用户名: 密码: 验证码:
空肠弯曲杆菌生物膜的形成及其特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空肠弯曲杆菌(Campylobacter Jejuni)是一种人畜共患病的病原菌,在世界范围内引起大规模的感染,该菌对生存条件的要求较为严苛。近年来有学者发现,该菌在一定条件下可以形成一种能够抵抗外界环境不良影响的生物膜,这也是该菌能够在严峻的环境中存活并产生耐药性的重要原因。
     本研究临床采取猪的盲肠部位作为分离空肠弯曲杆菌的试验样品,对空肠弯曲杆菌进行分离培养,分别采用常规生化鉴定以及PCR检测两种方法对分离到的菌株进行鉴定,比较两种方法的差异。经鉴定确认为空肠弯曲杆菌的菌株,通过结晶紫染色、扫描电镜等方法,确认空肠弯曲杆菌是否具有在体外形成生物膜的能力,建立其生物膜体外模型,并对其形成的过程进行了观察;正交实验法检测空气条件,环境温度以及培养基类型3个因素对空肠弯曲杆菌生物膜形成的影响。结果表明:用厌氧罐与焦性没食子酸结合的方法分离空肠弯曲杆菌是经济有效的;PCR法鉴定空肠弯曲杆菌,相对常规生化方法来说具有省时省力且灵敏准确的优点;分离所得到的空肠弯曲杆菌具有在体外形成生物膜的能力;空肠弯曲杆菌生物膜形成的的最佳条件为常规空气条件,即37℃以及MHB培养基。
     生物膜菌在其生存方式、胞外物质的合成以及对动物的致病性方面均与浮游菌存在有很大程度的差异,本试验采用蒽酮-硫酸法和考马斯亮蓝法,分别对不同时间生物膜状态和浮游状态下空肠弯曲杆菌合成的胞外多糖和菌体总蛋白量进行测定。结果发现生物膜型细菌在各时间点合成的水溶性胞外多糖的量均低于浮游型细菌,两者之间差异性显著(P<0.05);而各时间点细菌合成水不溶性多糖的量则是生物膜型细菌高于浮游型细菌,二者在48h时差异不显著(P>0.05),其它时间点差异均显著(P<0.05)。两种状态下菌体总蛋白的量随时间的延长有增加趋势,两者在12h差异不显著(P>0.05),其它时间点差异均显著(P<0.05)。
     将普通清洁级小鼠用5倍剂量的抗生素处理,消除其肠道共生微生物菌群之后作为研究空肠弯曲杆菌与宿主之间相互作用的动物模型。分别用生物膜型细菌和浮游型的空肠弯曲杆菌感染试验小自鼠,观察小鼠临床症状及出现症状的时间,对攻毒小鼠的外周血进行细胞因子和抗氧化指标的检测,以发现两种状态下的空肠弯曲杆菌对小鼠的致病性,以及对感染小鼠的免疫机能的影响。结果表明,两种状态的细菌感染小鼠后,小鼠未出现明显的临床症状,仅有少数出现了腹泻或精神沉郁,且症状较轻或可以自愈。在经过空肠弯曲杆菌感染后的第1d,生物模型和浮游型的细菌处理的小鼠肝脏匀浆液中可发现细菌定植。两种状态的细菌在肝脏中的生长状态与清除时间明显不同。浮游型的细菌数量在6-7d达到峰值,且在肝脏中的清除时间长达15d。而生物膜型的细菌数量的峰值出现在感染后的第10d,且在肝脏中的清除时间比浮游菌处理组更长。
     空肠弯曲杆菌虽然是一种众所周知的肠道致病菌,但是却能够引起全身性或系统性的感染,因此空肠弯曲杆菌与宿主免疫之间的相互影响近年来不断受到关注。试验结果证实,对于两种状态的空肠弯曲杆菌感染小鼠的血浆中几种促炎性细胞因子以及抗炎性细胞因子的水平进行了检测,以此来研究该病原菌与宿主的免疫之间的联系。结果显示:感染后第1d起血浆的IFN-γ的水平就出现了一定程度的升高,但并不明显。浮游菌组IFN-γ的峰值出现在第4-7d,而生物膜菌组出现在第10d;浮游菌组TNF-α第4d达到峰值,之后迅速下降。而生物膜菌组峰值出现在第4-7d之间,直至第10d均处于较高水平:两实验组IL-2峰值均出现在感染后的7d左右,同一时间点血浆1L-2水平,生物膜菌组显著高于浮游菌组(P<0.05);IL-4在浮游菌组峰值出现在感染后的第4-7d,之后直至第10d菌居高不下,粘附菌组,感染前期并无显著升高,后期,该细胞因子持续升高且在监控的时间内并未达到峰值;IL-6的水平感染的早期阶段并没有显著增加,从第4d开始显著升高,峰值出现在第7d。归纳来讲,促炎性细胞因子出现在感染的前期阶段,且多在炎症的急性期达到峰值,而抗炎性细胞因子的升高是跟随在促炎性细胞因子升高之后,比较浮游细菌和生物膜型细菌对宿主的免疫防御的影响,可以看出,由粘附细菌引起的感染具有从炎症急性期向慢性化转变的趋势,而宿主的免疫也从先天免疫转向获得性免疫。
     两种型态的细菌对宿主机体抗氧化系统的影响的研究结果表明:SOD在浮游菌组显著降低(P<0.05):MDA在生物膜菌组显著降低(P<0.05); GSH在两实验组没有出现显著差异:LDH在两个实验组均显著升高(P<0.05),且浮游菌组显著高于生物膜菌组(P<0.05)。
     综上所述,本试验研究空肠弯曲杆菌生物膜的上述儿个方面取得了阶段性的进展,但是由于细菌生物膜的形成是一个极为复杂的过程,与此相关的影响因素涉及到各个方面,难以逐一模拟研究。另外由于空肠弯曲杆菌自身的特性,对于该菌生物膜的研究还非常有限,在其形成机制,基因水平的调控,以及耐药机制和致病机制等方面还存在很多不解之处,另外由于试验的局限性,体外实验并不能完全模仿体内环境,因此要想对该菌生物膜进行更深入了解还需要后期不断研究。
Campylobacter Jejuni, as a worldwide prevalence of zoonotic disease pathogens, living conditions are more stringent. In recent years, some scholars found that under certain conditions the bacteria can form a biofilm which resistant to negative effects of the external environment, which is the bacteria to survive in harsh environments and major cause of resistance.
     The clinical specimen was selected as test samples for isolation of Campylobacter Jejuni, Campylobacter Jejuni was isolated and cultured respectively detected routine biochemical identification and PCR detections of isolated strains, to compare differences of the two methods in the identification of the pathogen.
     Confirmed by the above two methods of identification for strains of Campylobacter Jejuni, establishing biofilm models in vitro, its characteristics and influencing factors were studied by PCR. Crystal Violet staining, SEM and orthogonal experimental method etc., providing some rationale to study the formation of biofilm and remove of the bacteria.
     Biofilm bacteria, and called "block health bacteria", its survival way, synthesis of extracellular materials, and the pathogenicity on animal was different from floats bacteria in large degree, In this experiment, under the two states exopolysaccharides and total protein volume of bacteria were determine by using anthracene ketone-sulfate law and Coomassie brilliant blue law respectively, to compare the differences of the two bacteria in the synthesis of extracellular materials. Mice were infected by biofilm bacteria and planktonic bacteria infections respectively, observing symptoms and attack time in mice, our experiments detected antioxidant indexes and Cytokines in peripheral blood detections of toxicity attacked mice, to discover the differences on animal pathogenicity of the two bacteria, and to analyse their possible causes.
     Campylobacter Jejuni is an important pathogen of zoonotic diseases, its biofilm formation is one of the major cause of turning a chronic infection and develop resistance. In recent years, there are varieties of other bacteria biofilm research reports at home and abroad, but reports of Campylobacter Jejuni Biofilms are very limited. Our experiments established the bacteria biofilm model in vitro, and researched its possible effect factors, best conditions that formed the bacteria biofilm in vitro were discovered; the differences of bacteria synthesized extracellular materials in biofilm and floating state in different time, the possible causes of differences were discussed, and its significances in biofilm formed were analysised; the influence of the two bacteria in aspects total anti-oxidation capacity and immune function were obtained by detecting antioxidant indexes and Cytokines in peripheral blood for laboratory animals.
     5tmes idoses antibiotic treatment to ordinary clean mice to eliminate the intestinal microbial flora and then used them as animal models to stady the interaction between host and jejunum campylobacter. Infected test mice with C.jejuni of planktonic and adhesive states Separately, observed he symptoms and occurrence time, and tested plasma cytokines and antioxidant indicators of infected mouses, to find the differences in animal pathogenic and the influence to the body's immune function of infected animals, of the two knids of campylobacter jejuni, and analyzed the possible reasons.. The results showed that the mouses did not appear obvious clinical symptoms, after infection with two states of bacteria only a few appeared diarrhea or spirit is depressed, and symptoms were very light or could recover by themselves. On the1st day after infections, the two knids of bacteria could be found colonize in the liver homogenate of the infected mouses. The two knids of bacteria were obviously different in the growth states and the removement in the live.The nmber of planktonic bacteria reached the peak during6-7d, and stayed in the liver for15days, while the number of adhesion bacteria peaked on the10th day after infection, and stayed longerin the liver.
     1d after infection on the plasma levels of IFN-gamma has been a certain degree of rise, but not obvious. Planktonic bacteria group of IFN-gamma peak appeared in4to7d after infection, bacteria adhesion of IFN-gamma peak appears in the10d; both the experimental group TNF alpha showed a trend of rising, plankionic bacteria group4DTNF alpha level reaches its peak, after falling rapidly. The adhesion of bacteria group peak between4to7d, until10d were significantly higher than the blank control group; Two experimental IL-2compared with the blank control group, to some extent, the rise of peak occurred at about7d after infection, compared the same time point of the two states of bacteria influence on mice serum IL-2, found that, unlike IFN-gamma and TNF alpha, IL-2levels of bacteria adhesion group were higher than in most of the time points of planktonic bacteria group, and significant difference (P<0.05); IL-4peak appeared after infection in the planktonic bacteria group of4to7d, until after10d bacteria high adhesion bacterium group, there is no marked increase in the early stage of the infection, later period, the cytokines did not continue to rise and the monitoring time to peak; Early stages of infection, the level of IL-6compared with the blank control group was not significantly increased, starting from4d after infection, the experimental group significantly increased the level of IL-6. Peak appears in the7d after infection.
     For two kinds of state of bacteria to the host organism oxidation system research has shown that the influence of SOD in the planktonic bacteria group is lower than the blank control group, and significant difference (P<0.05), adhesive bacteria group compared with blank control group no significant difference; MDA in adhesive bacteria group is lower than the blank control group, and significant difference (P<0.05), planktonic bacteria group and the blank control group difference was not significant; GSH in two states bacteria treatment group compared with blank control group, there were no significant differences; LDH in the group of planktonic bacteria and bacteria adhesion were significantly higher than that of blank control group (P<0.05), compared with two kinds of state of bacteria in mice LDH, the influence of planktonic bacteria group is higher than the bacteria adhesion, and significant difference (P<0.05).
     Campylobacter Jejuni is an important pathogen of zoonotic disease, its biofilm formation is one of the major cause of turning a chronic infection and develop resistance. In recent years, there are varieties of other bacteria biofilm research reports at home and abroad, but reports of Campylobacter Jejuni Biofilms are very limited. Our experiments established the bacteria biofilm model in vitro, and researched its possible effect factors, best conditions that formed the bacteria biofilm in vitro were discovered; the differences of bacteria synthesized extracellular materials in biofilm and floating state in different time, the possible causes of differences were discussed, and its significances in biofilm formed were analysised; the influence of the two bacteria in aspects total anti-oxidation capacity and immune function were obtained by detecting antioxidant indexes and Cytokines in peripheral blood for laboratory animals
引文
[1]Ang C W, van Doorn P A, Endtz H P, et al. Acaseof Guillain-Barre syndrome following a family out break, of Campylobacter jejuni enteritis [J]. J Neuroimmunol.2000,11(2):2229-2233
    [2]吴润,赵晋军.空肠弯曲杆菌研究现状分析[J].中国兽医科技.1995,25(7):16-18.
    [3]Butzler J P. Campylobacter Infection in Man and Animals [R]. CRC Press. Boca Raton. FL,1984.
    [4]Klein B S, Vergeront J M, Blazer M J, et al. Campylobacter Infection Associated with Raw Milk[J]. JAMA,1986,17(255):3361-3364
    [5]Linton D. Owen R J. Stanley J. Rapid identification by PCR of the genus Campylobacter and of five Campylobacter specie senteropathogenic for man and animals [J]. Res Microbiol,1996,147(3):707-718.
    [6]Patton D M. Shaffer N, Edmonds P, et al. Human disease associated with "Campylobacter upsaliensis" (catalase-negative or weakly positive Campylobacter species) in the United States [J]. J Clin Microbiol.1989,27:66-73.
    [7]Tauxe R V, Hargrett-Bean N, Patton C M, et al. Campylobacter isolates in the United States [J]. Mortal Weeklv Rep,1988,37:10-13.
    [8]Tee W, Anderson B N, Ross B C, et al. Atypical campylobacters associated with gastroenteritis [J]. J Clin Microbiol,1987,25:1248-1254.
    [9]Nachamkin I, Blaser M J. Tompkins L S, et al. Campylobacter jejuni Current Statusand Future Trends [M]. American Society for Microbiology Washington D C.1992(3):238-245.
    [10]潘剑平.动物源性空肠弯曲杆菌耐药性流行分布研究[D].2008.
    [11]Tauxe, R. V. Emerging foodborne Pathogens [J]. International Journal of Food Microbiology.2002,148(34):1247-1256.
    [12]Naehamkin, P. R. Murra E. J. Baron, M. A. pfaller, et al. Pylobacterand Arcobacter [M]. Manual of eliniealmierobiology,6thed.1995,483-491.
    [13]S. L. O. IdentifieationmethodsforeamPylobaeters[J], helieobacter, and relatedo animals,1996, Clin. Microbiol. Rev.9:40,5-22.
    [14]Stein hauserova, J.Ceskova, et al. Identification of the rmo Philie Campylobaeter spp. By Phenoty Pieandmolccular methods [J]. APPI.Microbiol.2001,90:4,70-75.
    [15]Hazeleger WC, Wouters JA, Rombouts FM. et al. Physiological activity of Campylobacter jejuni far below the minimal growth temperature [J]. Appl Environ Microbiol,1998,64(10):3917.
    [16]Phadtare S, Alsina J, InouyeM. Cold-shock response and cold-shock proteins [J]. Curr.Opin. Mierobiol.1999,2:172-180.
    [17]BlankenshipLC, Craven SE. Campylobaeter jejuni survival in chieken meat as a function of temperature[J]. Appl Environ Mierobiol,1982,44:88-9.
    [18]DoyleMP, RomanDJ. Prevalenee.survival of Campylobaeter jejuni in unpasteurized milk[J]. Appl EnvironMierobiol,1982,44:1154-1158.
    [19]Krieg N R, Holt J G. Bergeys Manual of Systematic Bacteri-ology [M].1984:111-118.
    [20]Luechtefeld N W, Reller L B, Blaser M J, et al. Comparison of atmospheres of incubation for primary isolation of Campylobacter fetus sub sp. jejuni from animal specimens:5%oxygen versus candle jar [J]. Clin Mierobiol,1982 15:53-57.
    [21]Nadeem. Kaakoush, William G.Millerb, Hilde DeReusee, et al. Oxygen requirement and tolerance of Campylobacter jejuni [J]. Researeh in Mierobiology,2007,158:644-650.
    [22]王秀娟,朱琳,陈中智等.细菌“活的不可培养状态”的生态意义及研究进展”[J].微生物学通报,2008,35(12):2935-942.
    [23]Medema. G. J, Sehets EM, A. W, Havelaar A. H. et al. Lack of colon isation of 1day old chicks by viable non-culturable Campylobaeter jejuni[J]. Bacterio 1992(172),512-160.
    [24]Hazeleger W C, Arkesteijn A, Toorp-Bouma, et al. Deteetion cf the coccoid form of CamPylobacter jejuni in chieken Products with the use of the Polymerase chain reaetion [J]. Int J Food Microbiol,1994(24):273-281.
    [25]Chaveerach P, ter Huurne AAHM. Lipman L. J. A, et al. Survival and resuscitation of ten strains of Campylobacter jejuni and Campylobacter coli under acid conditions[J]. Appl Environ Microbiol,2003,69(1):711-714.
    [26]吴光先.用不同选择性平板和增菌培养基对空肠弯曲菌分离、传代和增菌的比较试验[J].中国人兽共患病杂志,1989,(02):23-26.
    [27]郭强华,李端,傅朝珠.用无血培养基分离空肠弯曲菌的效果研究[J].中国人兽共患病杂志,1990,(04):68-72.
    [28]姜峰.空肠弯曲杆菌流行病学及在鸡肉低温贮藏过程中失活动力学特征研究[D].扬州大学.2009.
    [29]阳成波,蒋原,,祝长青等.空肠弯曲杆菌致病机理研究进展[J].动物医学进展,2003,24(3):35-37.
    [30]林业杰,程法樱.空肠弯曲菌群对幼龄禽畜的致病性实验[J].农业科技,1991,(2):19-20.
    [31]聂金珍译.静脉或口服接种空肠弯曲杆菌阻碍水貂和雪貂繁殖[J].国外特种经济动植物,1992,(3):1-3.
    [32]Ban Mishu Allos. Campylobacter jejuni Infections:Update on Emerging Issues and Trend [J]. FOOD SAFETY,2001,32:1201-1206.
    [33]Ang CW, van Doorn P A, Endtz H P, et al. A case of Guillain-Bajrre syndrome following a family outbreak of Campylobacter jejuni enteritis[J]. Neuroimmunol,2000, (11):29-32.
    [34]Prendergast M M,, Moran AP. Lipopolys accharider in the development of the Guillain-Barre syndroml and Miller Fisher syndrome forms of acute infla mmatory peripheral neuropathies J Endotoxin Res,2000
    [35]Allos BM. Lippy FE, Carlsen AR, et al. Serotype, serum resistance and 125 I-C3 binding among C. jejuni strains from patients with Guillain-Barre'syndrome or with uncomplicated enter-it is.[J]. Emerg Infect Dis,1998.4:263-268.
    [36]侯建军.空肠弯曲杆菌培养检测方法的建立及上海地区畜禽感染情况的调查[D].上海交通大学,2008.
    [37]吴忠亮.空肠弯曲杆菌感染分布研究.[D].上海交通大学.2007.
    [38]Siddique A B. Akhtar S Q. Study on the pathogenicity of Campylobacter jejuni by modifying the medium [J]. Trop Med Hygi,1991,94:175-179.
    [39]Saneeta M, Frank G R. Isolation characterization and hostcell-bid-ing properties of a cytotoxin from Campylobacter jejuni [J]. J Clin Microbiol,1990,6:1314-1320.
    [40]Pang T, Wong P Y, Puthucheary S D, et al.In-vitro and in vivo studies of a cytotoxin from Campylobacter jejuni [J]. J Med Mi-crobiol,1987,23:193-195.
    [41]Jonson W M, Lior M. A new heat-labile cytoletha! distending toxin produced by Campylobacter spp[J]. Microbiol Pathog,1988,4(2):115-126.
    [42]梁成彪,周广灿.2010年欧盟食品和饲料快速预警通报(RASFF)中肉类产品汇总分析 [J].肉类工业,2011, (03):83-96.
    [43]潘剑平.动物源性空肠弯曲杆菌耐药性流行分布研究lD].上海交通大学,2008.
    [44]Fredman P. The role of antiglycolipid antbodiies in neurological disorder [J]. J Ann NY Acard Sci,1998,84(5):341-352.
    [45]罗海天.2006.弯曲杆菌的流行病学、生态学及其可能的控制方法[T].国外畜牧学,26(2):32-33.译自《World Poultry)) 2005,21(7):26-27
    [46]刘德福.仔貂空肠弯曲杆菌感染诊治报告[J].畜牧与兽医,2005,37(12):34-35.
    [47]刘文斌,杨秀敏,周宁等.空肠弯曲杆菌与弗氏完全佐剂诱导系统性红斑狼疮样小鼠模型的建立[J].中国实验动物学报,2009,17(5):341-344.
    [48]焦新安.禽源空肠弯曲杆菌及其控制[C].中国家禽,2010,32(22):35-36.
    [49]Karlshev A V, Henderson J, Ketley J M, et al. An improved physical and genetic map of Campylobacter jejuni [J]. Microbiology,1998,144:503-508.
    [50]吴润.人和畜禽的空肠弯曲杆菌分离培养及带菌状况调查[J].2000,30(1):13-15.
    [51]吴润等.经济动物的空肠弯曲菌带菌调查和细菌分离培养研究[J].甘肃农业大学学报,1993,28(2):105-111.
    [52]李忠阳,张嘉兆,张英.鸡空肠弯曲菌带菌情况的调查分析[J].肉品卫生,1994,(4):7-9.
    [53]罗天海,Diane Newell.弯曲杆菌的流行病学、生态学及其可能的控制方法[J].国外畜牧学.猪与禽,2006,(02):32-34.
    [54]吴忠亮.浅谈弯曲杆菌病的流行现状[J].上海畜牧兽医通讯,2006, (02):81-82.
    [55]Luangtongkum T. Morishita TY, Ison AJ, et al. Effect of conventional and organic production practices on the prevalence and antimicrobial resistance of Campylobacter spp. in poultry [J]. Appl Environ Microbiol,2006,72(5):3600-3607.
    [56]陈杖榴,吴聪明,蒋红霞等.兽用抗菌药物耐药性研究概况[J].四川生理科学杂志,2005,(12):24-26.
    [57]Wittwer M, Keller J. Wassenaar TM, et al. Genetic diversity and antibiotic resistance patterns in a campylobacter population isolated from poultry farms in Switzerland[J]. Appl Environ Microbiol,2005,71(6):2840-2847.
    [58]Smith K E, Besser J M, Hedberg C W, et al. Quinolone-resistant Campylobacter jejuni infections in Minnesota,1992-1998 [J]. Nengl J Med,1999,340:1525-1532.
    [59]朱光富,张顺合.儿种自动细菌鉴定系统鉴定食源性致病菌的准确性和重现性的评价(上)[J].肉品卫生,2000.(02):7-10.
    [60]黎诚耀,王世若,宋耀彬等.间接ELISA对鸡猪空肠弯曲菌快速检验的实验研究[J].兽医大学学报,1987,(01):28-34.
    [61]韩文瑜,黎诚跃,王世若等.空肠弯曲菌共同抗原单克隆抗体的研制及其在细菌检验中的应用[J].中国人兽共患病杂志,1990,(03):220-223.
    [62]朱建国,侯建军,姜毅等.空场弯曲杆菌的聚合酶链式检测反应[P].上海交通大学,2009.
    [63]张晓利.动物性食品源空肠弯曲杆菌的分离鉴定及其二重PCR检测方法的建立[D].四川农业大学,2009.
    [64]Whiteley M, Bangera MG, Bumgarner RE, et al. Gene expression in Pseudomonas aeruginosa biofilms[J]. Nature,2001,413(6858):860-864.
    [65]王睿,陈迁,方向群等.尿激酶或叫激酶与氟罗沙星联合作用对细菌生物被膜的影响[J].药学学报,1999,34(9):662-665.
    [66]韩北忠,陈秋云.生物被膜在食品加工过程中的形成及其控制[J].中国食品学报,增刊,003:527-529.
    [67]干霞芳,李蒙英.生物膜和生物膜形成菌的研究[J].安徽大学学报,2007,31(6):91-94.
    [68]于树云.表皮葡萄球菌临床株生物膜形成的检测与药物对生物膜干预作用的实验研究[D].天津医科大学,2009.
    [69]Verstraeten N, Braeken K, Debkumari B, et al. Living on a surface:swarming and biofilm formation [J]. Trends in Microbiology,2008,16:496-506.
    [70]Oulahal N, Brice W, Martial A, et al. Quantitative analysis of survival Staphylococcus aureus or Listeria innocua on two types of surfaces:propylene and stainless steel in contact with three different dairy products[J]. Food Control,2008,19:78-185.
    [71]Pereira A, Mendes J, Melo LF. Using nanovibratious to monitor biofouling [J]. Biotechnology and Bioengineering,2008,15:1407-1415.
    [72]Allos BM, Lippy FE. Carlsen AR, et al. Serotype, serum resistance and 125 I-C3 binding among C.jejuni strains from patients with Guillain-Barre' syndrome or with uncomplicated enter-itis[J]. Emerg Infect Dis,1998.4 (26):3-8.
    [73]PrattLA, and Kolter R. Genetic analysis of Escherichia coli biofilm formation:roles of flagella, motility, chemotaxis and type I pili [J]. Molecular Microbiology.1998.30: 285-293.
    [74]Simoes M. Simoes LC. Machado, et al. Control of flow-generated biofilms using surfacants evidence of resistance and recovery [J]. Food and Bioproducts Processing. 2006,84:338-345.
    [75]Costerton J W, Stewart PS, Greenberg EP. Bacterial biofilms:a common cause of persistent infections[J]. Science,1999,84(5418):1318-1322.
    [76]Beule AG, Hosemann W. Bacterial biofilms [J]. Laryngorhinootologie,2007.86(12): 886-896.
    [77]Whiteley M. Bangera MG, Bumgarner RE, et al. Gene expression in Pseudomonas aeruginosa biofilms [J. Nature,2001,413(6858):860-864.
    [78]Hawser SP. Badal RC, Bouchillon SK, et al. Monitoring the global in vitro activity of crtapenem against Escherichia coli from intra-abdominal infections:SMART 2002-2010[J]. Infect,2013.4;224-228.
    [79]陈铁柱,李晓声,曾文魁等.细菌生物膜耐药机制的研究进展[J].中国组织工程研究与临床康复,2010,14(12):2205-2208.
    [80]Stewart PS, Costerton J W. Antibiotic resistance of bacteria in biofilm[J]. Lancet. 2001,58:135-138.
    [81]Raadl, A1 rah wan A, Rolston K. Staphylococcus epidermidis:emerging resistance and need for alternative agents [J]. Gin Infect Dis,1998,26(5):1182-1187.
    [82]裴斐,王睿,柴栋等.抗藻酸盐血清对粘液型铜绿假单胞菌粘附性和生物被膜渗透性的影响[J].中国临床药理学杂志,2001,17:423-426.
    [83]史巧.细菌生物膜与耐药性相关性研究进展[J].微生物通报,2008,35(10):1633-1637.
    [84]黄晓群.细菌生物膜及其相关感染性疾病的研究进展[J].右江医学,2007,35(1):9596.
    [85]Vans DJ, Allison DG, Brown MR, et al. Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin:effect of specific growth rate[J]. Antimicrob Chemother,1991,27:177-184.
    [86]Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin[J]. Antimicrobial Agents and Chemotherapy,2000,44:1818-1824.
    [87]Schauder S, Shokat K, Surette MG, et al. The Luxs family of bacterial autoinducer:bios- ynthesis of a novel quorum-sensing signal molecule[J]. Mol Microbiol.2001.41(2):463-476.
    [88]Adams JL, Mclean RJC Impact of rpoS deletion on Escherichia coli biofilms[J]. Appl Environ Microbiol,1999,65(9):4285-4287.
    [89]Teixeiraa P, Lopesb Z., Azeredoa J, et al. Physico-chemical surface characterization of a bacterial population isolated from a milking machine[J]. Food Microbiol,2005,22:247-251.
    [90]Keren I, Kaldalu N, Spoering A, et al. Persister cells and tolerance to antimicrobials[J]. FEMS Microbiol Lett,2004,30(1):13-18.
    [91]周洁,韦莉萍.细菌生物膜的形成及其耐药性研究进展[J].第一军医大学分校学报,2005,12:3-4.
    [92]Wasfy MO, Oyofo BA, David JC, et al. Isolation and antibiotic susceptibility of Salmonella, Shigella, and Campylobacter from acute enteric infections in Egypt[J]. Health Popul Nutr,2000,18:33-38.
    [93]彭丽萍.共刺激分子CTLA_4-Ig对支气管哮喘治疗作用的实验研究[D].吉林大学,2004.
    [94]赵树臣,许微微,李培锋等.治疗子宫内膜炎中药组方筛选及抑菌试验[J].黑龙江畜牧兽医,2007,(6):87-88.
    [95]张振国.中药乳头灌注剂治疗临床型奶牛乳腺炎的研究[D].东北农业大学,2009.
    [96]范开,孙艳争,赵德明.奶牛临床型乳房炎与炎区微循环障碍关系探讨[J].中国兽医杂志,2005,(11):32-33.
    [97]赵长红,何高明,王彦亮等.奶牛乳房炎与自由基关系的研究进展[J].山东畜牧兽医,2009,30(1):46-47.
    [98]李慈.不同抗氧化剂对组织损伤的保护作用[J].海军医学杂志,2001,(1):89-91.
    [99]孙景春,艾清,张玲,等.乳酸脱氢酶同工酶1(LD1)在诊断儿童心肌细胞损伤中的应用[J].中国实验诊断学,2009,13(1):81-82.
    [100]赵树臣.中药组方治疗奶牛子宫内膜炎的研究[D].内蒙古农业大学,2007.
    [101]Markert C L, Ursprung H. The omogeny Of isozyme patterns of LDH in the mouse[J]. Develop Biol,1962, (5):363-381.
    [102]Feldman EG. Consistency in Stability Testing[J]. Pharmsci,1979, (68):1.
    [103]许丹宁.奶牛乳房炎病原菌的分离鉴定及药敏试验[D].东北农业大学,2004.
    [104]赵树臣,许微微,李培锋等.治疗子宫内膜炎中药组方筛选及抑菌试验[J].黑龙江畜牧兽医,2004,(6):87-88.
    [105]贺凤.运动性血色素下降发生过程中大鼠血清及肝脏MDA、SOD、GSH-Px变化的动态观察[D].北京体育大学,2004.
    [106]李永通,任铁,陆曼姝.奶牛血清乳酸脱氢酶(LDH)同工酶与生产性能的相关研究[J].贵州农业科学,1993,(5):43-45.
    [107]冯玉麟,刘怡虹,钱丹珠,等.乳酸脱氢酶(LDH)对科尔沁奶牛后代性比的影响 [J].中国奶牛,2008,(7):30-31.
    [108]石芙蓉.野猪和家猪血清乳酸脱氢酶活性测定及分析[J].畜禽业,2008,(229):49-50.
    [109]孙景春,艾清,张玲,等.乳酸脱氢酶同工酶1(LDH1)在诊断儿童心肌细胞损伤中的应用[J].中国实验诊断学,2009,13(1):81-82.
    [110]Buswell CM Y.M, Herlihy LM, Lawrence, et al. Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-an -tibody and -rRNA staining[J]. Appl. Environ. Microbiol, 1998,64:733-741.
    [111]G. W. P Joshua, C. Guthrie-Irons, A. V. Karlyshev, et al. Biofilm formation in Campylobacter jejuni [J]. Microbiology,2006,152:387-396.
    [112]Ryan J.Reeser, Robert T. Medler, Stephen J, et al..Characterization of Campylobacter jejuni Biofilms under Defined Growth Conditions[J]. Applied and Environmental Microbiology,2007,73(6):1908-1913.
    [113]Hanning. Campylobacter biofilm phenotype exhibits reduced colonization potential in young chickens and altered in vitro virulence[J]. Poultry Science.2009,88:1102-1107.
    [114]Alter T, Scherer K. Stress response of Campylobacter spp. and its role in food processing[J]. Vet Med B Infect Dis Vet Public Health,2006,53(8):351-357.
    [115]Pearson A D, Greenwood, M H Feltham, R K, et al. Microbial ecology of Campylobacter jejuni in a United Kingdom chicken supply chain:intermittent common source, vertical transmission, and amplification by flock propagation[J]. Appl Environ Microbiol,1996,62:4614-4620.
    [116]Zimmer M, Barnhart H, Idris U., Lee MD. Detection of Campylobacter jejuni strains in the water lines of a commercial broiler house and their relationship to the strains that colonized the chickens[J]. Avian Dis 2003,47:101-107.
    [117]Trachoo N, Frank, JF, Stern NJ. Survival of Campylo-bacter jejuni in biofilms isolated from chicken houses [J]. Food Prot,2002,65:1110-1116.
    [118]Keevil C W. Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy[J]. Water Sci Technol,2003, (47):105-116.
    [119]Somers EB, Schoeni JL, Wong AC. Effect of trisodium phosphate on biofilm and planktonic cells of Campylobacter jejuni, Escherichia coli 0157:H7, Listeria monocyto-genes and Salmonella typhimurium[J]. Int J Food Microbiol,1994, (22):269-276.
    [120]梁成彪.2010年欧盟食品和饲料快速预警通报(RASFF)'中肉类产品汇总分析[J].肉类工业,2011,(3):44-45.
    [121]朱建国,侯建军,姜毅等.空肠弯曲杆菌的微需氧分离培养办法[P].上海交通大学,2009.
    [122]朱建国,侯建军,姜毅,等.空场弯曲杆菌的聚合酶链式检测反应[P].上海交通大学,2009.
    [123]胡锦松,陈豪泰,张杰等.细菌生物被膜鉴定方法的研究进展[J].中国兽医科学,2010,(11):1194-1199.
    [124]李忠阳,张嘉兆,张英.鸡空肠弯曲菌带菌情况的调查分析[J].肉品卫生,1994,(04):7-9.
    [125]Guangming Liu. Yali Han, Xi Li. et al. Applicability of a rapid method based on immunomagnetic capture-fluorescent PCR assay for Campylobacter jejuni[J]. Food Control,2006,17(7):527-532.
    [126]余波.奶牛隐性乳房炎无乳链球菌生物膜鉴定与药敏实验研究[D],东北农业大学,2009.
    [127]朱莲娜,郑薛斌.细菌生物膜及其相关感染的研究进展[J].广西医学,2001,23(5):1002-1005.
    [128]杨朵,张正.细菌生物膜及其相关研究进展[J].中国实验诊断学,2007,11(10):1416-1421.
    [129]JEFFZ, PHILIP S S. Transmission electron microscopic study of antibiotic action on Klcbsiella pneumoniae biofilm [J]. Anti-microb Agents Chemother,2002,46(8): 2679-2683.
    [130]Mark Reuter. Arthur Mallett, Bruce M. Biofilm Formation by Campylobacter jejuni Is Increased under Aerobic Conditions[J]. Applied and Environmental Microbiology, 2010,76(7):2122-2128.
    [131]Reeser RJ, RT Medler, S J Billington, et al. Characterization of Campylobacter jejuni biofilms under defined growth conditions[J]. App. Environ. Microbio,2007, 73:1908-1913.
    [132]Fields JA, SA Thompson. Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion [J]. Bacteriol,2008,190: 3411-3416.
    [133]MCLENNAN MK, RINGOIR D D, FRIRDICH E. Campylobacter jejuni biofilms up-regulated in the absence of the stringent response utilize a calcofiuor white-reactive polysac-charede[J]. Bacteriol,2008,190(3):1097-1107.
    [134]谢红梅,胡必杰,周昭彦等.铜绿假单胞杆菌生物膜形成影响因素的研究[J].中华医院感染杂志,2007,17(12):1475-1510.
    [135]李静,马勋.粪肠球菌生物膜的形成及影响因素[J].中国预防兽医学报,2008,30(7):523-526.
    [136]Teixeiraa P, Lopesb Z, Azeredoa J, et al. Physico-chemical surface characterization of a bacterial population isolated from a milking machine[J]. Food Microbiol,2005,22: 247-251.
    [137]Stoodley P, Wilson S, Hall-Stoodley L, et al. Growth and detachment of cell clusters from mature mixed-species bioillms [J]. Bacteriol, 2008, 190: 3411-3416.
    [138]董成亚,马小彤.生物被膜分散方式的研究进展[J].微生物学通报,2005,32(6):120-123.
    [139]Hood SK, Zotlola EA. Adherence to stainless steel by foodborne microorganisms during growth in model food systems[J]. Food Microbiol, 1997, 7(2-3): 145-153.
    [140]李焕新.聚乙烯表面生物被膜的形成和抑制[P].中国科学院,2009.
    [141]Binotto E, Mclever C J, Hawkins GS. Ciprofloxacin-rcsistant Campylobacter jejuni infections [J], Med J, 200, 172: 244-245.
    [142]Yunghua Li, Robert A Bunre. Reuglation of the gtfBC and ftf genes of streptococcus Mutnasin biofilms in response to PH and carbohydrate [J]. Microbiology, 2001, 147 (10): 2841-2848.
    [143]Suaer K, Camper AK。Characteriaztion of phenotypic Changes in pseudomonas Putidain Response to Surface-Associated Growlh[J]. Baeleriol, 2001, 183(22): 6579-6589.
    [144]Vandevivcre P, Kirchman DL. Attachment Stimulaets F.xoPolysac charide Synthesis By a Baeterium[J]. Appl. Environ Mierobiol, 1993, 59(10): 3280-3286.
    [145]Davics DG, Chkarabarty AM, Gcesey GG. ExoPolysaccharidc Production in biofilms: Substratum activation of alginate gene expression by Pseudomonas acruginosa[J]. Appl. Environ Mierobiol, 1993, 59(4): 1181-1186.
    [146]葛建平.粘性放线菌在生物膜和浮游状态合成胞外多糖的比较研究[D].四川大学,2004.
    [147]Robcrson EB, MK Firestone. Relationship between desiccation and Exopolysaccharide production in a soil pseudomonas sp. [J]. Appl. Environ Mierobiol, 1992, 58: 1284-1291.
    [148]Yamashita Y, Bowenn WH, Buunre RA, et al. Role of the streptococcus mutans gtf gens in caries induction in the spccific-Pathogen-free rat model[J]. Inefct Immun, 1993, 61(9): 3811-3813.
    [149]Belas R, M Simon, M Silvcrman. Regulation of lateral flagella gene transcription in Vbnoi Parahaemolyticus [J]. J. Baeleriol, 1986, 67(1): 210-21.
    [150]Dagostino L, AE Goodman, KC Marshall. Physiological responses in bacteria Adhering tosurfaces[.IJ. Bioofuling, 1991,(4): 113-119.
    [151]Silverman M, R Belas, M Simon. Genetic control of bacterial adhesion, Microbial Adhesion and aggregation[J]. Mierobiol, 1984, 116: 133-141.
    [152]SunNyuntWai, Yoshimitsu Mizunoc, Akemi Takadc, et al. Vibrio cholerae 01 Srtain TSI-4 Produces the Exopolysaccharide Materials That Detemrine Colony Moprhology, Stress esistnaee and Biofilm Formation[J]. Appl. Environ Mierobiol, 1998, 64(10): 3648-3655.
    [153]Wrangstadh M, PL Conwa, S kjcllebcrg. The Porduction and release of an Extracellular Polysaccharidc during satvration of a marine Pseudomonas sp . And the Effect thereof on adhesion [J]. Arch. Mierobiol,1986,145(3):220-227.
    [154]BunreRA, ChenYM, Penders JE. Analysis of gene expression in streptoeoccus Mutans in biofilms in vitro[J]. Ady Dent Res,1997,1(11):100-109.
    [155]Bengstson G. Bacterial exo Polymernad PHB Pro duetionin fiuetuating ground-water hbaiatts.FEMSMo erobiol.Eeol.1991,86:15-24.
    [156]Wexler DL, HudsonMC, Burne RA. SrtePtoeoccus mutnas fructosyl transefrase and glueosyltranse frase operon fusion strains in continuous culture[J]. Infect Immun, 1993,61(4):1259-1260.
    [157]CoplinDL, DCook. Moleeular geneties of extracellular polysaeeharide biosyntehsis In vaseular PhytoPathogenic bacteria[J]. MolPlant-mierobe interact,1990,3(5):272-279.
    [158]Wrnagstadh M, PL Conway, S Kjelleberg. The Porduetion and release of an Extracellular Polysaccharide during satvration of amarine Pseudomonas sp. and the effect there of on adhesion[J]. Arch. Mierobiol,1986,145(3):220-227.
    [159]Costerton J W, S Lewnadowski, DECaldwell, et al. Miero bial biofilms[J]. Annu. Rev. Mierobiol,1995, (49):711-745.
    [160]Devalt JD, K. Kimbara, AM Chakrabarty. Pulmonary dehydration and infection in Cystic fibrosis:evidence that ethnaol activates alginate gene expression and induction of mueoidy in pseudomonas aeurginosa[J]. Mol Mierobiol,1990,4(5):737-745.
    [161]阳成波,蒋原,黄克和.空肠弯曲杆菌感染流行病学研究进展[J].动物医学进展,2002,23(6):10-13.
    [162]Veron M, Chatelain R. Taxonomic study of the genus Campylobacter Sebald and Veron and designation of the neotype strain for the type species, Campylobacter fetus Sebald and Veron[J]. Int J Syst Bact,1973,23:122-134.
    [163]Verstraete, N, Braeken K, Debkumar B, et al. Living on a surface:swarming and biofilm formation[J]. Trends in Microbiology,2008,16:496-506.
    [164]Maja Abram, CA, Darinka Vu/Eckovic, Branka Wraber. Plasma cytokine response in mice with bacterial infection[J]. Mediators of Inflammation,2000, (9):229-234.
    [165]Jung S, S Zimmer, Lu neberg, et al. Lipooligosaccharide of Campylobacter jejuni prevents myelinspecific enteral tolerance to autoimmune neuritis-a potential mechanism in Guillain-Barre'syndrome? [J]. Neurosci Lett,2005, (381):175-178.
    [166]Al-Salloom, F S. A Al Mahmeed, A Ismaeel, et al. Campylobacter-stimulated INT 407 cells produce dissociated cytokine profiles[J]. Infect.,2003,47:217-224.
    [167]Raqib, B A A Lindberg, B Wretlind, et al. Persistence of local cytokine production in shigellosis in acute and convalescent stages[J]. Infect Immun,1995,63:289-296.
    [168]Enocksson, A J Lundberg, E Weitzberg, et al. Rectal nitric oxide gas and stool cytokine levels during the course of infectious gastroenteritis[C]. Clin Diagn Lab Immunol,11:250-254.
    [169]Pancorbo, P L M A De Pablo. E Ortega, et al. Evaluation of cytokine production and phagocytic activity in mice infected with Campylobacter jejuni[J]. Curr Microbiol. 2004,39:129-133.
    [170]Monteville MR, Konkel ME. ibronectin-facilitated invasion of T84 eukaryotic cells by Campylobacter jejuni occurs preferentially at the basolateral cell surface[J]. Infect Immun,2002,70(12):6665-71.
    [171]Van Rhijn I, Van den Berg LH, Ang CW, et al. Expansion of human gd T cells after in vitro stimulation with Campylobacter jejuni[J]. Int Immunol,2003,5(3):373-382.
    [172]Hall HTL, Petrovic J, Ho glund P. Reduced antigen concentration and costimulatory blockade increase IFN-g secretion in naive CD8CT cells[J]. Eur J Immunol,2004, (34):3091-101.
    [173]Nadia Al-Banna, Raj Raghupathy, M John Albert. Correlation of proinflammatory and Anti-Inflammatory Cytokine Levels with Histopathological Changes in an Adult Mouse Lung Model of Campylobacter jejuni Infection[J]. CLINICAL AND VACCINE IMMUNOLOGY, Dec,2008,1780-1787.
    [174]SHAHIDA BAQAR, NANCY D, PACHECO, et al. Modulation of Mucosal Immunity against Campylobacter jejuni by Orally Administered Cytokines[J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Dec,1993,2688-2692.
    [175]Liu Z. R J Simpson, C Cheers. Recombinant interleukin-6 proteus mice against experimental bacterial infection[J]. Infect Immun,1992,60:4402-4406.
    [176]Abbas A K, Murphy K M, Sher A. Functional diversit of helper Tymphocytcs[J]. Nature,1996,383(6603):787-793.
    [177]王云英.肺炎克雷伯菌生物膜对机体免疫功能的影响.[D].四川大学,2010.
    [178]Adam J, Ritchie, Andrew O W, et al. Modification of in Vivo and In Vitro T-and B-Cell-Mediated Immune Responses by the Pseudomonas aeruginosa Quorum-Sensing Molecule N-(3-Oxododecanoyl)-L-Homoserine Lactone[J]. Infect Immun,2003, 71(8):4421-4431.
    [179]刘晓岚,宋志军,吴红,等.铜绿假单胞菌lasR rhlR基因缺陷对大鼠慢性肺部感染的影响[J].中华微生物学和免疫学杂志,2007,27(12):784-788.
    [180]Nuno Cerca. Kimberly K, Jefferson, et al.2Comparative Antibody-Mediated Phagocytosis of Staphylococcus epidermidis Cells Grown in a Biofilm or in the Planktonic State[J]. Infect Immun,2006,74(8):4849-4855.
    [181]Taubman M A, Kawai T, Han X. The new concept of periodontal disease pathogenesis requires new and novel therapeutic strategies[J]. J Clin Periodontol,2007. May, 34(5):367-369.
    [182]Aujla S J, Dubin P J, Kolls J K. Th17 cells and mucosal host defense [J]. Semin Immunol,2007,19(6):377-382.
    [183]Peter. Jensen, Thomas B, Richard Phipps, et al. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa[J]. Microbiology.2007.153:1329-1338.
    [184]白丹,余加林,万珍艳,等.铜绿假单胞菌生物膜悬液和藻酸盐对小鼠巨噬细胞吞噬功能的影响[J].中国微生态学杂志,2008,4(20):733-736.
    [185]DOUGLASB L, BRESTEL E P, Seetharama S. Hypochlorite scavenging by Pseudom on asaeruginosa alginate[J]. Infect Immun.1987.55:1813-1818.
    [186]JENSEN. Human polymorphonuclear leukocyte response to Pseudosm onas aeruginosa grown in biofilms[J]. Infect Immun,1990,58:2383-2385.
    [187]MELUEN I. Mucoid Pseudom onas aeruginosa growing in a biofilm invitro are killed by op sonic antibodies to the mucoid exopolysaccharidecap sule but not by antibodies p roduced during chronic lung infection incystic fibrosis patients [J]. J Immunol,1995,155: 2029-2038.
    [188]Begun J, Gaiani J M, Rohde H, et al. Staphylococcal biofilm exopolys accharide protects against Caenorhabditis elegans immune defenses[J]. PLoS Pathog,2007, 3(4):57.
    [189]H rtel C, Osthues I, Rupp J, et al. Characterisation of the host inflammatory responsc to Staphylococcus epidermidis in neonatal whole blood [J]. Arch Dis Child Fetal Neonatal Ed,2008,93(2):140-145.
    [190]SUCIPA, MITTELMAN M W, YU F P. Investigation of cip rofloxac in penetration into Pseudom onas aeruginosa biofilms [J]. Antimicrob A-gents Chemother,1994,38: 2125-2133.
    [191]STIVER. Inhibition of polymorphonuclear leukocyte chemotaxis by the mucoid exopolysaccharide of Pseudom onas aeruginosa [J]. Clin Invest Med,1988,11 (4): 247-252.
    [192]DRENKARD E. Antimicrobial resistance of Pseudom onas aeruginosa biofilms [J] Microbes and Infection,2013,10:1213-1219.
    [193]Jyotsna Chandra, Thomas S, McCormick, et al. Interaction of Candida albicans with Adherent Human Peripheral Blood Mononuclear Cells Increases C. albicans Biofilm Formation and Results in Differential Expression of Pro-and Anti-Inflammatory Cytokines[J]. Infection and Immunity,2007,75(5):2612-2620.
    [194]Walker T S, Tomlin K L, Worthen G S, et al. Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils[J]. Infect Immun. Jun,2005, 733(6):693-701.
    [195]邵庆均.中华鳖体内Vc合成及其对饲料Vc需求的研究[D].浙江大学,2007.
    [196]唐茂芝,黄昆仑等.转基因棉籽的食用安全性及对大鼠抗氧化系统影响的研究[J].食品科学,2006,(06):216-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700