用户名: 密码: 验证码:
红松种群数学模型及其动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红松是我国小兴安岭和东北东部山区的优势保护树种。红松材质优良,松籽富含油脂,经济价值很高。以红松为主形成的阔叶红松林是中国温带针阔混交林地区的顶级植被,也是中国木材和林副产品的重要产地。阔叶红松林具有复杂的群落结构和稳定的更替过程,对保护自然资源、维持生态平衡有重要作用。
     红松的天然更新取决于种源和幼苗幼树的生长条件,而种源由母树产生的种子的传播条件和种子的消耗等因素决定。红松林中,种子是鼠类(主要指松鼠,也考虑花鼠、大林姬鼠和一些鸟类)的主要取食对象之一,幼苗的更新主要依赖鼠类的贮食行为,种子、鼠类和幼苗三种群互相影响和制约。鼠类和红松共同组成了一个典型的红松林生态系统。
     数学模型已被广泛应用于经济、生态与环境科学中。本文依据数学生态学建模方法定量研究红松种群中种子、鼠类和幼苗三者之间的相互关系,构建了四类模拟红松种群的数学模型,并利用微分方程定性稳定性理论和时滞微分方程以及Hopf分支理论研究了模型的动力学行为,研究结果简述如下:
     1根据红松种群的生态学特性,将其分为幼树(未达结实年龄个体)和母树(已达结实年龄个体),构建了两类模拟天然林内红松种群年龄更替的数学模型。通过定性分析,得出在一定条件下系统存在稳定的周期解和局部渐近稳定的正平衡点,并用Maple进行了数值模拟,结论表明天然林内红松幼树与母树会产生一个随时间变化的有规律、互为消长的特征,二者既相互协调又相互控制,保持稳定的动态平衡。
     2红松种子、鼠类和幼苗是红松发生和演替的纽带,根据三者之间相互适应和相互调节的关系,构建了一类三维非线性红松种群模型,利用系统分析的方法研究了系统的稳定性,证明了系统在一定条件下存在唯一的周期解,讨论了其鞍结分支和Hopf分支,并对Hopf分支周期解进行了分析和计算,指出了红松种群中种子、鼠类和幼苗三种群数量具有周期波动的特征。
     3探讨了一类三维的模拟红松种群中的种子、鼠类和幼苗的动态变化的时滞微分方程模型,利用系统分析的方法研究了模型的各种动力学行为,包括红松种群达到动态平衡的条件,平衡点的存在性和局部稳定性。结果表明时滞现象能导致稳定的平衡点转变为不稳定,得到了发生Hopf分支的条件。
     研究结果揭示了红松种群系统的周期行为特征,为合理经营管理和保护红松林资源提供了理论依据。
Pinus koraiensis (Korean pine) is the dominant tree species in the eastern of Northeast China and Xiaoxing'an Mountains. The timber of Pinus koraiensis is excellent and its seeds are nutrient-rich which makes it an important species with highly economic values. The broad-leaved Pinus koraiensis forest is mainly formed by Pinus koraiensis and constitutes the zonal climax vegetation type in China's temperate mixed coniferous vegetation. It is considered as the key production base of timber and forest by-products in China. Furthermore, the complex community structure and stable regeneration process of the broad-leaved Pinus koraiensis forest makes it important to protect the natural resources and maintain ecological balance.
     The natural regeneration of Pinus koraiensis depends on the seed sources and the growth conditions for seedlings. The seed sources are related to the dispersal and consumption of pine seeds etc. Since pine seeds are squirrels'(mainly referring to Sciurus vulgaris, also considering Eutamias sibiricus, Apodemus sylvticus and some birds) main food, and the regeneration of seedlings mainly relies on squirrels' evolutional hoarding behavior, interaction relationship exists among pine seeds, seedlings and squirrels. Pinus koraiensis forest and squirrels form a typical Pinus koraiensis forest ecosystem.
     A wide range of mathematical models have been applied in economics, ecology and environmental sciences. The population of Pinus koraiensis including seeds, squirrels and seedlings is studied quantitatively by mathematical models. Four mathematical models were developed to describe the Pinus Koraiensis forest ecological system. Dynamics behavior of these models are investigated based on the stability theory and qualitative theory of ordinary differential equations, delay differential equations and Hopf bifurcation. The brief results are as follows:
     1 Pinus koraiensis trees are classified to young trees (without seeds produce) and mother trees (with seeds produce) according to their ecological characteristics. Two mathematical models are developed to describe the interaction between young trees and mother trees. Sufficient conditions for the existence of periodic solution and globally asymptotic stability of the positive equilibrium are given based on qualitative analysis method. The results are validated by plotting with Maple, which indicate that there is a periodic fluctuation in the number of young trees and mother trees in natural forest. Young trees and mother trees interact and reach to a stable homeostasis.
     2 Pine seeds, squirrels and Pinus koraiensis seedlings are the main factors influencing the occurrence and succession of the population of Pinus koraiensis forest. A nonlinear three-dimensional model of the population of Pinus koraiensis is developed based on the mutual accommodation and adjustment relationship of these factors. The stability of the model is studied using systematic analysis method and the results show that a unique and stable periodic solution exists under certain conditions. The saddle-node bifurcation and Hopf bifurcation are also discussed, and analysis for the periodic solution of the Hopf bifurcation is given. The results indicate that there is a periodic fluctuation among the number of seeds, squirrels and seedlings in the Pinus koraiensis forest ecosystem.
     3 A three-dimensional model of the population of Pinus koraiensis including pine seeds, squirrels and seedlings with delay is considered. Dynamics behaviors, such as the condition for the ecosystem to reach dynamic balance, the existence and local stability of equilibria, are investigated by systematic analysis method. It is proved that the time delay may destabilize the positive equilibrium, and Hopf bifurcation occurs under certain conditions.
     The results indicate that the evolution of the population of Pinus koraiensis exists periodic characteristics. Some theoretical basis for rational management and protection of Pinus koraiensis in China are provided.
引文
参考文献
    1. 白荆堂.灰鼠种群数量年间变化及其与松籽丰欠的关系[J].国土与自然资源研究.1981,(4):79-82.
    2. 白淑菊,陶大立,靳月华.长白山常绿针叶树越冬期间光合能力的抑制[J].应用生态学报.1995,6(2):138-142.
    3. 陈兰荪,宋新宇,陆征一.数学生态学模型与研究方法[M].成都:四川科学技术出版社.2003:222-225.
    4. 葛剑平,郭海燕,陈动.小兴安岭天然红松林种群结构的研究[J].东北林业大学学报.1990,18(6):26-32.
    5. 高慧贞,黄启宇.微分方程定性与稳定性理论[M].福州:福建科学技术出版社.1995.
    6. 韩茂安,顾圣士.非线性系统的理论和方法[M].北京:科学出版社,2001.
    7. 贺云.一类非自治时滞微分方程正解的存在性及两类生态模型解的渐近性研究[D].陕西师范大学硕士学位论文.2006.
    8. 姬兰柱,刘足根,郝占庆,王庆礼,王淼.松果采摘对长白山阔叶红松林生态系统健康的影响[J].生态学杂志.2002,21(3):39-42.
    9. 李景文.红松混交林生态与经营[M].长春:东北林业大学出版社.1997.
    10.李景文,詹鸿振,刘传照.小兴安岭阔叶红松林采伐迹地更新的研究[J].林业科学.1988,24(2):129-138.
    11.李景文,刘传照,徐贵林,李俊清,詹鸿振.林冠下红松直播实验研究初报[J].东北林业大学学报.1984,12(SI):30-39.
    12.李俊清.红松林更新与演替过程的研究[D].东北林业大学博士学位论文.1988a:132-150.
    13.李俊清主编.森林生态学[M].北京:高等教育出版社.2006
    14.李俊清,柴一新,张东力.人工阔叶红松林的结构与生产力[J].林业科学.1990a,26(1):1-8.
    15.李俊清,顾兆军.红松林种子、鼠类和幼苗动态数学模型[J].东北林业大学学报.1988b,16(4):44-51.
    16.李俊清,工业蘧.天然林内红松种群数量变化的波动性[J].生态学杂志.1986,5:1-5.
    17.李俊清,祝宁.红松的种群结构与动态过程[J].生态学杂志.1990b,9(4):6-10.
    18.李听,徐振邦,陶大立.小兴安岭丰林自然保护区阔叶红松林天然更新研究[J].东北林业大学学报.1989,17(6):1-7.
    19.李茹秀,王义弘,周晓峰,陈大珂.红松阔叶林天然更新定性与定量研究[J].东北林业大学学报.1988,16(2):11-16.
    20.李秀琴,宋国华.森林生态系统空间周期解的存在性Ⅰ[J].北京建筑工程学院学报.2004a,20(1):65-67.
    21.李秀琴,宋国华.森林生态系统空间周期解的存在性Ⅱ[J].北京建筑工程学院学报.2004b, 20(2):72-75.
    22.李秀琴,宋国华,代西武.一类天然红松林系统的定性分析[J].北京建筑工程学院学报.2003a,19(2):68-71.
    23.李秀琴,张艳,宋国华.天然红松林生态系统的动力学行为[J].北京建筑工程学院学报.2003b,19(1):81-84.
    24.李秀琴,朱宝彦,段丽芬.具有鼠类作用的红松林种群的数学模型[J].沈阳建筑工程学院学报.1996,12(1):101-105.
    25.李群宏.一类红松林种群数学模型的分支问题[J].广西科学.1997,4(4):264-266.
    26.李群宏,陆启韶,雷锦志.具有鼠类作用的红松林种群的数学模型[J].广西大学学报.1999,24:307-309.
    27.李义龙.几类生物数学模型的定性与分支研究[D].上海交通大学博士学位论文.2006.
    28.刘英杰,陈立新,张兆荣.红松人工林分杈原因的初步研究[J].东北林业大学学报.1998,26(2):11-14.
    29.刘庆洪.红松阔叶林中红松种子的分布与更新[J].植物生态学与地植物学报.1988,12(2):134-142.
    30.刘庆洪.落叶松人工林内红松种群发生的初步研究[J].东北林业大学学报.1986,14(3):27-33.
    31.刘伯文,李传荣,倪乃萌.小兴安岭食针叶树种子的鸟兽[J].林业科技.1999,24(5):26-30.
    32.刘来福,曾文艺.数学模型与数学建模(第二版)[M].北京:北京师范大学出版社.2006.
    33.鲁长虎.啮齿类对植物种子的传播作用[J].生态学杂志.2001a,20(6):56-58.
    34.鲁长虎.星鸦的贮食行为及其对红松种子的传播作用[J].动物学报.2002,48(3):317-321.
    35.鲁长虎.动物与红松天然更新关系的研究综述[J].生态学杂志.2003,22(1):49-53.
    36.鲁长虎,刘伯文,吴建平.阔叶红松林中星鸦和松鼠对红松种子的取食和传播[J].东北林业大学学报.2001b,29(5):96-98.
    37.鲁长虎,袁力.食干果鸟类对种子扩散作用的研究[J].生态学杂志.1997,16(5):43-46.
    38.陆征一,王稳地.生物数学前沿[M].北京:科学出版社.2008.
    39.马剑.时滞微分方程在生态学中的应用[D].东北林业大学硕士学位论文.2006:1-55.
    40.马建路,庄丽文,陈动,李景文.红松林的地理分布[J].东北林业大学学报.1992,20(5):40-47.
    41.马逸清,程继臻,傅承钊,楼伟,金爱莲,郑琳,金龙荣.黑龙江省兽类志[M].哈尔滨:黑龙江科学技术出版社.1986.
    42.朴仲铉,傅延强,宋国华.应用非线性微分方程[M].延吉:延边人民出版社.1995:172-175.
    43.齐新社.几类微分方程的定性分析[D].西北大学硕士学位论文.2006.
    44.秦元勋,刘永清.带有时滞的动力系统的运动稳定性[M].北京:科学出版社.1984:1-17.
    45.宋国华.天然林内红松种群年龄更替数学模型及研究[J].生物数学学报.1994,9(4):89-94.
    46.宋国华,李秀琴,李俊清.一类松籽、松鼠、幼苗的动态数学模型及讨论[J].生物数学学报.1994,9(4):163-168.
    47.宋国华,朱荣升,李秀琴.一类三维非线性系统空间周期界的存在性及唯一性[J].生物数学学报.1996,11(2):83-88.
    48.粟海军.凉水自然保护区松鼠(Sciurus Vulgaris)重取贮点及其与红松(Pinus Koraiensis)天然更新关系[D].东北林业大学硕士学位论文.2005:1-40.
    49.陶大立,靳月华,杜英君.红松苗、大幼树越冬期间的PSII电子传递活性与超氧化物歧化酶变化的研究[J].林业科学.1990,26(4):289-293.
    50.陶大立,赵大昌,赵士洞,郝占庆.红松天然更新对动物的依赖性-一个排除动物影响的球果发芽实验[J].生物多样性.1995,3(3):131-133.
    51.王顺庆,王万雄,徐海根.数学生态学稳定性理论与方法[M].北京:科学出版社.2004.
    52.王顺庆,杨凤翔.生物群落的生态稳定性[J].生物数学学报.1992,7(1):48-52.
    53.王文龙,马剑,高春雨,张春蕊.天然红松林时滞生态系统动态分析[J].东北林业大学学报.2010,38(2),103-104.
    54.王业蘧.论分子生态学的现状与发展[J].东北林学院学报.1984,12(2):50-62.
    55.乌弘奇.长白山白桦林中红松种群动态的研究[J].生态学杂志.1989,8(5):16-18.
    56.肖燕妮,陈兰荪.具有阶段结构的竞争系统中自食和稳定性作用[J].数学物理学报.2002,22A(2):210-216.
    57.徐克学.生物数学[M].北京:科学出版社.2004.
    58.徐瑞,郝飞龙,陈兰荪.一类具有时滞和阶段结构的捕食-被捕食模型[J].数学物理学报.2006,26A(3):387-395.
    59.杨东方,苗振清.数学模型在生态学的应用及研究(1)[M].北京:海洋出版社.2008a.
    60.杨东方,苗振清.数学模型在生态学的应用及研究(2)[M].北京:海洋出版社.2008b.
    61.叶彦谦.极限环论[M].上海:上海科学技术出版社.1984.
    62.游爱玲.具时滞的昼夜节律系统的稳定性分析[D].东北林业大学硕士论文.2009.
    63.张春蕊.时滞微分方程稳定性与Hopf分支分析[D].哈尔滨工业大学博士论文.2003:8-11.
    64.张锦炎,冯贝叶.常微分方程几何理论与分支问题(第2次修订本)[M].北京:北京大学出版社.2005.
    65.张慧慧.具时滞的基因表达模型的稳定性分析[D].东北林业大学硕士论文.2008.
    66.张明明.时滞神经网络和生命能量系统的稳定性分析[D].东北林业大学硕士论文.2007.
    67.张群,范少辉,沈海龙.红松混交林中红松幼树生长环境的研究进展及展望[J].林业科学研究.2003,16(2):216-224.
    68.张芷芬,丁同仁,黄文灶,董镇喜.微分方程定性理论[M].北京:科学出版社.2006.
    69.张芷芬,李承治,郑志明,李伟固.向量场的分岔理论基础[M].北京:高等教育出版社.1997.
    70.钟镇权.具有变消耗率微生物连续培养模型的定性分析[J].生物数学学报.2007,22(3):447-454.
    71.周义仓,靳祯,秦军林.常微分方程及其应用(第二版)[M].北京:科学出版社.2003.
    72.左金淼.阔叶红松林动态模拟的研究[D].北京林业大学硕士论文.2004.
    73. Aiello W G, Freedman H I. A time delay model of single-species growth with stage structure. Mathematical Bioscience.1990,101(2):139-153.
    74. Baker C T H, Ford N J C. Stability properties of a scheme for the approximate solution of a delay integro-differential equation. Applied Numerical Mathematics.1992,9:357-370.
    75. Begon M, Harper J L, Townsend C R. Ecology:individuals, populations, and communities, Third Edition. Cambridge. Blackwell Science Ltd.1996.
    76. Bossel H. Modelling forest dynamics:moving from description to explanation. Forest Ecology and Management.1991,42:129-142.
    77. Bossel H, Krieger H. Simulation model of natural tropical forest dynamics. Ecological Modelling.1991,59:37-71.
    78. Bossel H, Krieger H. Simulation of multi-species tropical forest dynamics using a vertically and horizontally structured model. Forest Ecology and Management.1994,69:123-144.
    79. Botkin D B, Janak J F, Wallis J R. Some ecological consequences of a computer model of forest growth. Journal of Ecology.1972,60:849-872.
    80. Bromley G F, Kostenko V A. Relationship between rodents and Korean pine in central and southern Sikhote-Alin. In:Komarova V. L. (Eds.) Small Mammals in Watershed of the Amur River and the Maritime Province of Siberia. Vladivostok:Academy Nauk.1970,5-65 (In Russia).
    81. Bu R C, He H S, Hu Y M, Chang Y, Larsen D R. Using the LANDIS model to evaluate forest harvesting and planting strategies under possible warming climates in Northeastern China. Forest Ecology and Management.2008,254(3):407-419.
    82. Bugmann H. Sensitivity of forests in the European Alps to future climatic change. Climate Research.1997,8:35-44.
    83. Busing R T. A spatial model of forest dynamics. Journal of Vegetation Science.1991,92: 167-179.
    84. Chen D, Kou X J, Liu X D. The generation identification and process of digenesis of Korean pine forest. Journal of Northeast Foresty University (English Eds).1995,6(3):23-26.
    85. Chen X W, Li B L, Lin Z S. The acceleration of succession for the restoration of the mixed-broadleaved Korean pine forests in Northeast China. Forest Ecology and Management. 2003,177(1-3):503-514.
    86. Cheng J R, Xiao Z S, Zhang Z B. Seed consumption and caching on seeds of three sympatric tree species by four sympatric rodent species in a subtropical forest, China. Forest Ecology and Management.2005,216:331-341.
    87. Cross G W. Three types of matrix stability. Linear Algebra and its Applications.1978,20: 253-263.
    88. Ek A R, Monserud R A. Trials with program FOREST:Growth and reproduction simulation for mixed species even- or uneven-aged forest stands, in growth models for tree and stand simulation. The international union of forest research organizations. Working party S4.01-4, Proceedings of Meetings in 1973, (J. Fries, ed.), Research Notes 30, Royal College of Forestry, Department of Forest Yield, Stockholm,56-73.
    89. Farr W W, Li C Z, Labouriau I S, Langford W F. Degenerete Hopf bifurcation formulas and Hilbert's 16th problem. SIAM Journal on Mathematical Analysis.1989,20:13-30.
    90. Ferramosca A, Savy V, Einerhand A W C, Zara V. Pinus koraiensis seed oil (Pinnothin (TM)) supplementation reduces body weight gain and lipid concentration in liver and plasma of mice. Journal of Animal and Feed Sciences.2008,17:621-630.
    91. Fisher M E, Goh B S. Stability results for delayed-recruitment models in population dynamics. Journal of Mathematical Biology.1984,19:147-156.
    92. Goh B S. Global Stability in many species systems. The American Naturalist.1977,111: 135-143.
    93. Goheen J R, Swihart R K. Food-hoarding behavior of gray squirrels and north American red squirrels in the central hardwoods region:Implications for forest regeneration. Canadian Journal of Zoology.2003,81:1636-1639.
    94. Guckenheimer J, Holmes P. Nonlinear oscilations, dynamical systems, and bifurcations of vector fields. New York, Springer-Verlag.1983.
    95. Guo H P, Zhang C G.Diversity of higher plant in broad leaved Korean pine and secondary birch forests in Liangshui Natural Reserve. Journal of Northeast Foresty University (English Eds.). 1995,6(3):30-33.
    96. Hassard B D, Kazarinoff N D, Wang Y H. Theory and Application of Hopf Bifurcation. Cambrige, Cambridge University Press.1981.
    97. Hasenauer H, Monserud R A. A Crown Ratio Model for Austrian Forests. Forest Ecology and Management.1996,84:49-60.
    98. Hauhs M, Kastner-Maresch A, Rost-Siebert K. A model relating forest growth to ecosystem-scale budgets of energy and nutrients. Ecological Modelling.1995,83(1-2):229-243.
    99. Hayashida M. Role of nutcrackers on seed dispersal and establishment of pinus-pumila and p-pentaphylla. In:Schmidt W C, Holtmeier F K. (Eds.) Proceedings-international workshop on subalpine stone pints and their environment:The status of our knowledge.1994, 159-162.
    100. Hayashida M. Seed dispersal by red squirrels and subsequent establishment of Korean pine. Forest Ecology and Management.1989,28(2):115-129.
    101. Hofbauer J, Sigmund K.陆征一,罗勇(译).进化对策与种群动力学.成都:四川科学技术出版社,2003.
    102. Horn H S. Forest Succession. Scientific American.1975,232:90-98.
    103. Hurtt G C, Moorcroft P R, Pacala S W, Levin S A. Terrestrial Models and Global Change: Challenges for the Future. Global Change Biology.1998,4:581-590.
    104. Hutchins H E, Hutchins S A, Liu B W. The role of birds and mammals in Korean pine (Pinus koraiensis) regeneration dynamics. Oecologia.1996,107(1):120-130.
    105. Kajimoto T, Onodera H, Ikeda S, Daimaru H, Seki T. Seedling establishment of subalpine stone pine (Pinus pumile) by nutcracker seed dispersal on Mt. Yumori, northern Japan. Arctic and Alpine Research.1998,30(4):408-417.
    106. Kaufmann E. Prognosen und nutzungsszenarien, in schweizerisches landesforstinventar: methoden und modelle der zweitaufnahme 1993-1995 (Brassel P, Lischke H. Eds.), Eidgenossische Forschungsanstalt fur Wald, Schnee und Landschaft. Birmensdorf,1999.
    107. Kohyama T. Size-Structured tree populations in gap-dynamic forest:the forest architecture hypothesis for the stable coexistence of species. Journal of Ecology.1993,84:207-218.
    108. Kraev E A. A partial differential equation modeling forest growth. Zurich, Master Thesis, Institute of Mathematics, Swiss Federal Institute of Technology.1998.
    109. Kraev E A. Existence and uniqueness for height structured hierarchical population models. Natural Resource Modeling.2001,14:45-70.
    110. Kuang Y. Delay-differential equations with applications in population dynamics. Boston, Academic Press.1993.
    111. Kuerpick P, Kuerpick U, Huth A. The influence of logging on a Malaysian dipterocarp rain forest:a study using a forest gap model. Journal of Theoretical Biology.1997,185:47-54.
    112. Lanner R M. Adaptations of white bark pine for seed dispersal by Clark's Nutcracker. Canadian Journal of Forest Research.1982.51:391-402.
    113. Lanner R M, Nikkanen T. Establishment of a Nucifraga-Pinus mutualism in Finland. Ornis Fennica.1990,67:24-27.
    114. Lantto T A, Damien Dorman H J, Shikov A N, Pozharitskaya O N, Makarov V G, Tikhonov V P, Hiltunen R, Raasmaja A. Chemical composition, antioxidative activity and cell viability effects of a Siberian pine (Pinus sibirica Du Tour) extract. Food Chemistry,2009,112(4):936-943.
    115. Lee W K, von Gadowb K, Chungc D J, Lee c J L, Shin M Y. DBH growth model for Pinus densiflora and Quercus variabilis mixed forests in central Korea. Ecological Modelling.2004, 176:187-200.
    116. Li J Q, Li J W. Regeneration and restoration of broad-leaved Korean pine forests in Lesser Xing'an Mountains of northeast China.生态学报.2003,23(7):1268-1277.
    117. Lischke H. Veranderungen der artenzusammensetzung der schweizer walder bei einem schnellen klimawechsel:simulationsstudien. Bulletin:Kompetenzzentrum Holz.1998,6:12-14.
    118. Lischke H. New developments in forest modeling:convergence between applied and theoretical approaches. Natural Resource Modeling.2001,14(1):71-102.
    119. Liu J G, Ashton P S. FORMOSAIC:An Individual Based, Spatially explicit model for simulating forest dynamics in landscape mosaics. Ecological Modelling.1998,106:177-200.
    120. Loffler T J, Lischke H. Incorporation and influence of variability in an aggregated forest model. Natural Resource Modeling.2001,14:103-137.
    121. Lyapunov A M. Probleme General de la stabilite du mouvement, Annals of Mathematics Studies. Princeton, Princeton University Press.1947, No.17.
    122. Malanson G P. Effects of Dispersal and Mortality on Diversity in Forest Stand Model. Ecological Modelling.1996,87:102-110.
    123. Malthus T R. An essay on the principle of population:as it affects the future improvement of society, with remarks on the speculations of M. Godwin, M. Condorcet, and other writers. London:J.Johnson,1798.
    124. Magnusson K G. Destabilizing effect of cannibalism on a structured predator-prey system.. Mathematical Bioscience.1999,155(1):61-75.
    125. Mitchell K J. Dynamics and simulated yield of Douglas Fir. Forest Science Monographs.1975, 17:39.
    126. Miyaki M. Seed dispersal of the Korean pine, Pinus koraiensis, by the red squirrel, Sciurus vulgaris. Ecological Research.1987,2(2):147-157.
    127. Mladenoff D J, Host G E, Boeder J, Crow T R. LANDIS:A spatial model of forest landscape disturbance, succession, and management, in environmental modeling with GIS (Goodchild M F, Parks B O, Steyaert L T. eds.). Oxford University Press. New York,1993,488.
    128. Motta R, Nola P. Growth trends and dynamics in sub-alpine forest stands in the Varaita Valley (Piedmont, Italy) and their relationships with human activities and global change. Journal of Vegetable Science.2001,12:219-230.
    129. Natali H, Yuri Y. Mathematical Modeling in Economics, Ecology and the Environment. Kluwer Academic Publishers.1999.
    130. Pacala S W, Canham C D, Saponara J, Silander J A, Kobe R K, Ribbens E. Forest models defined by field measurements:estimation, error analysis and dynamics. Ecological Monographs.1996,66:1-43.
    131. Pacala S W, Canham C D, Silander J A Jr. Forest models defined by field measurements:Ⅰ. the design of a northeastern forest simulator. Canadian Journal of Forest Research.1993,23: 1980-1988.
    132. Porte A, Bartelink H H. Modelling mixed forest growth:A review of models for forest management. Ecological Modelling.2002,150:141-188.
    133. Roberts D W. Landscape vegetation modelling with vital attributes and fuzzy systems theory. Ecological Modelling.1996,90:175-184.
    134. Ruan S, Wei J. On the zeros of transcendental functions with applications to stability of delayed differential equations with two delays. Dynamics of Contiunous, Discrete and Impulsive Systems Series A:Mathematical Analysis.2003,10(6):863-874.
    135. Shen H L. Korean pine as a nut production species in China present situation and future development. In:Lee JM, Zhang D. (Eds.) Asian Plants with Unique Horticultural Potential: Genetic resources, cultural practices, and utilization.2003:187-191.
    136. Shugart H H. A theory of forest dynamics:the ecological implications of forest succession models, New York, Springer-Verlag.1984:134-138.
    137. Sorrensen-Cothern K A, Ford E D, Sprugel D G. A model of competition incorporating plasticity through modular foliage and crown development. Ecological Monographs.1993,63:277-304.
    138. Stachowicz J J. Mutualism, facilitation, and the structure of ecological communities. BioScience. 2001,51:235-246.
    139. Tomback D F. Dispersal of white bark pines seeds by Clark's Nutcracker:a mutualism hypothesis. Journal of Animal Ecology.1982,51(2):451-467.
    140. Tomback D F, Linhart Y B. The evolution of bird-dispersed pines. Evolutionary Ecology.1990, 4:185-219.
    141. Traveset A, Riera N, Mas R E. Ecology of fruit-colour polymorphism in myrtus communis and differential effects of birds and mammals on seed germination and seedling growth. Journal of Ecology.2001,89:749-760.
    142. Urban D L, Bonan G B, Smith T M, Shugart H H. Spatial applications of gap models. Forest Ecology and Management.1991,42:95-110.
    143. Vandermeer J. Disturbance and neutral competition theory in rain forest dynamics. Ecological Modelling.1996,85:99-111.
    144. Wang W D, Chen L S. A predator-prey system with stage structure for predator. Computers & Mathematics with Applications.1997,33 (8):83-91.
    145. Watanabe Y. The red squirrel and the Korean pine:a role for plant dispersion. Nonezumi.1977, 138:11-13.
    146. Williams M. A three-dimensional model of forest development and competition. Ecological Modelling.1996,89:73-98.
    147. Will-Wolf S, Roberts D W. Fire and succession in oak-maple upland forests:A modeling approach based on vital attributes, in John T. Curtis:50 Years of Wisconsin Plant Ecology (Fralish J S, McIntosh R P, Loucks O L. Eds.). Special Issue, Wisconsin Acad. of Science, Arts and Letters. Madison, Wl,1993,217-236.
    148. Wu J. Symmetric functional differential equation and neural networks with memory. Transactions of the American Mathematical Society.1998,350:4799-4848.
    149. Yang X, Zhang H, Zhang Y C, Ma Y, Wang J. Two new diterpenoid acids from Pinus koraiensis. Fitoterapia.2008,79:179-181.
    150. Yi X F, Xiao Z S, Zhang Z B. Seed dispersal of Korean pine(Pinus koraiensis) labeled by two different tags in a northern temperate forest, northeast China. Ecological Research.2008,23: 379-384.
    151. Yu D P, Zhai L J, Wang Q L, Dai L M. Dynamics of dominant tree species in a forest ecotone on the northern slop of Changbai Mountain. Journal of Forestry Research.2006,17(3):216-220.
    152. Zaiharov S M. Effects of squirrels on natural forest regeneration of Pinus koraiensis. Lisovedenie.1992,6:74-78.
    153. Zang R G, Li J Q, Zhu C Q. Life history process and conservation of Korean pine populations in the Xiaoxingan Mountains of northeast China. Journal of Beijing Forestry University (English Ed.).1998,7(2):60-70.
    154. Zhang H D, Cheng G Z, Guo J, Wu Y, Hu J C, Chen L S. A Study on the mathematical model between the population of giant pandas and bamboos in Mianning Yele Nature Reserve Xiangling Mountains.生物数学学报.2002,17(2):165-172.
    155. Zhang X A, Chen L S, Neumann A U. The stage-structured predator-prey model and optimal havesting policy. Mathematical Bioscience.2000,168(2):201-210.
    156. Zong C, Ma Y, Rong K, Ma J Z, Cheng Z B. The effects of hoarding habitat selection of Eurasian red squirrels (Sciurus vulgaris) on natural regeneration of the Korean pines. Acta Ecologica Sinica.2009,29(6):362-366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700