用户名: 密码: 验证码:
低剂量辐射对人肺上皮细胞和肺癌细胞Nrf2表达差异的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是世界范围内最为常见的恶性肿瘤之一,我国肺癌的发病率和死亡率占城市恶性肿瘤的首位,其发病率和死亡率逐年升高,越来越引起研究者的关注。
     肺癌常规治疗包括手术,化疗、放疗、生物治疗、分子靶向治疗和中药治疗等。据临床统计,非小细胞肺癌确诊时仅有20%病例能进行根治性手术,在手术切除的病例中5年生存率仅为30%~40%。术后放疗能在一定程度上提高肺癌患者局部控制率和生存率,因此被广泛的应用。放疗是治疗肺癌的常用方法。但放疗在破坏和杀灭癌细胞同时,也不可避免地对常组织细胞造成一定损伤,这已成为增加放疗剂量以提高疗效的一大障碍。在增加杀伤肿瘤作用的同时,如何减少对正常组织的损伤,一直是肿瘤工作者希望得到的理想结果。低剂量辐射具有对正常细胞的兴奋效应和适应性反应,而同时对肿瘤细胞可能产生与大剂量放疗的协同杀伤作用,这对低剂量辐射与大剂量照射联合应用于临床,加强放疗疗效、减轻放疗副作用具有重要意义。
     近年来,对核因子E2相关因子2(Nrf2)的研究成为氧化损伤领域的热点,Nrf2已被证实是调节细胞内众多抗氧化物表达的关键性因子,具有维持细胞氧化-抗氧化平衡、抑制凋亡、抗炎的多重生物活性。
     本实验对低剂量辐射后正常肺上皮细胞及肺癌细胞的生物学效应差异进行了研究,检测了氧化应激相关基因变化,并对其机制进行探讨。
     本实验应用MTT检测低剂量辐射(75mGy)后3、6、12、24和48h肺上皮细胞(HBE)和肺癌细胞(A549)的增殖情况;应用流式细胞术检测细胞周期各阶段的细胞比例,对比HBE细胞及A549细胞低剂量辐射后的细胞周期变化;应用Western blot检测两种细胞低剂量辐射后6、24h Nrf2蛋白的表达量;应用ELISA检测两种细胞内Nrf2调控的下游蛋白(谷胱甘肽)的浓度水平。
     本实验的主要结果是:
     (1)LDR后正常肺上皮细胞增殖明显加快,S期细胞比例明显增加;而肺癌细胞无明显增殖,S期细胞比例也无明显变化。表明LDR可诱导正常肺上皮细胞产生兴奋效应,而在肺癌细胞则不能诱导兴奋效应。
     (2)LDR后正常肺上皮细胞Nrf2表达水平明显增加,而肺癌细胞Nrf2表达水平无明显变化。
     (3)LDR后正常肺上皮细胞谷胱甘肽浓度水平明显增加,而在肺癌细胞未发现谷胱甘肽浓度明显变化。
     这些结果表明,低剂量辐射在正常肺上皮细胞和肺癌细胞引起不同的抗氧化应激反应,这可能是低剂量辐射在两类细胞引起生物学效应差异的机制之一。
Lung cancer is one of the most common malignant tumors worldwide. In our country,incidence and mortality of lung cancer are situated the first place of malignant tumors incities, the incidence and mortality are increasing in the recent years, and more and moreresearchers are attracted by these situations.
     The conventional treatments for lung cancer include surgery, chemotherapy,radiotherapy, biological therapy, molecular targeted therapy and Traditional Chinesemedicine and so on. According to clinical statistics, only20%of patients with non-small celllung cancer have chance to accept radical surgery at the time of diagnosis. The5-yearsurvival rate of the cases after surgery is from30%to40%. Postoperative radiotherapy canimprove local control and survival rate of patients with lung cancer to a certain extent, and isused widely in clinical treatment. However, the radiotherapy will unavoidably cause damagein the normal tissues meanwhile killing cancer cells, that has become a major obstacle ofincreasing radiation dose for improving radiation efficacy. The decreased in the damage tonormal tissues when radiation treatment of tumors is an ideal result for tumor researchers.Low-dose radiation has hormesis and adaptive response in the normal cells. Low-doseradiation in combined with high-dose radiation in the clinic may cause synergistic killing effectson tumor cells, that have an important significance for the enhancement of radiotherapyefficacy and alleviation of the side effects of radiotherapy.
     In the recent years, the studies on the nuclear factor E2-related factor2(Nrf2) havebecome hot spots in the field of oxidative damage. Nrf2has been proved to be a key factor inadjustment of expression of many intracellular antioxidants. Nrf2possesses multiplebiological activities, such as keeping the oxidation-antioxidation balance in cells, inhibitingapoptosis, anti-inflammatory effect.
     In this study, the differential biological effects induced by low-dose radiation in humanepithelial cells and lung cancer cells has been studied, the changes of gene expressioninvolved to oxidative stress were detected, as well as the mechanisms were explored.
     In this study, the proliferation of normal lung epithelial cells(HBE) and lung cancercells(A549) at3,6,12,24and48h after low-dose radiation was detected by MTT assay; the proportion of cells in cell cycle stages was evaluated using flow cytometry, and the changesin the cell cycle in HBE cells and A549cells after low-dose radiation ware studied; Westernblot was used to detect expression of Nrf2in two kinds of cells at6h and24h after radiation;glutathione concentrations regulated by Nrf2in two kinds of cells were determined byELISA.
     Main results of the present study:
     (1) Proliferation of normal lung epithelial cells was noticeably accelerated after LDR,the proportion of S-phase cells was significantly increased; while the proliferation of lungcancer cells and the proportion of S-phase cells had no significant change, indicating thatLDR was able to induce hormesis, but LDR failed to induce hormesis in lung cancer cells.
     (2) Expression levels of Nrf2in normal lung epithelial cells were significantly increasedafter LDR, while expression levels of Nrf2in lung cancer cells did not markedly change.
     (3) After LDR, the glutathione concentrations of normal lung epithelial cells weresignificantly increased, while changes in glutathione concentrations in lung cancer cells werenot found.
     These results suggested that low-dose radiation induced differential oxidative stressresponse in normal lung epithelial cells and in lung cancer cells, and that may be one of themechanisms of low-dose radiation resulted in the differential biological effects in two kindsof cells.
引文
[1] Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in2008:GLOBOCAN2008[J]. Int J Cancer,2010,127(12):2893-2917.
    [2]陈万青,张思维,邹小农,等.2004~2005年中国肺癌死亡情况分析[J].中华预防医学杂志,2010,44(5):378.
    [3] Jiang H, Xu Y, Li W, et al. Low-dose radiation does not induce proliferation in tumorcells in vitro and in vivo[J]. Radiat Res,2008,170(4):477-487.
    [4] Jiang H, Li W, Li X, et al. Low-dose radiation induces adaptive response in normalcells, but not in tumor cells: In vitro and in vivo studies.[J]Radiat Res (Tokyo),2008,49(3):219-230.
    [5] Garcia M, Jemal A, Ward EM, et al.Global cancer facts&figuers2007[M]. Atlanta,GA: American Cancer Society,2007
    [6]杨玲,李连弟,陈育德.中国肺癌死亡趋势分析及发病、死亡的估计与预测[J].中国肺癌杂志,2005,8(4):274.
    [7] Peto R, Darby S, Deo H, et al.1950年以来英国的吸烟、戒烟和肺癌状况:全国统计和两项病例对照研究的综合报告[J].英国医学杂志中文版,2000,3(4):169.
    [8]殷蔚伯,余子豪,徐国镇,等,主编.肿瘤放射治疗学(第4版),北京:中国协和医科大学出版社,2007,578.
    [9]刘树铮.辐射危害阈值问题—纪念伦琴发现X射线100周年[J].国外医学放射医学与核医学分册,1995,19(5):204.
    [10] Feinendegena LE, Pollycove M, Neumann RD, et al. Whole-body responses tolow-level radiation exposure: New concepts in mammalian radiobiology[J]. ExpHematol,2007,35(4):37-46.
    [11] Arthur DW, Winter K, Kuske RR, et al. A Phase Ⅱ trial of brachytherapy alone afterlumpectomy for select breast cancer: tumor control and survival outcomes of RTOG95-17[J]. Int J Radiat Oncol Biol Phys,2008,72(2):467-473.
    [12] Liu SZ. On radiation hormesis expressed in the immue system[J]. Crit Rew Toxicol,2003,33(3-4):431-441.
    [13] Ootsuama A, Okazaki R, Norimura T. Effect of extended exposure to low-dose onautoimmune diseases of immunologically suppressed MRL/MpTn-gid/gld mice[J]. JRadiat Res,2003,44(3):243-247.
    [14] Wang GJ, Cai L. Induction of cell-proliferration hormesis and cell-survival adaptiveresponse in mouse hematopoietic cells by whole-body low-dose radiation[J]. ToxicalSci,2000,53(2):369-376.
    [15] Li W, Wang G, Cui J, et al. Low-dose radiation(LDR)induces hematoietic hormesis:LDR-induced mobilization of hematopoietic progenitor cells into peripheral bloodcir-culation[J]. Exp Hematol,2004,32(11):1088-1096.
    [16] Olivieri G., Bodycote J, Wolff S. Adaptive response of human lymphocytes to lowconcentrations of radioactive thymidine[J]. Science,1984,223(4636):594-597.
    [17] Kojima S, Matsuki0, Nomura T, et al. Effect of small doses of gamma-rays on theglutathione synthesis in mouse, In: Low Doses of Ionizing Radiation: Biological Effectsand Regulatory Control, IAEA-TECDOC-976, IAEA-CN1997,-67/130.
    [18] Raaphorst GP, Maude-Leblanc J, Li L, et al. Evaluation of recombination repairpathways in thermal radiosensitization[J]. Radiat Res,2004,161(2):215-218.
    [19] Mitchel RE. Cancer and low dose responses in vivo: implications for radiationprotection[J]. Dose Response,2007,5(4):284-291.
    [20] Otsuka K, Koana T, Tauchi H, et al. Activation of antioxidative enzymes induced bylow-dose-rate whole-body gamma irradiation: adaptive response in terms of initialDNA damage[J]. Radiat Res,2006,166(3):474-8.
    [21] Bravard A, Luccioni C, Moustacchi E, et al. Contribution of antioxidant enzymes to theadaptive response to ionizing radiation of human lymphoblasts[J]. Int J Radiat Biol,1999,75(5):639-645.
    [22] Toledo S M, Asaad N, et al. Adaptive responses to low-dose/low-dose-rate gamma raysin normal human fibroblasts: the role of growth architecture and oxidativemetabolism[J]. Radiat Res,2006,166(6):849-857.
    [23] Seo HR, Chung HY, Lee YJ, et al. p27Cip/Kip is involved in HSP25or inducibleHSP70mediated adaptive response by low dose radiation[J]. Radiat Res,2006,47(1):83-90.
    [24] Bravard A, Luccioni C, Moustacchi E, et al. Contribution of antioxidant enzymes to theadaptive response to ionizing radiation of human lymphoblasts[J]. Int J Radiat Biol,1999,75(5):639-645.
    [25]范立群,韦龙祥,彭鹰.糖尿病与氧化应激的研究进展[J].右江民族医学院学报,2007,4:629-631.
    [26] Chapman JD, Reuvers AP, Borsa J, et al. Chemical radioprotection andradiosensitization of mammalian cells growing in vitro[J]. Radiat Res,1973,56(2):291-306.
    [27] Hensley K, Floyd RA. Reactive oxygen species and protein oxidantion inaging:a lookback,a look ahead[J]. Arch Biochem Biophys,2002,397(2):377-383.
    [28] Bravard A, Luecioni C, Moustaeehi E, et al. Contribution of antioxidant enzymes to theAdaptive response to ionizing radiation of human lymphoblasts[J]. Int J Radiat Biol,1999,75(5):639-645.
    [29]刘蕴光.低剂量辐射对荷瘤小鼠肝脏抗氧化酶及肿瘤组织的作用[J].中国自然医学杂志,2006,8(3):220-221.
    [30] Talalay P, Dinkova-Kostova AT, Holtzclaw WD. Importance of phase2generegulation in protection against electrophile and reactive oxygen toxicity andcarcinogenesis[J]. Adv Enzyme Regul,2003,43:121-134.
    [31] Yu X, Kensler T. Nrf2as a target for cancer chemoprevention[J]. Mutat Res,2005,591:93-102.
    [32] Kobayashi A, Ohta T, Yamamoto M. Unique function of the Nrf2-keap1pathway in theinducible expression of antioxidant anddetoxifying enzymes[J]. Methods Enzymol,2004,378:273-286.
    [33] Angelica BM, Liu D, Hagos GK, et al. Angelica sinesis and its alkylphthalidesinducethe detoxification enzyme NAD(P)H: by alkylating Keap1[J]. Chem Res Toxicol,2008,21:1939-1948.
    [34] Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expressionmediated by the antioxidant response element[J]. Ann Rev Pharmacol Toxicol,2003,43:233-260.
    [35] Umemura K, Itoh T, Hamada N, et al.Preconditioning bysesquiterpene lactoneenhances H2O2-induced Nrf2-ARE activation[J]. Biochem Biophys Res Commun,2008,368:948-954.
    [36] Zhang DD. Mechanistic studies of the Nrf2-Keap1signaling pathway[J]. Drug MetabRev,2006,38(4):769-789.
    [37] Sun Z, Zhang S, Chan JY, et al. Keap1controls postinduction repression of theNrf2-mediated antioxidant response by escorting uclear export of Nrf2[J]. Mol CellBiol,2007,27(18):6334-6349.
    [38] Lau A, Villeneuve NF, Sun Z, et al. Dual roles of Nrf2in cancer[J]. Pharmacol Res,2008,58(5):262-270.
    [39] Dinkova-Kostova AT, Holtzclaw WD, Cole RN, et al. Direct evidence that sulfhydrylgroups of Keap1are the sensors regulating inductionof phase2enzymes that protectagainst carcinogens and oxidants[J]. Proc Natl Acad Sci USA,2002,99(18):11908-11913.
    [40] Kang MI, Kobayashi A, Wakabayashi N, et al. Scaffolding of Keap1to the actincytoskeleton controls the function of Nrf2as key regulator of cytoprotective phase2genes[J]. Proc Natl Acad Sci USA,2004,101(7):2046-2051.
    [41] Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmentalstresses via the Keap1-Nrf2-ARE pathway[J]. Annu Rev Pharmacol Toxicol,2007,47(2):89-116.
    [42] Lee JM, Calkins MJ, Chan K, et al. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary corticalastrocytes using oligonucleotide microarray analysis[J]. Biol Chem,2003,278:12029-12038.
    [43] Itoh K, Wakabayashi N, Katoh Y, et al. Keap1regulates both cytoplasmic-nuclearshuttling and degradation of Nrf2in response to electrophiles[J]. Genes Cells,2003,8:379-391.
    [44] Kwak MK, Itoh K, Yamamoto M, et al. Enhanced expression of the transcription factorNrf2by cancer chemopreventive agents: role of antioxidant response element-likesequences in the Nrf2promoter [J]. Mol Cell Biol,2002,22:2883-2892.
    [45] Stewart D, Killeen E, Naquin R, et al.Degradation of transcription factor Nrf2via theubiquitin-proteasome pathway and stabilizationby cadmium[J]. Biol Chem,2003,278:2396-2402.
    [46] Nguyen T, Sherratt PJ, Huang HC, et al. Increased protein stability as a mechanism thatenhances Nrf2-mediated transcriptional activationof the antioxidant response element:degradation of Nrf2by the26S proteasome[J]. Biol Chem,2003,278:4536-4541.
    [47] Kim SK, Yang JW, Kim MR, et al. Increased expression of Nrf2-ARE-dependentanti-oxidant proteins in tamoxifen resistant breast cancer cells[J]. Free Radic Biol Med,2008,45:537-546.
    [48] Rubiolo JA, Mithieux G, Vega FV. Resveratrol protects primary rat hepatocytes againstoxidative stress damage: Activation of theNrf2transcription factor and augmentedactivities of antioxidant enzymes[J]. Eur J Pharmacol,2008,591:66-72.
    [49] Ma ZC, Hong Q, Wang YG, et al. Ferulic acid protects human umbilical veinendothelial cells from radiation induced oxidative stress by phosphatidylinositol3-kinase and extracelluar signal-regulated kinase pathways[J]. Biol Pharm Bull,2010,33(1):29-34.
    [50] Stridh MH, Correa F, Nodin C, et al. Enhanced glutathione efflux from astrocytesinculture by low extracellular Ca2+and curcumin[J]. Neurochem Res,2010,35(8):1231-1238.
    [51] Johnson JA, Johnson DA, Kraft AD,et al. The Nrf2-ARE pathway: an indicator andmodulator of oxidative stress in neurodegeneration[J]. Ann NY Acad Sci,2008,1147:61-69.
    [52] Kraft AD, Johnson DA, Johnson JA. Nuclear factor E2-related factor2-dependentantioxidant response element activation by tert-butylhydroquinone andsulforaphaneoccurring preferentially in astrocytes conditions neurons againstoxidative insult[J].Neurosci,2004,24(5):1101-1112.
    [53] Padmanabhan B, Tong KI, Ohta T, et a1. Structural basis for defects of Keapl activityprovoked by its point mutations in lung cancer[J]. Mol Cell,2006,21(5):689-700.
    [54] Singh A, Misra V, Thimmulappa RK, et a1. Dysfunctional KEAPl-NRF2interaction innon-small-cell lung cancer[J].PLoS Med,2006,3(10):420.
    [55] Shibata T, Ohta T, Tong KI, et a1. Cancer related mutations in NRF2impair itsrecognition by Keapl-CuB E3ligase and promote malignancy[J]. Proc Natl Acad SciUSA,2008,105(36):13568-13573.
    [56] Xin A, Tang X. The role of Nrf2-ARE signal pathway in tumorigenesis and drugresistance[J]. Chinese J Cell Biol,2009,31(3):319-324(in Chinese).
    [57]邵帅,马增春,洪倩,等.基于Nrf2-ARE通路的抗辐射有效活性成分筛选研究[J].中国药理学通报,2012,28(1):29-33.
    [58]李航,段惠军. Nrf2/ARE信号通路及其调控的抗氧化蛋白[J].中国药理学通报,2011,27(3):300-303.
    [59] Li H, Duan HJ. Nrf2/ARE pathway and downstream antioxidant genes[J]. ChinPharmacol Bull,2011,27(3):300-303.
    [60] Rubiolo JA, Mithieux G, Vega FV. Resveratrol protects primaryrat hepatocytes againstoxidative stress damage: Activation of the Nrf2transcription factor and augmentedactivities of antioxidant enzymes[J]. Eur J Pharmacol,2008,591(1-3):66-72.
    [61] Chen CY, Jang JH, Li MH, et al. Resveratrol upregulates hemeoxygenase-1expressionvia activation of NF-E2-related factor2in PC12cells[J]. Biochem Biophys ResCommun,2005,331(4):993-1000.
    [62]周荣,刘良明,胡德耀.血管内皮Nrf2-ARE通路调控的研究进展与展望[J].生理科学进展,2009,40(4):361-364.
    [63] Suzuki K, Kodama S, Watanabe M. Extremely low-dose ionizing radiation causesactivation of mitogen-activated protein kinase pathway and enhances proliferation ofnormal human diploid cells[J]. Cancer Res,2001,61:5396-5401.
    [64] Kim CS, Kim JM, Nam SY, et al. Low-dose of ionizing radiation enhances cellproliferation via transient ERK1/2and p38activation in normal human lungfibroblasts[J]. Radiat Res,2007,48:407-415.
    [65] Liang X, So YH, Cui J, et a. The low-dose ionizing radiation stimulates cellproliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymalstem cells[J]. Radiat Res,2011,52(3):380-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700