用户名: 密码: 验证码:
跨界突发性水污染事故预警系统研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,重大突发性水污染事故频发,对经济、社会和生态环境造成巨大损失,其中很多污染事故造成的危害涉及到不同行政区域,甚至延续到国界之外,成为跨界污染事故。与非跨界水污染事故相比,跨界突发性水污染事故污染强度大,它的影响时间上具有延续性和滞后性,空间上具有广泛性和远程传输特点。我国未全面实行非行政区域的流域管理模式,跨界双方在水体功能类别、流域管理水平、经济水平方面存在差异,同时国界双方的环境标准也存在显著的差异,发生突发性跨界水污染事故往往导致引发水环境纠纷。因此,本文在对国内外跨界环境污染预警案例的调研基础上,针对跨界突发性水污染事故预警在实践中存在的问题,以寒冷地区典型跨界流域松花江为研究对象,开展了跨界突发性水污染事故预警系统关键技术研究。
     针对跨界突发性水污染事故特点,采用PSR模型框架分别构建了适合溶解态有机类污染和漂浮类有机类污染的跨界突发性水污染事故预警指标体系,并对各预警指标的计算方法进行了定量化表征。针对溶解态有机污染,从事故压力,事故状态和事故响应三方面考虑了环境风险源、健康与生态风险、跨界风险、应急响应与处置四个因素,选取了12个预警指标;漂浮类有机污染同样考虑了以上四个因素,选取了11个预警指标。采用层次分析法,确定了跨界水污染事故预警指标的权重。
     基于跨界突发性水污染事故预警技术需求,分析了适用于松花江干流溶解态有机物污染物远程传输的WAF水质模型(课题组成员研发)的主要控制方程和输入输出,并进行了模型实验,实验结果表明模拟值和监测值的相对正负误差小于40%;分析了低温江河的溢油模型(课题组成员研发)的主要控制方程、输入与输出和适用条件,实现了寒冷地区江河溢油模型的软件开发。
     为建立完备的跨界水污染事故预警技术体系,确定在时间和空间维度研究跨界水环境污染事故预警机制。在时间维度上,事故预警应重点进行事故发生时间段内的危害预测,确立了跨界风险源识别、特征污染物快速确定、污染物迁移转化实时模拟、事故危害预测四个相互关联的预警单元,设计了跨界突发性水环境污染事故预警工作流程。在空间维度上,考虑到污染物迁移转化模型输入参数的准确性、更明确的应急责任和敏感目标的保护,确定了跨界污染事故预警区域的划分原则。其次,确定了跨界水污染事故预警各单项指标的权重和标准值,将跨界水污染事故预警分级划分为“特别重大、重大、较大和一般”四个级别。在此基础上,采用AHP—模糊综合评价法,构建了跨界环境污染事故模糊判断矩阵,使用最大隶属度原则对风险模糊判断矩阵的向量进行综合分析评价。利用所构建的跨界水污染事故预警技术体系,对松花江硝基苯事件和跨界环境风险源苯酚泄漏事故分别进行了实证分析。实证分析结果如下:松花江硝基苯事件对于哈尔滨市和哈巴罗夫斯克市是重大跨界水污染事故和较大跨界水污染事故;佳木斯黑龙农药苯酚储罐泄漏引发的跨界水污染事故,对于哈巴罗夫斯克市是特别重大跨界水污染事故。
     将污染物迁移转化模型与预警指标体系、模糊评价体系进行无缝耦合,形成了跨界水污染事故动态预警模型。对松花江跨界突发性水污染事故预警平台进行了框架,系统功能和界面设计,研究确定了开发环境和开发工具,构建了预警平台地理空间数据库系统。在现有网络环境上,采用系统工程和软件工程技术,开发了基于WebGIS跨界突发性水环境污染事故预警平台。预警平台将松花江流域水文地质、社会经济、水污染事故和地理信息等信息集成,在Internet上实现跨界突发性水污染事故预警动态模型的可视化,在网络发布系统中同时使用B/S与C/S结构,实现了环境污染事故预测结果的实时空间化表达。
     对2005年松花江硝基苯水污染事件进行了事故反演跨,反演结果表明预警平台软件能快速、准确地演示硝基苯的迁移转化过程,硝基苯浓度预测值与历史监测数据的误差小于20%,事故预警判定结果与历史情境相符。以大庆采油十跨界环境风险源进行虚拟事故案例分析,软件能针对寒冷地区江河水文气候特征,在非冰封期和冰封期不同时期,可自动判断跨界溢油污染事故发生与否,同时模拟溢油污染团的风化迁移过程。
Recently, the significant sudden water pollution accidents have been takenplace frequently, which causing huge losses on the economic, social and ecologicalenvironment. The effects caused by pollution accidents involving differentadministrative regions, and even extending beyond National boundaries, which leadto transboundary pollution accidents. In comparision with non-transboundary waterpollution accidents, transboundary water pollution accidents have its owncharacteristics: more intense, longer duration of its impact, extensive and remotetransmission in space. In addition, Non-administrative regions management modelof drainage-basin have not been mplemented comprehensively in China. Thedifferences, between the two administrative regions, such as the level ofmanagement, economic development, environmental standards are needed to beconsidered in the event of unexpected transboundary water pollution accident. Dueto poor risk communication, and bad coordination capacity of emergency response,water and environmental disputes could be happened in a transboundary accident.Therefore, on the basis of researching on domestic and international transboundaryenvironmental pollution case and the accident early warning mechanis m, taking thetypical transboundary river basin Songhua River as the research object, keytechnology of transboundary water pollution accident early warning system havebeen researched for the problems of transboundary water pollution accidentwarning in practice.
     Firstly, based on the PSR model framework, early warning indicators systemof significiant transboundary water pollution accident has been built, which aresuitable for soluble pollution and oil-spill for its’s characteristics. Calculationmethod of each indicator also been researched thoroughly. For solub le pollution,12indexes have been selected from the4aspects: pollution accident characteristics,health and ecological risk, transboundary risk and emergency response and disposal;for oil spill,11indexes have been selected from the4aspects: pollution accidentcharacteristics, ecological risk,transboundary risk and emergency response anddisposal. At the end, the analytic hierarchy process has been used to determine theweights of early warning indexes for the transboundary water pollution accidents.
     Based on the requirements of transboundary early warning systems of suddenwater pollution accident, this paper developed WAF water quality model. Themodel is applicable to the remote transmission and migration real-time dynamicsimulation of the soluble organic pollution in the rivers. Error analysis results showthat the error of forecast value and historical monitoring data is less than40%. This paper also analyzed the main governing equations, input,output and the applicableconditions of oil spill model for low temperature rivers which been developed bymember in our research group. Fuzzy comparison matrix for Transboundaryenvironmental pollution event was built by appling AHP-synthetically fuzzyassessment, and the maximum membership degree princ iple was used forcomprehensive analys is and evaluation of determined matrix vector. Gradingstandards of each early warning index have also been obtained by referring, and theTransboundary sudden water pollution accidents were divided into four levels:particularly significant, significant, general, and slightly. Using the establishedmethod, two empirical analysis were completed respectively in this paper: theSonghua River nitrobenzene incident and a typical class III transboundaryenvironmental risks source. The empirical results show that: the River nitrobenzeneevent was significant Transboundary environmental pollution event for the Harbinand general Transboundary environmental pollution event for Khabarovsk;transboundary water pollution accident caused by phenol storage tank leak inJiamusi Heilong Pesticide&Chemical Corporationis is particularly significanttans-boundary environmental pollution event for Khabarovsk.
     For the establishment of a comprehensive transboundary water pollutionaccident warning system, this paper analyzes the risk of characteristics oftransboundary water environment pollution accident fie ld. Because of the analys isresults, early warning mechanis m of environment of transboundary water pollutionaccidentshave been researched in time and space dimensions respectively. In thetime dimension, accident early warning focuses on harm prediction when theaccident occurred. Therefore this paper chooses five interrelated early warningmodules as the following: Transboundary water environmental risk sourceidentification, rapid detection of particular pollutants, pollutants redistribution andtransportation real-time simulation, and accidence harm prediction. On basic ofabove research results, we have developed the early warning work flow fortransboundary sudden water environment pollution accident. In the spatialdimension, according to the accidents risk fie ld analysis results, accident earlywarning focused on the risk prediction of aquatic ecosystems and the environmentof sensitive receptors in the transboundary polluted rivers. Taking into account thethree aspects:accuracy of input parameters of pollutants migration andtransformation model, clearer emergency responsibility and the protection ofsensitive targets, we provided the warning area divided princip le of transboundarypollution accidence.
     Based on the above, this paper provided a dynamic early warning models fortransboundary water pollution accident by coupling pollutants migration andtransformation of models, early warning indicator system and the fuzzy evaluation system perfectly. System development environment, development tools, the overallframework of system functionality and interface design were deployed anddescripted comprehensively, and build a geo-spatial database system. On this basis,this paper established transboundary water environment pollution accident earlywarning system based on WebGIS by integrating systems engineering and softwareengineering technology under the existing network environment conditions.
     Information such as the Songhua River Basin hydrogeological, socio-economic,a water pollution accident, and geographic information system were integrated inthe system, and then the visua lization of the transboundary water pollution accidentwarning dynamic model on the Internet were also achieved in order to establishtransboundary water pollution accident risk early warning platform. In the webpublishing module, System achieved environmental pollution accident predictionresults real-time spatial expression by using B/S and C/S structure.
     Taking Songhua River nitrobenzene water pollution accident in2005as anexample, this paper have inversed the historical pollution cases. The inversionresults show that the system can demonstrates nitrobenzene migration andtransformation process quickly and accurately, the error of nitrobenzeneconcentration fie ld calculated results with historical monitoring data is less than5%,accident warning results match with historical context. Taking typical class Itransboundary environmental risks source in Daqing Oilfie ld Co., Ltd as a virtualaccident case, the software can automatically determine if there is transboundarypollution event for the non-frozen period (glacial streams) and frozen, and canaccurately simulate the oil spill group weathering and migration process.
引文
[1]谢红霞,胡勤海.突发性环境污染事故应急预警系统发展探讨[J].环境污染与防治,2004,26(1):44-69.
    [2]中华人民共和国环境保护部.全国环境统计公报[R].北京:中华人民共和国环境保护部,2002-2010: http://www. mep. gov. cn/zwgk/hjtj/.
    [3]安莹,李生才.2011年11-12月国内环境事件[EB/OL].(2012-01-06)
    [2012-03-02]. http://aqyhjxb. yywkt. cn/Articles/Show. aspx?ID=222.
    [4]王东宇,张勇.2006年中国城市饮用水源突发污染事件统计及分析[J].安全与环境学报,2007,7(6):150-155.
    [5]张勇,王东宇,杨凯.1985—2005年中国城市水源地突发污染事件不完全统计分析[J].安全与环境学报,2006,6(2):80-83.
    [6] GUO Liang, LIU Ying, WANG Peng. etc, Emergency Decision-making CaseBase System for River Region Based on CBR-AHP.2009InternationalConference on Energy and Environment Technology, Vol2:539-542.
    [7]钱易,张杰,李圭白.东北地区有关水土资源配置生态与态境保态持续发展的若干战略问题研究:水污染防治卷[M].北京:科学出版社,2007:2-4.
    [8]丁元芳,谢琳娜,崔新颖,等.松辽流域水资源报告[R].长春:水利部松辽水利委员会,2010:25-27
    [9]敖红光,冯玉杰,尤宏.跨界重大水环境风险源识别与风险评价[R].哈尔滨:哈尔滨工业大学,2011:3-30.
    [10]杨雯迪.吉林省农产品加工业环境成本控制对策研究[D].长春:长春理工大学,2010:12-13.
    [11]阙占文.跨界环境损害责任导论[M].北京:知识产权出版社,2010:2-4.
    [12]杨洁,毕军,周鲸波,等.长江(江苏段)沿江开发环境风险监控预警系统[J].长江流域资源与环境,2006,15(6):745-750.
    [13]董志颖,李兵.水质预警理论初探[J].水资源研究,2002,23(1):36-38.
    [14]黄晓容.重庆三峡库区水环境污染事故预警指标体系研究[D].重庆:西南大学学位论文,2008:14-26.
    [15]何进朝,李嘉.突发性水污染事故预警应急系统构思[J].水利水电技术,2005,36(10):93-96.
    [16]林长喜.跨界重大水污染事故风险源识别体系的研究与应用[D].哈尔滨:哈尔滨工业大学学位论文,2009:23-24.
    [17]毕军,曲常胜,黄蕾.中国环境风险预警现状及发展趋势[J].环境监控与预警,2009,1(1):1-5.
    [18] White, G. E. Natural Hazards Researeh[M]. London: Metheun&Co. Ltd,1973:193-216.
    [19] Industry and Environment Office of UNEP. Awareness and Preparedness forEmergencies at the Local Level (APELL)[R]. United Nations PublicationSale N. E.88.3. D.3, ParisCEDEX15-France,1988.
    [20] UNEP. Management of Industrial Accident Prevention and Preparedness(First Edition)[M]. Paris CEDEX15-France: United Nations Publication,1996:124-136.
    [21] Puzicha. H. Evaluation and avoidance of false alarm by controlling Rhinewater with Continuously working biotests. Sci. Tech [J].1994,29(3):207-209.
    [22] Gyorgy G Pinter. The Danube accident emergency warning system. Wat. Sci.Teeh[J].1999,40(10):27-33.
    [23] Desimone R V, Agosta J M. Oil-spill response simulation: the application ofartificia l intelligence planning technology in sim-ulation for emergencymanagement [M]. USA San Diego: Kanecki Published by Society forComputer Simulation,1994:254-265.
    [24]苏维词,李久林.乌江流域生态环境预警评价初探[J].贵州科学,1997,15(3):207-214.
    [25][24]仇蕾,王慧敏,贺瑞敏.流域生态系统的预警管理框架研究[J].软科学,2005,19(l):46-48.
    [26]冯文钊,张宏.突发性环境污染事故应急预警网络系统的设计与开发[J].城市环境与市生态,2004,17(1):9-11
    [27]彭祺,胡春华,等.突发性水污染事故预警应急系统的建立[J].环境科学与技术,2006,29(11):58-61.
    [28]吕俊,彭斌,唐奇善.郁江水质预警预报系统建设模式的探讨[J].水资源保护,2005,22(5):81-83.
    [29] European C. Indicators of Sustainable Development[M]. EuropeanCommission,1997:25-41.
    [30]杨燕风,王黎明,王宏,等.城市快速增长期生态与环境整合指标体系研究[J].地理科学进展,2000,19(4):351-357.
    [31]中国21世纪议程管理中心可持续发展战略研究组,中国科学院地理科学与资源研究所.中国可持续发展状态与趋势[M].北京:科学出版社,2009:11-30.
    [32]于洋.绿色效率公平的城市愿景——美国西雅图市可持续发展指标体系研究[J].国际城市规划,2009,24(6):46-52.
    [33] Anu Ramaswami, Jana B Milford, Mitchell J Small. IntegratedEnvironmental Modeling: Pollutant Transport, Fate, and Risk in theEnvironment[M]. John Wiley&Sons,2005:532-584.
    [34] Bridget M Donaldson, Joseph Timothy Weber. Use of a GIS-based Model ofHabitat Cores and Landscape Corridors for the Virginia Department ofTransportation's Project Planning and Environmental Scoping[R]. Virginia:Virginia Transportation Research Council,2006:6-10.
    [35] Jim Bridges. Human Health and Environmental Risk Assessment: the Needfor A More Harmonised and Integrated Spproach. Chemosphere[J].2003(52):1347-1350.
    [36] Glenn W. Suter II, Theo Verme ireb, Wayne R. Munns Jr eta. l An IntegratedFramework for Health and Ecological Risk Assessment. Toxicology andApplied Pharmacology[J].2005(207):611-615.
    [37] Andersen M E. Toxicokinetic Modeling and Its Applications in ChemicalRisk Assessment[J]. Toxicology Letter,2003,138(1-2):9-27.
    [38] Institute for Health and Consumer Protection. Technical Guidance Documenton Risk Assessment[R]. Brussels: European Chemicals Bureau,1998:125-135.
    [39] Steven D, Emerson, John Nadeau. A Coastal Perspective on Security[J].Journal of Hazardous Materials.,2003,104(1-3):1-13.
    [40] Obery A M, Landis W G. A Regional Multiple Stressor Risk Assessment ofthe Codorus Creek Watershed Applying the Relative Risk Mode[J]. Humanand Ecological Risk Assessment,2002,8(2):405-428.
    [41] Landis W. G., J. K. Wiegers. Ten years of the relative risk model andregional scale ecological risk assessment [J]. Human and Ecological RiskAssessment: An International Journal,2007,13(1):25-38.
    [42] Hanson M L, Solomon K R. Haloacetic Acids in the Aquatic Environment.PartII: Ecological Risk Assessment [J]. Environmental Pollution,2004,130(3):385~401.
    [43] J. Dumanski, C. Pieri. Application of the pressure-state-response frameworkfor the land quality indicators (LQI) programme [C].//Land and WaterDevelopment Divis ion FAO Agriculture Department. Land Quality Indicatorsand Their Use in Sustainable Agriculture and Rural Development. Italy:1997:2-10.
    [44] Adriaanse A. A study on the development of indicatoers for environmentalpolicy in the Netherlands[C]. Environmental Policy Performance Indicators,1999:55-68.
    [45]张峥,张建文,李寅年,等.湿地生态评价指标体系[J].农业环境保护,1999,18(6):283-285.
    [46]刘杨华.基于安全理论的突发性水污染事故环境风险源识别研究[D].哈尔滨:哈尔滨工业大学学位论文,2011:12-13.
    [47] Zadeh L. A. Fuzzy sets*[J]. Information and control,1965,8(3):338-353.
    [48] Topuz E., I. Talinli, E. Aydin. Integration of environmental and human healthrisk assessment for industries using hazardous materials: A quantitative multicriteria approach for environmental decision makers [J]. Environmentinternational,2011,37(2):393-403.
    [49]罗定贵,王学军,后立胜.模糊综合评价-聚类复合模型在地下水质评价与分区中的应用[J].地理与地理信息科学,2003,19(6):77-79.
    [50]张先起,梁川.基于熵权的模糊物元模型在水质综合评价中的应用[J].水利学报,2005,36(9):1057-1061.
    [51]邹志红,孙靖南,任广平.模糊评价因子的熵权法赋权及其在水质评价中的应用[J].环境科学学报,2005,25(4):552-556.
    [52]陈守煜,李亚伟.基于模糊人工神经网络识别的水质评价模型[J].水科学进展,2005,16(1):88-91.
    [53]程声通.环境系统分析教程[M].北京:化学工业出版社环境能源出版中心,2006:15-25.
    [54] D. Bellos, T. Sawidis. Chemical Pollution Monitoring of the RiverPinos(Thessalia-Greece)[J]. Journal of Environmental Management,2005,76:282-292.
    [55]黄德春,陈思萌,张昊驰.国外跨界水污染治理的经验与启示.水资源保护.2009,25(4):78~81.
    [56] Alberini A. Environmental regulation and substitution between sources ofpollution: an empirical analysis of Florida’s storage banks[J]. Journal ofRegulatory Economics,2001,19(1):55~79.
    [57] Bendow J. Challenges of Transboundary water management in th DanubeRiber basin[J]. International Water Resource.2005,46:73~82.
    [58]陈玉清.跨界水污染治理模式的研究一一以太湖流域为例[D].杭州:浙江大学学位论文,2009:26-39.
    [59]熊德琪,林奎,肖明,等.珠江口区域海上溢油动态预测信息系统的开发与应用[J].水道港口,2010,31(5):549-552.
    [60]何磊,陈圣波.基于RS和GIS的松花江流域(吉林省段)水资源网络化管理技术研究[J].世界地质,2004,23(2):163-167.
    [61]王彦颖.基于WebGIS的松花江(吉林省段)污染应急决策支持系统研究
    [D].长春:东北师范大学.2007.6:15-45.
    [62] Ricardobarra, Marcovighi, Guidomaffioli. Coupling Soil Fug Model and GISfor Predicting Pesticide Pollution of Surface Water at Watershed Level[J].Environ. Sci. Technol.2000,34(11):4425-4433.
    [63] Bernardt. Nolan, Keriej. Hitt, Barbarac. Ruddy. Probability of NitrateContamination of Recently Recharged Groundwaters in the ConterminousUnited States[J]. Environ. Sci. Technol,2002,36(10):21-39.
    [64] Laurapadovani, Ettorecapri, Marcotervisan. Landscape-Level Approach toAssess Aquatic Exposure via Spray Drift for Pesticides: A Case Study in aMediterranean Area [J]. Environ. Sci. Technol.2004,38(12):3239-3246.
    [65] Rovertoverro, Mauracalliera. GIS-Based System for Surface Water RiskAssessment of Agricultural Chemicals [J]. Environ. Sci. Technol,2003,36(7):1532-1538.
    [66] Gregoryc. Pratt, Chunyi Wu. Comparing Air Dispersion Model Predictionswith Measured Concentrations of VOCs in Urban Communities[J]. Environ.Sci. Technol,2004,38(7):1949-1959.
    [67] Steven. P. Bradbury, Tomc. J. Feijtel, Cornelis. J. Vanleeuwen. Meeting theScientific Needs of Ecological Risk Assessment in a Regulatory Context [J].Environ. Sci. Technol,2004,38(23):463-470.
    [68]丁贤荣,徐健,姚琪,等. GIS与数模集成的水污染突发事故时空模拟[J].河海大学学报(自然科学版),2003,31(2):203-206.
    [69]刘振山,毕彤,冯晓宇,等.沈阳市突发性环境污染事故应急监测地理信息系统[J]环境保护科学,2005,31(127):58-60.
    [70]庄学强,王炜,熊德琪.基于GIS的船运液体化学品溢漏大气扩散模拟系统.交通环保[J],2003,24(1):14-17.
    [71]窦明,李重荣.汉江水质预警系统研究[J].人民长江,2002,33(11):38-40.
    [72]肖彩,张艳军,彭虹,等.水质预警预报系统的研究与应用[J].贵州环保科技,2005,11(3):1-6.
    [73]张辉.铁岭市应急监测地理信息系统的开发及研制[J].黑龙江环境通报,2004,28(1):95-96.
    [74]石林,曾光明,张华,等.地理信息系统在突发性环境污染事故应急处理中的应用[J].遥感技术与应用,2005,20(6):630-634.
    [75]刘南,刘仁义. WebGIS原理及其应用.北京:科学出版社,2002:10-25.
    [76]丁峰.基于Web服务的WebGIS若干技术研究[D].南京:南京工业大学硕士学位论文,2005:15-36.
    [77]王继周,李成名,付俊娥,等.网络GIS技术发展探讨[J].遥感信息,2003,2:44-49.
    [78]杨崇俊,王宇翔,王兴玲,等.万维网地理信息系统发展及前景[J].中国图像图形学报,2001,6(9):886-894.
    [79]于宏洲. WebGIS在森林火险预报系统中的应用研究[D].哈尔滨:东北林业大学硕士学位论文,2009:7-8.
    [80]刘光.地理信息系统二次开发实例教程[M].北京:清华大学出版社,2004:5-6.
    [81]刘金民.分布式数据库的前世今生[J].软件世界,2007,6:42-44.
    [82]陈一明. SQLServer数据库应用技巧探讨[J].科学技术与工程,2008,8(12):33-34.
    [83]曹凤中.中国城市环境可持续发展指标体系研究手册[M].北京:中国环境科学出版社,1999:20-26.
    [84] U. S. EPA. Risk Assessment Guidance for Superfund, vol. I: Human HealthEvaluation Manual(Part A). US EPA540/1-99/002[R]. Washington D C: U. S.EPA,1999:135-140.
    [85]梁鹏,王辉民,蔡敏,等.环境影响评价技术方法[M].北京:中国环境科学出版社,2010:82-83.
    [86] U. S. EPA. Risk assessment guidance for superfund: Volume32Process forConducting Probabilistic Risk Assessment Chapter1, Part A[R]. Washington,DC: Office of Emergency and Remedial Response U. S. EPA,2001.
    [87] TUXEN L.美国IRIS数据库[DB/OL].2009-05-21[2010-02-20].http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList.
    [88]李二平,侯嵩,孙胜杰,等.水质风险评价在跨界水污染预警体系中的应用[J].哈尔滨工业大学学报,2010,42(6):964-965.
    [89] U. S. EPA. Guidelines for Exposure Assessment[R]. Washington D C: U. SEnvironmental Protection Agency Risk Assessment Forum,2002.
    [90]吴舜泽,余向勇,王金南,等.跨省界重大环境污染事件协调技术与机制研究[R].北京:环保部环境规划院,2011:86-103.
    [91]陈志恺,王浩,汪党献.东北地区有关水土资源配置生态与态境保态可持续发展的若干战略问题研究:水资源卷[M].北京:科学出版社,2007:70-73.
    [92]黄北新.对建立跨区域河流污染经济补偿机制的探讨[J].环境保护,2003,9:97-104.
    [93]侯琦,张天柱,温宗国,等.突发水污染事故损失的界定原则[J].环境科学与管理,2006,31(9):135-140.
    [94] Fatma T, Beyza A. Fuzzy portfolio selection using fuzzy analytic hierarchyprocess [J]. Information Sciences,2009,7(179):53-69.
    [95] Jiang-Jiang Wang, You-Yin J ing, Chun-Fa Zhang. A fuzzy multi-criteriadecision-making model for trigeneration system [J]. Energy Policy,2008,10(36):3823-3832.
    [96] Antonio, Armillotta. Selection of layered manufacturing techniques by anadaptive AHP decis ion model [J]. Robotics and Computer-IntegratedManufacturing,2008,6(24):450–461.
    [97] S. K. Ong, T. H. Koh, A. Y. C. Nee. Assessing the environmental impact ofmaterials processing techniques using an analytical hierarchy processmethod[J]. Journal of Materials Processing Technology,2001,3(113):424-431.
    [98] P.-T.Chuang. Combining the Analytic Hierarchy Process and QualityFunction Deployment for a Location Decision from a RequirementPerspective [J]. Advanced Manufacture Technology,2001,(18):842-849.
    [99] Aviad Shapira, F. ASCE1, Meir Simcha. AHP-Based Weighting of FactorsAffecting Safety on Construction Sites with Tower Cranes[J]. Journal ofConstruction Engineering and Management,2009,4(135):307-316.
    [100] Mackay D, Paterson S. Calculating Fugaclty[J]. Environmental Seience&Technofogy,1981,15(9):1006-1014.
    [101] Mackay D. Multimedia Environmental Models: The Fugacity APProach [M].second edition, CRCPress,2001.
    [102] Mackay D, PatersonS, CheungB, etal. Evaluating the EnvironmentalBehavior of Chemicals with a level III Fugaeity Model[J]. Chemosphere,1985,14(3-4):335-374.
    [103] Wania F, Mackay D. A Global Distribution Model for Persistent OrganicChemicals[J]. Science of The Total Environment,1995,160-161:211-232.
    [104] Diamond ML, Priemer DA, Law NL. Developing a Multimedia Model ofChemieal Dynamies in an Urban Area[J]. Chemosphere,2001,44(7):1655-1667.
    [105] Ce Wang, Yujie Feng, Shanshan Zhao, etal. A dynamic contaminant fatemodel of organic compound: A case study of Nitrobenzene pollution inSonghua River, China. Chemosphere,2012, online: http://dx. doi. org/10.1016/j. chemosphere.2012.02.065.
    [106] Wang, C, Feng, Y, Sun, Q., etal. A multimedia fate model to evaluate the fateof PAHs in Songhua River, China. Environmental Pollution,2012,164,81-88.
    [107] Peishi Q, Zhiguo S, Yuzhi L.Mathematical simulation on the oil slick’spreading and dispersion in non-uniform flow fields[J]. International JournalEnvironmental Science and Technology,2011,8(2):339-351.
    [108] Hallett W. L. H., Clark N. A. A model for the evaporation of biomasspyrolysis oil droplets[J]. Fuel,2006,85:532-544.
    [109] Fingas M F. A literature review of the physics and predictive modling of oilspill evaporation[J]. J. Hazard. Mater.,1995,42:157-170.
    [110] Martinez R G, Tovar H F. Computer modeling of oil spill trajectories with ahigh accuracy method[J]. Spill Sci. Tech. Bull.,1999,(5/6):321-331.
    [111] Crawford W R, Cherniawsky J Y, Hannaht C G, et al. Current Predictions forOil Spill Models[J]. Spill Sci. Tech. Bull.,1996,3(4):235-239.
    [112] Thorpe S A. Langmuir Circulation and the Dispersion of Oil Spills inShallow Sea[J]. Spill Sci. Tech. Bull.,2000,6(3/4):213-223.
    [113] Fay J A, Hoult D P. The Spread of Oil Slicks on a Calm Sea, in oil on thesea[M]. Plenum Press, New York,1969:53-63.
    [114] Gj steen J.K.. A model for oil spreading in cold waters[J]. Cold Region.Sci. and Tech.,2004,38(2-3):117-125.
    [115] Gj steen J K, L set S. Laboratory experiments on oil spreading in brokenice[J]. Cold Reg. Sci. Tech.,2004,38:103-116.
    [116] Shen H T, Yapa P. D. Oil Slick Transport in Rivers[J]. J. Hyd. Engineer.,1988,114(5),529-543.
    [117] Zhao W Q, Wu Z H,1988. A model of spreading, dispersion and advectioncaused by an oil slick on the unstable sea surface[C]. Proc. of6th Cong. ofAPR-IAHR, Kyoto, Japan,153-160.
    [118] Hibbs D E, Gulliver J S, Voller V R, et al. An aqueous concentration modelfor riverine spills[J]. J. Hazard. Mater.,1999,64(1):37-53.
    [119] Boufadel M C, Du K, Kaku V, et al. Lagrangian simulation of oil dropletstransport due to regular waves. Environ. Modell.&Sof.,2007,22(7):978-986.
    [120] Shahriari M, Frost A. Oil spill cleanup cost estimation—Developing amathematical model for marine environment[J]. Process Safety andEnvironment,2008,86:189-197.
    [121] Cox J C, Schultz L A. The containment of oil spilled under rough ice[C].Proceedings of the1981Oil Spill Conference, American Petroleum Institute.Washington, D. C.,1981:203-208.
    [122] Hanlin A L. A review of large-scale LNG spills: Experiments andmodeling[J]. J. Hazard. Mater.,2006, A132:119-140.
    [123] Chen F, Yapa P D. Three-dimensional visualization of multi-phase(oil/gas/hydrate) plumes[J]. Environ. Modell.&Sof.,2004,19:751-760.
    [124]黑龙江统计年鉴2003.北京:中国统计出版社,2003:131-135.
    [125]金铁鑫,唐国田,夏万年.松花江水文站实测流量资料的分析[J].水文,1999,20(3):53-54.
    [126]李帅,白人海,陈莉.嫩江、松花江流域夏季降水与水位变化分析[J].黑龙江气象,2002,3:7-11.
    [127] Gyorgy G Pinter. The Danube accident emergency warning system[J]. Wat.Sci. Teeh,1999(40):27-33.
    [128] Ambrose R B, Wool T A, and Martin J L. The Water Quality Analys isSimulation Program WASP5[R]. Athens: U. S. EPA Center for ExposureAssessment Modeling,2003:8~14.
    [129] U S EPA. Water Quality Analysis Simulation Program [CP/OL].(2006-03-01)
    [2011-10-18]. http://www. epa. gov/athens/wwqtsc/html/wasp. html.
    [130]付丽秋,谢文攀.建筑消防设施安全性的模糊综合评价[J].消防管理研究,2010,11(29):1016-1018.
    [131]栗国军,孙桂清.地理信息系统(GIS)在林业上应用[J].林业勘查设计,2002,3:83-84.
    [132]柴炳阳.基于ArcSDE的水土保持监测数据库设计与研究[D].西安:长安大学硕士学位论文,2009:15-20.
    [133]时红丽.基于Geodatabase和ArcEngine的海盗空间数据库的设计与实现
    [D].北京:中国科学研究生院硕士学位论文,2009:30-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700