用户名: 密码: 验证码:
钱塘江流域水环境承载能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水污染造成的水资源紧缺已成为我国流域社会经济发展的重大瓶颈,是影响流域水环境承载力的关键要素。如何准确评估流域水环境承载力,成为当前流域水质管理的研究热点。本研究针对流域水环境承载力量化技术问题,以浙江省境内的钱塘江流域为研究对象,从狭义水环境承载力角度,量化了流域干流和主要一级支流水体纳污能力,探索性地开展了流域典型河段水质管理研究;同时从广义水环境承载力角度,评价了社会经济发展情景下的流域水环境承载力。研究结果主要包括:
     1、建立了钱塘江流域水体COD和氨氮纳污能力量化方法。通过对山溪性河流、湖泊水库、感潮河段以及各断面水质达标要求研究,运用一维、二维水质模型,测算了流域干流和一级支流水体COD、氨氮纳污能力。结果表明,在75%水文保证率流量下,钱塘江流域水体COD和氨氮总纳污能力分别为252239 t·a~(-1)与15369 t·a~(-1)。主要干流水体COD和氨氮纳污能力大小依次为:新安江>富春江>钱塘江>兰江>衢江;各行政区COD和氨氮纳污能力大小依次为:杭州市>衢州市>金华市>绍兴市>丽水市。
     2、创新了流域BOD纳污能力估算技术。基于QUAL2K模型和一维水质模型,研究了钱塘江流域非感潮河段干流和一级支流水体BOD纳污能力。结果表明,基于QUAL2K模型的纳污能力计算值大于一维模型计算值,基于QUAL2K模型的m值水体纳污能力计算法,结合了总量控制与浓度控制理念,更适用于钱塘江流域水体纳污能力计算。75%水文保证率流量下,流域水体BOD总纳污能力为105809 t·a~(-1);主要干流BOD纳污能力大小依次为:富春江>钱塘江>新安江>衢江>兰江;各行政区从大到小依次为:杭州>金华>衢州>绍兴>丽水。
     3、探索了基于纳污能力的流域水质目标管理技术。为解决流域水质与水功能区要求间失衡的环境问题,以金华江流域义乌段为典型河段,基于QUAL2K模型和一维水质模型,借鉴TMDL流域管理模式,建立了基于纳污能力并同时考虑点源和面源的COD、氨氮和BOD日最大排污量水质管理模式,开展了污染负荷削减研究。结果表明,流域COD、氨氮和BOD总纳污能力分别为7264.6 kg·d~(-1)、431.2 kg·d~(-1)和4865.5 kg·d~(-1);COD、氨氮和BOD现状排放量分别削减79.38%、88.71%和49.63%,才能基本满足义乌江流域水环境功能区要求。建议通过发展生态农业、建立滨河植被缓冲带等最佳管理措施,实现面源污染负荷削减,同时还应加强削减点源污染负荷。
     4、构建了社会经济发展情景下的水环境承载力评价方法。根据钱塘江流域社会经济发展规划要求及水环境污染现状,从经济社会、资源环境、技术管理等角度,设计了流域水环境承载力评价指标体系,构建了三级层次结构模型,对钱塘江流域水环境承载力进行现状综合评价和中远期情景预测分析。结果表明,2000到2005年之间,除2001年外钱塘江流域主要行政区水环境承载力大小依次为杭州>金华>衢州,2001年为杭州>衢州>金华。维持现状、节水、增加环保投资、降低单位COD排放强度等4种措施,可不同程度地提高2010年与2015年流域水环境承载力。
     水环境承载力的量化技术研究,将有利于流域产业结构调整和开发格局优化,可为流域污染物总量控制的实施与水质改善提供科学依据。
In China, water resources shortage because of water pollution becomes the vital problem to economical development and it is the key influential factor of the carrying capacity of water environmental in watershed. How to evaluate water environmental carrying capacity exactly has become a hot topic in watershed water-quality management. In order to study water environmental carrying capacity of watershed, taking Qiantang River watershed in Zhejiang province as an example. This dissertation aimed to develop methods of calculating the capacities to assimilative chemical oxygen demand(COD), ammonium(NH_4~+-N) and biochemical oxygen demand(BOD) using different water quality models. According to the results of assimilative capacity, the load reduction and allocation in typical river segment of Qiantang River watershed were studied on the basis of the principles of Total Maximum Daily Load. And the water environmental carrying capacity of Qiantang river was evaluated based on index system under different social-economic development scenarios. The main results are summarized as follows.
     1. The quantitative method of COD and NH_4~+-N assimilative capacities were established. The capacity of the main stream of the Qiantang River and its primary tributary to assimilative COD and NH_4~+-N were calculated using the 1-D and 2-D water quality model. The results indicated that the total COD and NH_4~+-N assimilative capacity calculated based on 75% confidence instream flow condition is 252239 t·a~(-1) and 15369 t·a~(-1) respectively. The total COD and NH_4~+-N assimilative capacity of mainstream in Qiantang River watershed decreased in the following order: Xinan > Fuchun Segment > Qiantang Segment > Lan Segment > Qu Segment. The total COD and NH_4~+-N assimilative capacity, calculated according to district in Qiantang River watershed, decreased in the following order: Hangzhou> Quzhou > Jinhua > Shaoxing > Lishui.
     2. The BOD assimilative capacity calculation model and quantitative method were developed. The capacities of the main stream of non-tidal Qiantang River and its primary tributary to assimilate BOD were studied using two theoretical scenarios. Scenario 1 was based on a QUAL2K model, while Scenario 2 was based on a 1-D model. The BOD assimilative capacity calculated in the basis of the QUAL2K model was larger than that of the 1-D model. The m value assimilative capacity method based on the QUAL2K model is suitable for Qiantang River watershed, as it integrated Total Maximum Daily Load with pollutant concentration control. The total BOD assimilative capacity of Qiantang River watershed is 105809 t·a~(-1) under 75% confidence instream flow-condition, and it decreased in the following order: Fuchun Segment > Qiantang Segment > Xinan Segment > Qu Segment > Lan Segment. The total BOD assimilative capacity, calculated according to district in Qiantang River watershed, decreased in the following order: Hangzhou > Jinhua > Quzhou > Shaoxing > Lishui.
     3. The exploratory study for the technique of water-quality target management was carried out. In order to address the imbalance between water quality and designated use in Yiwu Segment, Jinhua River watershed, a environmental management mode for the watershed was developed based on assimilative capacity. The assimilative capacity of BOD and NH_4~+-N of the Yiwu Segment, Jinhua River watershed, was estimated on the basis of QUAL2K model, the assimilative capacity of COD was estimated on the basis of 1-D model. The COD, NH_4~+-N and BOD Total maximum daily load were developed while considering both point and non-point sources. The COD, NH_4~+-N and BOD assimilative capacity of Yiwu segment were 7264.6 kg·d~(-1), 431.20 kg·d~(-1) and 4865.5 kg·d~(-1) respectively. Under present condition, pollutant load reduction for COD, NH_4~+-N and BOD reached 79.38%, 88.71% and 49.63% respectively, and the water quality of Yiwu River watershed matched its designated use. The Best Management Practices such as ecological agriculture, riverfront vegetated buffer zone were suggested to reduce load from non-point sources. On the other hand, the load from point sources can not be ignored.
     4. The evaluation method of water environmental carrying capacity under different social-economic development scenarios was constructed. According to the socioeconomic development planning demand and water pollution state in Qiantang River watershed, an index system to evaluate the carrying capacity of watershed is designed from the aspects of economy, society, resources, environment, and technology, and a three-layer hierarchy-structured water environmental carrying capacity evaluation model was proposed. The current situation of water environmental carrying capacity was evaluated and different scenarios of medium or long period were analyzed using the water environmental carrying capacity evaluation model. The result of current situation evaluation showed that the carrying capacity of water environment in three regions from year 2000 to 2005, decreased in the following order: Hangzhou > Jinhua > Quzhou, except 2001. The scenarios analysis indicated that all of the four kinds measure, such as maintain current situation, save water, increase investment of environmental protection, reduce amount of COD per unit discharge, could improve the water environmental carrying capacity of Qiantang River watershed in 2010 and 2015 respectively.
     The quantitative technique research of water environmental carrying capacity will be useful for industrial structure adjustment and developmental pattern optimization, and can provide scientific basis for pollutant total amount control implementation and water quality improvement in watershed.
引文
Andreja D, Jana Z K. 1996. Water quality modeling of the river sava, slovenia [J]. Water Research, 30: 2587-2592
    Arnold J G., Williams J R, Maidment D R. 1995. Continuous-time water and sediment-routing model for large basins[J]. Journal of Hydraulic Engineering, 121 (2): 171-183
    Azzellino A, Salvetti R, Vismara R. 2006. Combined use of the EPA-Qual2E simulation model and factor analysis to assess the source apportionment of point and non point loads of nutrients to surface waters [J]. Science of the Total Environment, 371(1-3): 214-222
    Babu M T, Das V K, Vethamony P. 2006. BOD-DO modeling and water quality analysis of a waste water outfall off Kochi, west coast of India [J]. Environment International, 32 (2): 165-173
    Barnwell T O, Brown L C, Whittemore R C. 2004. Importance of field data in stream water quality modeling using QUAL2E-UNCAS [J]. Journal Of Environmental Engineering-ASCE, 130 (6): 643-647
    Benham B L, Baffaut C, Zeckoski R W, et al. 2006. Modeling bacteria fate and transport in watersheds to support TMDLs [J]. Transactions of the Asabe, 49(4): 987-1002
    Borsuk M E, Stow C A, Reckhow K H. 2002. Predicting the Frequency of Water Quality Standard Violations: A Probabilistic Approach for TMDL Development [J]. Environmental Science & Technology, 36 (10): 2109-2115
    Brown L C, Barnwell T O. 1987. The enhanced stream water quality models QUAL2E and QUAL2E-UNCAS: documentation and user manual. Athens, Georgia: US EPA; 1987. EPA/600/3-87/007.
    Chapra S C, Pelletier G J. 2003. QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality: Documentation and Users Manual [J]. Civil and Environmental Engineering Dept, Tufts University, Medford: 9-59
    Chou WS, Lee T C, Lin J Y, et al. 2007. Phosphorus load reduction goals for feitsui reservoir watershed, Taiwan[J]. Environmental Monitoring and Assessment, 131(1-3): 395-408
    Cooter W S. 2004. Clean Water Act Assessment Processes in Relation to Changing U.S. Environmental Protection Agency Management Strategies[J]. Environmental Science & Technology, 38 (20): 5265-5273
    Cox B A. 2003. A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers [J]. The Science of the Total Environment, 314: 335-377
    David A. 1999. Notification of Approval of Salmon Falls River TMDLs [R]
    Debele B, Srinivasan R, Parlange J Y. 2008. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins[J]. Environmental Modeling & Assessment, 13: 135-153
    Dijkman J. 1998. Carrying capacity:outdated concept or useful livestock management tool. In: Electronic conference of livestockxoping with drought.FAO and Overseas Development Institute,UK[OL]. On: http://www.odi.org.uk/pdn/drought/dijkman.html
    Dilks D W, Freedman P L. 2004. Improved consideration of the margin of safety in total maximum daily load development [J]. Journal of environmental engineering-ASCE, 130 (6): 690-694
    Drolc A, Kon(?)an J Z. 1996. Water quality modelling of the river Sava, Slovenia [J]. Water Research, 30(11):2587-2592
    Du S, Belton T J, Rodenburg L A. 2008. Source apportionment of polychlorinated biphenyls in the tidal Delaware River[J]. Environmental Science & Technology, 42(11): 4044-4051
    Eatherall A, Boorman D B, Williams R J, et al. 1998. Modelling in-stream water quality in LOIS [J]. Science of The Total Environment, 210 (1-6): 499-517
    Environmental Stewardship&Planning. 2000. El Dorado County River Management Plan Carrying Capacity White Paper.In: A Report prepared for Department and Services,EI Dorado County Placerville,California, 13-29
    Filoso S, Vallino J, Hopkinson C, et al. 2004. Modeling nitrogen transport in the Ipswich River Basin, Massachusetts, using a hydrological simulation program in fortran (HSPF) [J]. Journal of The American Water Resources Association, 40 (5): 1365-1384
    French C, Wu L S, Meixner T, et al. 2006. Modeling nitrogen transport in the Newport Bay/San Diego Creek watershed of Southern California [J]. Agricultural Water Management, 81(1-2): 199-215
    Galbiati L, Bouraoui E, Elorza F J, et al. 2006. Modeling diffuse pollution loading into a Mediterranean lagoon: Development and application of an integrated surface-sub surface model tool [J]. Ecological Modelling, 193(1-2): 4-18
    Hanley N, Faichney R, Munro A, et al. 1998. Economic and environmental modelling for pollution control in an estuary [J]. Journal of Environmental Management, 52(3): 211-225
    Harris J M, Kennedy S. 1999. Carrying capacity in agriculture: global and regional issues. Ecological Economics, 29(3): 443-461
    Havens K E, Schelske C L. 2001. The importance of considering biological processes when setting total maximum daily loads (TMDL) for phosphorus in shallow lakes and reservoirs[J]. Environmental Pollution, 113(1):1-9
    Horn A L, Rueda F J, Hormann G, et al. 2004. Implementing river water quality modelling issues in mesoscale watershed models for water policy demands-an overview on current concepts, deficits, and future tasks [J]. Physics And Chemistry Of The Earth, 29 (11-12): 725-737
    Jun K S, Kang J W, Lee K S. 2007. Simultaneous estimation of model parameters and diffuse pollution sources for river water quality modeling [J]. Water Science and Technology, 56(1): 155-162
    Kang M S, Park S W, Lee J J, et al. 2006 Applying SWAT for TMDL programs to a small watershed containing rice paddy fields [J] Agricultural Water Management, 79(1): 72-92
    Kao J J, Lin W L, Tsai C H. 1998. Dynamic spatial modeling approach for estimation of internal phosphorus load [J]. Water Research, 32: 47-56
    La Ware P, Rifai H S. 2006. Modeling fecal coliform contamination in the Rio Grande [J]. Journal of The American Water Resources Association, 42 (2): 337-356
    Lemly A D. 2002. A procedure for Setting Environmentally Safe Total Maximum Daily Loads (TMDLs) for Selenium [J]. Ecotoxicology and Environmental Safety, 52 (2): 123-127
    Lewis D R, Williams R J, Whitehead P G. 1997. Quality simulation along rivers (QUASAR): an application to the Yorkshire Ouse [J]. The Science of the Total Environment, 194/195: 399-418
    Litwack H S, DiLorenz J L, Huang P, et al. 2006. Development of a simple phosphorus model for a large urban watershed: A case study [J]. Journal of Environmental Engineering-ASCE, 132(4): 538-546
    Liu W C, Liu SY, Hsu M H, et al. 2005. Water quality modeling to determine minimum instream flow for fish survival in tidal rivers [J]. Journal of Environmental Management, 76: 293-308
    Magalhaes J, Flindt M R, Marques J C, et al. 2008. Modelling nutrient mass balance in a temperate meso-tidal estuary: Implications for management [J]. Estuarine Coastal and Shelf Science, 76: 175-185
    Migliaccio K W, Chaubey I, Haggard B E. 2007. Evaluation of landscape and instream modeling to predict watershed nutrient yields [J]. Environmental Modelling & Software, 22(7): 987-999
    Neary V S, Wright S A, Bereciartua P. 2001. Case study: Sediment transport in proposed geomorphic channel for Napa River [J]. Journal of Hydraulic Engineering-ASCE, 127(11): 901-910
    Neitsch S L, Arnold J G, Kiniry J R, et al. 2002. Soil and Water Assessment Tool Theoretical Documentation Version 2000 [M], Temple, Texas:Texas Water Resources Institute, College Station, 19-506
    Ning S K, Chang N B. 2007. Watershed-based point sources permitting strategy and dynamic permit-trading analysis [J]. Journal of Environmental Management, 84(4): 427-446
    Ormsbee L, Elshorbagy A, Zechman E. 2004. Methodology for pH total maximum daily loads: Application to beech creek watershed [JJ. Journal of Environmental Engineering-ASCE, 130 (2): 167-174
    Paliwal R, Sharma P, Kansal A. 2006. Water quality modelling of the river Yamuna (India) using QUAL2E-UNCAS[J]. Journal of Environmental Management, 2(3): 1-14
    Palmieri V, de Carvalho R J. 2006. Qual2e model for the Corumbatai River [J]. Ecological Modelling, 198(1-2): 269-275
    Park S S, Lee Y S. 2002. A water quality modeling study of the Nakdong River, Korea [J]. Ecological Modelling, 152(1): 65-75
    Pedersen J A, Yeager M A, Suffet I H. 2006. Organophosphorus insecticides in agricultural and residential runoff: Field observations and implications for total maximum daily load development[J]. Environmental Science & Technology, 40(7): 2120-2127
    Pieter H, Joost D J, Koos W. 1997. Transboundary cooperation in shared river basins, experience from Rhine, Meuse and North Sea[C]. Lesotho: EU-SADC Conference Maseru,84-92
    Population Division of the Department for Economic and Social Information and Policy Analysis,United Nations Secretariat. Population&the Environment in Developing Countries: Literature Survey and Research Bibliography[OL]. ESA/P/WP. 123.New York,United Nations, 1994.( http://www.un.org /popin/books/wp 1 .html)
    Richards C E, Munster C L, Vietor D M, et al. 2008. Assessment of a turfgrass sod best management practice on water quality in a suburban watershed [J]. Journal of Environmental Management, 86: 229-245
    Rothenberg S E, Ambrose R F, Jay J A. 2008. Evaluating the potential efficacy of mercury total maximum daily loads on aqueous methylmercury levels in four coastal watersheds[J]. Environmental Science & Technology, 42(15): 5400-5406
    SaatyTL. 1988.许树柏译.层次分析法(中译本)[M].北京:煤炭工业出版社
    Saltman T. 2001. Making TMDLs work[J]. Environmental Science & Technology[J], 35 (11): 248A
    Salvetti R, Azzellino A, Vismara R. 2006. Diffuse source apportionment of the Po river eutrophying load to the Adriatic sea: Assessment of Lombardy contribution to Po river nutrient load apportionment by means of an integrated modelling approach [J]. Chemosphere, 65(11): 2168-2177
    Stow C A, Borsuk M E. 2003. Assessing TMDL effectiveness using flow-adjusted concentrations: A case study of the Meuse River, North Carolina [J]. Environmental Science & Technology, 37 (10): 2043-2050
    Susilowati Y, Mengko T R, Rais J. 2004. Water Quality Modeling for Environmental Information System [C]. The 2004 IEEEAsia Pacific Conference on Circuit and system, 2: 929-932
    Thompson J R, Sorenson H R, Gavin H, et al. 2004. Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England [J]. Journal of Hydrology, 293 (1-4): 151-179
    Tim A, Robert W, Ambrosel B, et al. 2001. Water Quality Analysis Simulation Program (WASP) Version 6.0 DRAFT: User's Manual, 12-65
    Totten L A, Panangadan M, Eisenreich S I, et al. 2006. Direct and indirect atmospheric deposition of PCBs to the Delaware river watershed[J]. Environmental Science & Technology, 40(7): 2171-2176
    Trancoso A R, Saraiva S, Fernandes L, et al. 2005. Modelling macroalgae using a 3D hydrodynamic -ecological model in a shallow, temperate estuary [J]. Ecological Modelling, 187: 232-246
    Tufford D L, McKellar H N. 1999. Spatial and temporal hydrodynamic and water quality modeling analysis of a large reservoir on the South Carolina (USA) coastal plain [J]. Ecological Modelling, 114 (2-3): 137-173
    Venter S N, Steynberg M C, de Wet C M E,et al. 1997. A situational analysis of the microbial water quality in a peri-urban catchment in South Africa [J]. Water Science And Technology, 35 (11-12): 119-124
    Vuksanovic V, Smedt F D, Meerbeeck S V. 1996. Transport of polychlorinated biphenyls (PCB) in the Scheldt Estuary simulated with the water quality model WASP [J]. Journal of Hydrology, 174: 1-18
    Wagner R C, Dillaha T A, Yagow G. 2007. An assessment of the reference watershed approach for TMDLs with biological impairments [J] Water Air and Soil Pollution, 181(1-4): 341-354
    Whitehead P G, Williams R J, Lewis D R. 1997. Quality simulation along river systems (QUASAR): model theory and development [J]. The Science of the Total Environment, 194/195: 447-456
    Wool T A, Ambrosel R B, et al. 2001. Water Quality Analysis Simulation Program (WASP) Version 6.0 DRAFT: User's Manual[Z].Atlanta:US Envronmental Protection Agency, MS Tetre Tech, 12-51
    Young P, Beck B. 1974. Modeling and Control of Water-Quality River System[J]. Automatica, 10(5): 455-468
    Zhang H X, Yu S L. 2004. Applying the first-order error analysis in determining the margin of safety for total maximum daily load computations[J]. Journal of Environmental Engineering-ASCE, 130 (6): 664-673
    Zheng L Y, Chen C S, Zhang F Y. 2004. Development of water quality model in the Satilla River Estuary, Georgia[J]. Ecological Modelling, 178.(3-4): 457-482
    安贞煜,曾光明,张硕辅,等.2006.疏浚对洞庭湖水环境容量的影响分析[J].湖泊科学,18(5):509-514
    陈丁江,吕军,金树权,等.2007.非点源污染河流的水环境容量和分配[J].环境科学,28(7):1416-1424
    陈家军,于艳新,李森.2004.QUAL2E模型在呼和浩特市水质模拟中的应用[J].水资源保护,3:1-4
    陈燕华,李彦武,谋海省,等.1994.长江九江段水环境容量研究[J].环境科学研究,7(1):24-29
    陈永灿,刘昭伟.2005.三峡水库水环境承载能力的评价和分析[J].水科学进展,16(5):715-719
    程声通,陈毓龄.1996.环境系统分析[M].北京:高等教育出版社,30-40
    崔凤军.1998.城市水环境承载力及其实证研究[J].自然资源学报,13(1):58-62
    戴本林,杨立中,贺玉龙,等.2008.四川省茶坪河水环境容量及总量控制[J].湖泊科学,20(1):39-44
    冯海燕,张昕,李光永,等.2006.北京市水资源承载力系统动力学模拟[J].中国农业大学学报,11(6):106-110
    冯素萍,邹晓东,朱英,等.2004.大泣河水系主要河流BOD1-20降解规律的研究[J].山东大学学报(理工版),39(5):95-98
    龚若愚,周源岗.2001.柳江柳州段水环境容量研究[J].水资源保护,1:31-32
    关卉.2006.湛江市水环境容量测算[J].水资源保护,22(3):78-79,91
    郭怀成,唐剑武.1995.城市水环境与社会经济可持续发展对策研究[J].环境科学学报,15(3):363-369
    郭永彬,王焰新.2003.汉江中下游水质模拟与预测-QUAL2K模型的应用[J].安全与环境工程,10:4-7
    国家环境保护总局环境规划院.2003.全国水环境容量核定技术指南[R].北京:国家环境保护总局环境规划院,30-48
    贺瑞敏.2007.区域水环境承载能力理论及评价方法研究[D].南京:河海大学.34-35
    胡国华,赵沛伦,王任翔.2002.黄河孟津一花园口河段水环境容量研究[J].水资源保护,1:26-28
    黄真理,李玉粱,李锦秀,等.2004.三峡水库水环境容量计算[J].水利学报,(3):7-14
    贾振邦,董安生,赵智杰,等.1995.本溪市水环境承载力及指标体系[J].环境保护科学,21(3):8-11
    蒋晓辉,黄强,惠泱河,等.2001.陕西关中地区水环境承载力研究[J].环境科学学报,21(3):312-317
    金海生,郑英铭.1992.潮汐可流一维动态COD水环境容量计算模型[J].水利学报,(9):15-22
    雷宏军,刘鑫,陈豪,等.2008.郑州市水环境承载力研究[J].中国农村水利水电,7:15-19
    李国英.1999.海河流域治理前三大技术难题及具对策思路[J].水利水电技术,30(10):6-8
    李开明,陈铣成.1991.东莞运河水环境容量优化研究[J].环境科学研究,4(5):13-16
    李丽娟,郭怀成,陈冰,等.2000.柴达木盆地水资源承载力研究[J].环境科学,21(2):20-23
    李清龙,王路光,张焕祯.2004.水环境承载力理论研究与展望[J].地理与地理信息科学,20(1):87-89
    李如忠,汪家权,钱家忠.2004.模糊物元模型在区域水环境承载力评价中的应用[J].环境科学与技术,27(5):54-56
    李如忠.2006.基于指标体系的区域水环境动态承载力评价研究[J].中国农村水利水电,9:42-46
    李卫平,李畅游,王丽,等.2007.不同数学模型下的乌梁素海水环境氮磷容量模拟计算[J].农业环境科学学报,26(B10):379-385
    李永军,陈余道,孙涛.2005.地理信息模型方法初探河流环境容量-以漓江桂林市区段为例[J].水科学进展,16(2):280-283
    廖文根,李锦秀,彭静.2003.水体纳污能力量化问题探讨[J].中国水利水电科学研究院学报,1(3):211-215
    刘永,郭怀成.2008.湖泊-流域生态系统管理研究[M].北京:科学出版社,1-4
    刘树锋,陈俊合.2006.城市规划中的水资源承载力计算-以惠州市为例[J].水资源保护,22(3):47-50
    罗缙,逢勇,罗清吉,等.2004.太湖流域平原河网区往复河道水环境容量研究[J].河海大学学报(自然科学版),32(2):144-146
    罗定贵,王学军,孙莉宁.2005.水质模型研究进展与流域管理模型WARMF评述[J].水科学进展,16(2):289-294
    美国环保署TMDL实例[OL].http://www.epa.gov/owow/tmdl/examples/
    美国田纳西流域管理局[OL].http://www.tva.gov
    孟伟,刘征涛,孙楠,等.2008.流域水质目标管理技术研究(Ⅱ)-水环境基准、标准与总量控制[J].环境科学研究,21(1):1-8
    孟伟,张楠,张远,等.2007.流域水质目标管理技术研究(Ⅰ)--控制单元的总量控制技术[J].环境科学研究,20(4):1-8
    莫淑红,孙新新,沈冰,等.2007.基于系统动力学的区域水环境动态承载力研究[J].西安理工大学学报,23(3):251-256
    慕金波,酒济明.1997.河流中有机物降解系数的室内模拟实验研究[J].山东科学,10(2):50-55
    潘兴瑶,夏军,李法虎,等.2007.基于GIS的北方典型区水资源承载力研究-以北京市通州区为例[J].自然资源学报,22(4):664-671
    逢勇,程炜,赵玉萍.2003.鹤地水库文官至石角段水环境容量研究[J].河海大学学报(自然科学版),31(1):76-79
    阮本清,梁瑞驹,王浩,等.2001.流域水资源管理[M].北京:科学出版社
    施雅风,曲耀光.1992.乌鲁木齐河流域水资源承载力及其合理利用[M].北京:科学出版社,132-176
    石秋池.2005.欧盟水框架指令及其执行情况[J].中国水利,22:65-66,52
    宋国君.2002.论中国污染物排放总量控制和浓度控制[J].环境保护,6:11-13
    宿俊英,秦佩英,刘树坤,等.1992.太湖水环境容量的研究[J].水利学报,(11):22-36
    孙卫红,姚国金,逢勇.2001.基于不均匀系数的水环境容量计算方法探讨[J].水资源保护,64(2):25-26.44
    太湖流域管理局.2005.杭嘉湖地区水环境容量研究、水质模型开发报告[R].无锡:太湖流域管理局,19-36
    唐剑武,郭怀成,叶文虎.1997.环境承载力及其在环境规划中的初步应用[J].中国环境科学,17(1):6-9
    汪恕诚.2001.水环境承载能力分析与调控[J].水环境论坛,33(增刊):1-7
    王华,逢勇,丁玲.2007.滨江水体水环境容量计算研究[J].环境科学学报,27(12):2067-2073
    王俭,孙铁珩,李培军,等.2065.环境承载力研究进展[J].应用生态学报,16(4):768-772
    王俭,孙铁珩,李培军,等.2007.基于人工神经网络的区域水环境承载力评价模型及其应用[J].生态学杂志,26(1):139-144
    王美敬,罗麟,程香菊,等.2005.紊动对有机物降解影响研究[J].武汉大学学报(工学版),38(4):1-4
    王美敬,罗麟,卢红伟,等.2004.水中污染物扩散模型实验中的相似理论[J].四川大学学报(工程科学版),36(2):25-28
    王素娜,吕军,王世界,等.2006.曹娥江上游支流水环境容量的研究[J].农机化研究,(9):198-200,203
    王同生.2002.莱茵河的水资源保护和流域治理[J].水资源保护,(4):60-62
    夏军.2002.水资源安命的度量:水资源承载力的研究与挑战[J].自然资源学报,17(3):262-269
    新疆水资源软科学课题组.1989.新疆水资源及其承载力的开发战略对策[J].水利水电技术,(6):2-9
    邢有凯,余红,肖杨,等.2008.基于向量模法的北京市水环境承载力评价[J].水资源保护,24(4):1-3.9
    徐进,佘宗莲,郑西来,等.2004.QUAL2E模型在大沽河干流青岛段水质模拟中的应用[J].农村生态环境,20:33-37
    徐贵泉,褚君达,吴祖扬,等.2000.感潮河网水环境容量数值计算[J].环境科学学报,20(3):263-268
    徐中民,陈国栋.2000.运用多目标决策分析技术研究黑河流域中游水资源承载力[J].兰州大学学报(自然科学版),36(2):122-132
    许联芳,杨勋林,王克林,等.2006.生态承载力研究进展[J].生态环境,15(5):1111-1116
    许有鹏.1993.干旱区水资源承载能力综合评价研究[J].自然资源学报,8(3):229-237
    阳平坚,郭怀成,周丰,等.2007.水功能区划的问题识别及相应对策[J].中国环境科学,27(3):419-422
    姚国金,逢勇,刘智森.2000.水环境容量计算中不均匀系数求解方法探讨[J].人民珠江,2:47-50
    叶桂忠,刘俊.2003.漓江桂林市区段水环境容量研究[J].水资源保护,19(3):10-12,15
    于雷,吴舜泽,徐毅.2007.我国水环境容量研究应用回顾及展望[J].环境保护,03B:46-48,57
    张鑫,王正兴.2001.区域地下水资源承载力综合评价研究[J].水土保持通报,21(3):24-27
    张文国,杨志峰.2002.基于指标体系的地下水环境承载力评价[J].环境科学学报,22(4):541-544
    张玉珍,洪华生,曾悦,等.2003.九龙江流域畜禽养殖业的生态环境问题及防治对策探讨[J].重庆环境科学,25(7):29-30,31
    张忠祥.1996.我国城市畜禽养殖业的水污染防治[J].城市环境与城市生态,9(1):48-54
    赵卫,刘景双,苏伟,等.2008a.辽宁省辽河流域水环境承载力的多目标规划研究[J].中国环境科学,28(1):73-77
    赵卫,刘景双,孔凡娥.2008b.辽河流域水环境承载力的仿真模拟[J].中国科学院研究生院学报,25(6):73 8-747
    郑英铭,高建群.1990.潮汐河流水环境容量的研究[J].环境科学,11(3):63-69
    周密,王华东,张义生.1987.环境容量[M].长春:东北师范大学出版社.85-89
    周亮广,梁虹.2006.基于主成分分析和熵的喀斯特地区水资源承载力动态变化研究-以贵阳市为例[J].自然资源学报,21(5):827-833
    左其亭,马军霞,高传昌.2005.城市水环境承载能力研究[J].水科学进展,16(1):103-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700