous and heterogeneous wavepropagation. Technical Report LA-6259, Los Alamos Scientific Laboratory,1976:P9
    [145]Lee E L, Tarver C M. Phenomenological Model of Shock Initiation in HeterogeneousExplosives. Physics of Fluids.1980,23(12):P2362-2372
    [146]C M Tarver. Ignitiono-and-growth modeling of LX-17hockey puck experiments.Propellants, Explosives and Pyrotechnics.2005,30(2):P109-117
    [147]C L Mader. Numerical modeling of detonations, University of California Press,1979
    [148]S Z Zhang. Detonation and its applications. Press of National Defense Industry,Beijing.1976
    [149]Cole R H. Underwater explosion[M]. New Jersey: LISA, Princeton UniversityPress,1948.
    [150]Steinberg D J. Spherical explosions and the equation of state of water. LawrenceLivermore National Laboratory, Livermore,CA. Report UCID-20974,1987
    [151]Swift E, Decius J C. Measurements of Bubble Pulse Phenmonena, Ⅲ. Radius andPeriod Studies. In:Underwater Explosion Research: A Compendium of British andAmerican Reports, Vol2, Office of Naval Research, Department of the Navy, Washington,DC,533-599,1950
    [152]樊自建,沈兆武,马宏昊.水中空气隔层对冲击波传播衰减作用的初步探讨.工程爆破.2007,13(2):7-10页
    [153]樊自建,沈兆武,马宏昊,廖学燕.空气隔层对水中冲击波衰减效果的实验研究.中国科学技术大学学报.2007,37(10):1306-1311页
    [154]贾虎,沈兆武.空气隔层对水中冲击波的衰减特性.爆炸与冲击.2012,32(1):61-66页
    [155]姚熊亮,杨文山,初文华,张阿漫.水中空气隔层衰减冲击波性能研究.高压物理学报.2011,25(2):165-172页
    [156]高建华,陆林,何洋扬.浅水中爆炸及其破坏效应.北京:国防工业出版社.2010:28-37页
    [157]陈凡红,王成,郝莉,宁建国.用Level Set方法追踪运动界面.力学与实践.2006,28(4):23-27页
    [158]刘儒勋,刘晓平,张磊.运动界面的追踪和重构方法.应用数学与力学.2004,25(3):279-290页
    [159]柏劲松,陈森华.重新初始化的LS方法跟踪二维可压缩多介质流界面运动.高压物理学报.2003,17(1):22-28页
    [160]王东红,赵宁,王永健.一维多介质可压缩流动的守恒型界面追踪方法.计算数学.2009,31(2):118-126页
    [161]杨桂通.弹塑性力学引论.北京:清华大学出版社,2004:59-62页
    [162]姜晋庆,张铎.结构弹塑性有限元分析法.北京:宇航出版社,1990:301-302页
    [163]王仁,黄文彬,黄筑平.塑性力学引论.北京:北京大学出版社,1992:130-142页
    [164]Johnson G R, Cook W H. A constitutive model and data for metals subjected to largestrains, high strain rates and high temperatures. Proeeedings of the7th InternationalSymposium on Ballisties.The Hague, Netherlands,1983: P541-547
    [165]J A Zukas, High Velocity Impact Dynamics, John Wiley&Sons, New York,1990
    [166]张雄,王天舒.计算动力学.北京:清华大学出版社,2007:289页
    [167]Johnson G R, Cook W H. Fracture characteristics of three metals subjected to variousstrains, strain rates, temperatures and pressures. Engineering fracture mechanics,1985,21(1):P31-48
    [168]庄茁.连续体和结构的非线性有限元.北京:清华大学出版社,2002:108-119页
    [169]杨秀敏.爆炸冲击现象数值模拟.合肥:中国科学技术大学出版社,2010:346-347页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700