用户名: 密码: 验证码:
几种农业废弃物堆腐基质理化特性及在园林覆盖和栽培上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于泥炭资源大量减少,开采泥炭对湿地生态造成严重破坏,限制泥炭使用的压力越来越大,泥炭替代物研究成为基质国际研究热点。国外学者根据各国家国情用城市垃圾有氧腐解物、树皮、木材纤维等作为泥炭替代物并对其特性进行了研究。我国有着大量的农业废弃物,资源浪费严重并引起污染问题,把其开发为泥炭替代物可以大幅度降低基质成本,具有重要的研究意义和研究价值。另外,国内基质理论研究相对滞后,目前基质研究仅限于基质的简单配比及对植物的影响等,有必要对基质的性质进行深入研究,只有明确了其性质,才能在配比及管理方面有的放矢。本研究对农业废弃物进行堆腐处理,应用国际上基质通用研究方法并借鉴土壤学研究方法,深入研究农业废弃物堆腐基质的理化特性并加以改良,为其代替泥炭在无土栽培中应用提供理论和技术支持,并进行了农业废弃物腐解基质在园林覆盖和栽培上应用研究。结果表明:
     (1)堆腐开始后,各种材料温度均迅速升高,较短时间后又较快的下降,不同材料温度上升的快慢及最高温度差异很大,翻堆可提高堆体的温度;玉米秸秆整个腐解过程均不需加水,小麦秸秆堆制前吸水特别困难,腐解较短时间后吸水就变得很容易,棉花秸秆失水较快,腐解过程中需要不断加水,而大豆秸秆和菇渣只需前期加水;在堆腐的过程中,各种材料持水孔隙度均有所增加;玉米秸秆、小麦秸秆、大豆秸秆pH值变化均呈现出先降低后升高然后降低的趋势,菇渣和棉花秸秆表现为先升高后降低,但两者曲线有所不同;各种材料的电导率(EC值)均表现出先升高后降低的变化趋势;菇渣抗分解能力最强,双子叶植物秸秆比单子叶植物秸秆抗分解能力强,单子叶植物腐解过程中体积和重量减少较多;随着腐解过程的进行,容重都不同程度的增加;各种材料的NH4+ N和全N都是前期升高,后期降低,而碳氮比(C/N)均呈下降的趋势;各种材料经过不同的腐解期后,腐解基质发芽指数(GI)很快升高,GI后期接近或超过100%。
     (2)玉米秸秆、小麦秸秆基质容重较小、通气性较强,而大豆秸秆和棉花秸秆基质容重较大,持水孔隙相对较多;玉米秸秆和小麦秸秆基质比大豆和棉花秸秆基质易利用水较多,缓冲水容量较少;最大吸湿量和同一压力下的含水量以质量含水量表示时随着粒径的增大而增大,以容积含水量表示时随着粒径的增大而减小;玉米秸秆和小麦秸秆基质初始含水量较低,前期蒸发较快,大豆秸秆和棉花秸秆基质初始含水量较高,持水能力较强;加入保水剂不能降低秸秆基质的蒸发速率,但是可以提高其容器持水量和蒸发过程中的含水量;四种秸秆基质毛管水上升高度有较小的差异,粒径越小,毛管水上升越快;玉米秸秆和小麦秸秆基质渗透系数分别为74.81 mm·s-1和99.09 mm·s-1,而大豆秸秆和棉花秸秆基质的渗透系数分别为22.82 mm·s-1和23.50 mm·s-1,粒径变化对渗透系数有较大影响,蛭石可以减小各秸秆基质的渗透系数,但是对小麦秸秆和玉米秸秆基质影响较大,对大豆秸秆和棉花秸秆基质影响较小,随着基质的分解,渗透系数会不同程度的下降。
     (3)小麦秸秆、玉米秸秆、大豆秸秆及棉花秸秆基质的pH值分别为6.12、6.58、7.64和7.42,只有小麦秸秆pH值在理想范围5.5~6.5之间,玉米秸秆基质的pH值稍微偏高,大豆秸秆和棉花秸秆基质的pH值明显偏高;堆腐过程中加入硫磺粉可以使秸秆基质pH值降低,但基质的电导率(EC值)也明显增加;由于泥炭的pH值和EC值均较低,秸秆基质与泥炭混合后,秸秆基质的pH值和EC值均显著降低;用稀H2SO4可以将秸秆基质的pH值调低,随浇水次数的增加,其pH值以较快的速率回升;FeSO4·7H2O也可以使秸秆基质的pH值调低,但大豆和棉花秸秆基质需要加入的量较多;秸秆基质淋洗两次后,其EC值均达到理想范围(<2ms/cm);各种秸秆基质EC值的空间分布在含水量较少的情况下差异显著。秸秆基质中含有较多的初始养分,淋洗可以使大量元素含量减少,但对中微量元素含量影响不大。小麦和玉米秸秆基质以质量表示的CEC较大,而以体积表示的CEC以小麦秸秆基质的为最小;粒径变化对秸秆基质CEC的影响依据质量表示和依据体积表示有所不同。小麦秸秆基质抗淋溶作用较弱,淋出养分较多,其他三种秸秆基质抗淋溶作用较强,大豆和棉花秸秆基质前期淋出的养分相对较少,后期相对较多。
     (4)为了研究菇渣作为泥炭替代物的可行性,试验比较了菇渣与泥炭的理化性状,并对菇渣生长障碍因素进行了分析和调节。结果表明:菇渣大粒径较多,透气透水性较好,持水孔隙比泥炭少,蒸发反而比泥炭慢;菇渣毛管水上升速较快,加湿润剂对其作用不明显;菇渣水分特征曲线与泥炭相似;菇渣保肥性能较弱;菇渣EC值偏高,而泥炭较低,可通过淋洗方式降低菇渣的EC值;菇渣pH值偏高,可以通过添加硫磺粉、稀硫酸以及与泥炭等低pH值材料混合的措施解决。
     (5)有机废弃物腐解材料园林覆盖可以明显降低土壤容重、增加土壤孔隙度、提高土壤的渗透性能、减少蒸发、减少水土流失;有机废弃物腐解材料地面覆盖后地温日变化平缓,变幅明显减小,地面覆盖后年变化变幅明显减小,春季升温减慢;有机废弃物半腐解材料地面覆盖抑制杂草效果非常理想,如果覆盖厚度适宜,基本可以完全抑制杂草的生长;有机废弃物半腐解材料地面覆盖后明显提高表层土壤有机质含量和养分含量,但不同材料及不同厚度覆盖之间有所差异;玉米秸秆、小麦秸秆、大豆秸秆分解较快,以小麦秸秆分解最快,棉花秸秆、菇渣分解较慢,菇渣分解最慢;有机废弃物半腐解材料地面覆盖可以显著促进园林植物的生长。
     (6)农业废弃物堆腐基质与传统土壤栽培相比可以大大促进园林植物的生长;农业废弃物腐解基质通过淋洗、筛分法减小粒径、与泥炭混合等措施可以提高种子的发芽率;大多数农业废弃物腐解基质与泥炭配比可以起到取长补短的作用,从而促进植物生长。
More and more restrictions have being imposed on peat use due to greatly-reduced peat resources and wetland conservation, the peat substitute studies have become hot research project worldwidely in recent years. Foreign scholars use municipal solid waste compost, bark, wood fibres, etc. as peat substitute according to various national condition, and properties of peat substitute were studied. In our country, agriculture by-product resources are excessive and badly wasted and resulted in environment problems. The substrates cost can be greatly reduced if use agriculture by-product resources as peat substitute, so it is important to study it. Moreover, in our country, the theory studies of growing media is relative lagged behind, and the current researches of growing media are simple media formulations and effect of growing media on plants growth, it is necessary to conduct a deep research to properties of growing media, if we know clearly of the properties of growing media, we can have clear objectives when we mix and manage growing media. The research is to deal with agriculture waste by composting process, and use the international research methods of growing media, also learn research methods from soil science, to deep study physicochemical properties of agriculture waste compost substrates and improve it, which may provide the theory and the technical support for its proper usage as peat substitute in the soilless horticulture, and to research their utilization in landscape mulch and culture.
     1. At the beginning of the composting process, the temperature of each material rapidly elevated and lasted for a while, followed by a quick drop, the speed of temperature rise and the maximum temperature differ from material to material.Turn piles may enhance the compost temperature. Corn straw don’t need to add water in the entire compost process. Wheat straw is very difficult to absorb water before composting, but after short composting time, its water-absorptivity boost up greatly. The cotton straw dehydrate quickly, it needs to add water unceasingly in the composting process. Bean straw and spent mushroom compost only need to water in the earlier period. In the composting process, each kind of materials tends to increase water-holding pores. For corn straw, wheat straw and bean straw, changes tendency of their pH value present decline first, then elevate, and decline again subsequently. pH value of cotton straw and spent mushroom compost elevate first and then decline, yet two curves are different. The changes tendency of each material's electric conductivity (EC value) present elevate first, then reduce. When it comes to anti-decomposed ability, spent mushroom compost is strongest, dicotyledonous plant straw has stronger anti-broken ability than monocotyledonous plant straw,and volume and weight reduction of the latter is more than the former in the composting process. Bulk densitys of materials increased at the different degree along with composting process. Each material's NH4+ N and total N elevated at the earlier period, then reduced at later period, and the C/N ratio (C/N) of all materials showed a downward trend. Germination Indexes(GI) of various substrates increased rapidly after different composting period, and GI close to or exceed 100% in later stage.
     2. Bulk densities of corn straw and wheat straw substrates are smaller, and they have more air pores, and bulk densities of cotton straw and bean straw substrates are bigger, and have more water-holding pores. Corn straw and wheat straw substrates have more available water (EAW) and less buffer capacity(BC) than cotton straw and bean straw substrates. Maximal moisture absorption and water content under the same pressure increase along with the particle size increased as by weight water content expression, and they reduce along with the particle size increased as by volume water content expression. Initial moisture contents of corn straw and wheat straw substrates are lower, and their evaporation rates are faster in the early period,but initial moisture contents of cotton straw and bean straw substrates are higher, and their water retention abilities are stronger. Evaporation rate of straw substrates can not be reduced by adding super absorbent polymer, but can increase their container capacity and everyday moisture content in the evaporation process. The rising heighte of capillary water of four kinds of straw substrates have smaller differences, and the velocity of capillary water upward movement speeds up as the particle size reduced. permeability coefficientes of corn straw and wheat straw substrates are 74.81 mm·s-1 and 99.09 mm·s-1, but permeability coefficientes of cotton straw and bean straw substrates are 22.82 mm·s-1 and 23.50 mm·s-1, and the effect of particle size variation on permeability coefficient is strong, vermiculite can reduce permeability coefficient of each straw substrate, however, wheat straw and corn straw substrates was greater affected than cotton straw and bean straw substrates. With the substrate decomposition, the permeability coefficient will decline at different levels.
     3. pH values of wheat straw, corn straw, bean straw and cotton straw substrate are 6.12, 6.58, 7.64 and 7.42, only pH value of wheat straw substrate is in the ideal range between 5.5 to 6.5, corn straw substrate is slightly higher, bean straw and cotton straw substrates are significantly higher. The pH value can be reduced by adding sulfur powder in the composting process, but the electrical conductivity (EC value ) of substates also increased significantly. As the pH value and electronic conductivity(EC) value of peat are low, pH value and EC value of the straw substrate can be obviously lowered by mixed with peat. pH value can also be lowed by using dilute sulfuric acid, yet the pH value can increase at a faster rate along with increasing water times. FeSO4·7H2O can also cause the pH value of straw substrate to lower, but bean and the cotton straw substrate need a lot of FeSO4·7H2O. EC values of straw substrates all reach ideal range(<2ms/cm)after washed two times. EC value spatial distribution of each straw substrate is different significantly in the less moisture situation. There are more initial nutrients in the straw substrates, and washing can reduce macro-element contents, but effect of washing on middle and trace element contents is not significant. CEC of corn straw and wheat straw by weight expression are higher, but CEC of wheat straw by volume expression is the lowest. The effect of different particle size on CEC of straw substrates depend on by weight expression or by volume expression. The anti-leaching ability of wheat straw substrate is weak, more nutrient was leached out, but the anti-leaching ability of the other three straw substrates is stronger. The leaching nutrients of bean and cotton straw substrate are few relatively in the earlier period, and more in the later period.
     4. To study the feasibility of spent mushroom compost and peat substitute, the physical and chemical properties of the peat and spent mushroom compost were compared, and growth barrier factors of spent mushroom compost were analyzed and adjusted. The results indicate that spent mushroom compost has more larger-size particles, more air pores, better permeability, less water-holding pores than peat. So it need less water volume and more times, but it’s water losing rate is lower than that of peat. The velocity of capillary water upward movement of spent mushroom compost is higher than peat, and the effect of wetting agent on spent mushroom compost is not significant. Spent mushroom compost has similar moisture retention curves with peat. The nutrient retention property of spent mushroom compost is lower than that of peat, so the frequency of fertilization need to be increased. Electronic conductivity value of spent mushroom compost is high, but the one of peat is low, so the EC value of the former can be adjusted by mixing with peat in proper proportion or washing with water. pH value of spent mushroom compost is high, but it can be lowered by adding sulfur powder as well as dilute sulfuric acid or mixing with peat.
     5. Landscape mulch of agricultural waste compost may reduce the soil bulk density, increase the soil porosity, enhance the soil permeability coefficient, reduce evaporation, reduce soil and water loss. When landscape mulch of agricultural waste compost is used, ground temperature variation in one day become gentle, varying of temperature significantly reduced, and annual variation of temperature significantly reduced too, spring soil warming is slowing down. Weeds control effect of landscape mulch of agricultural waste compost is ideal, if mulch thickness is suitable, weeds can be completely inhibited. Landscape mulch of agricultural waste compost can raise the soil organic matter and nutrients obviously, but it lie on different materials and different thickness. Corn straw and wheat straw and bean straw decomposed faster, and wheat straw decomposed fastest, cotton straw and spent mushroom compost decomposed slowly, especially for spent mushroom compost. Mulch of agricultural waste compost can promote the growth of landscape plants.
     6. Substrates of agriculture resource waste compost can greatly promote the growth of garden plants compared with the traditional soil cultivation. Seeds germination rate can be increased if substrates of agriculture resource waste compost were washed, or reduced particle size with screen, and mixed with peat and other measures. Most of substrates of agriculture resource waste compost mixed with peat can make up their deficiency by acquiring strong points of peat, and promote the growth of plants.
引文
鲍士旦.土壤农化分析(第3版).北京:中国农业出版社,2000
    陈立新.土壤实验实习教程.哈尔滨:东北林业大学出版社,2005:59-63
    陈素英,张喜英,裴冬,等.玉米秸秆覆盖对麦田土壤温度和土壤蒸发的影响.农业工程学报, 2005, 21(10): 171-173
    陈振德,黄俊杰,蔡葵,等.几种常见的育苗基质主要特性的研究.土壤, 1997(2): 107-108
    崔秀敏,王秀峰.蔬菜育苗基质及其研究进展.天津农业科学, 2001, 7(1): 38-42
    戴芳,曾光明,牛承岗,等.堆肥化过程中生物酶活性的研究进展.中国生物工程杂志, 2005: 148-152
    董晓宇,蔡晓红,翟春峰,等.新型有机栽培基质的研究进展及展望.陕西农业科学, 2007(4):88-90
    杜慧芳,程智慧,杨海花,等.大蒜无土栽培有机和混合基质配方筛选.西北农业学报, 2007,16(1):184-188
    杜林峰,孙向阳,沈彦.泥炭作为园艺基质的研究进展.北方园艺, 2007(10):68-70
    方振东,易咏梅,王铁梅.不同基质配比与施肥对狗牙根无土草毯密度及成卷天数的影响.湖北民族学院学报(自然科学版), 2004,22(2):38-41
    傅松玲,傅玉兰,高正辉.非洲菊有机生态型无土栽培基质的筛选.园艺学报,2001, 28 (6): 538- 543
    高志,王雁,王莲英.基质加温对牡丹催花的影响.北京林业大学学报,1999,21(6):23-27
    郭世荣.固体栽培基质研究、开发现状及发展趋势.农业工程学报, 2005,21(S):1-4.
    何弦,中国花卉园艺·半月刊,2007(9):50
    何银生,林萍,袁梅,等.基质无土栽培磷素淋失防治研究进展.黑龙江生态工程职业学院学报,2006,19(6):29-35
    胡杨.观赏植物无土栽培基质研究进展.草原与草坪, 2002,97(2):9-18
    黄懿梅,安韶山,白红英,等.鸡粪与不同秸秆高温堆肥中氮素的变化特征X.西北农林
    科技大学学报〔自然科学版〕,2004,32(11):52-58
    江胜德.现代园艺栽培介质(选购与应用指南) [M].北京:中国林业出版社,2006:26-29.
    蒋卫杰,屈冬玉.我国设施园艺发展趋势和可持续发展的建议.中国农学通报, 2000,16(3):61-63
    蒋卫杰,余宏军.我国无土栽培的现状、问题和展望.农村实用工程技术·温室园艺, 2005(06):14-16
    晋艳,尉庆丰.土壤基质组成与磷吸附动力学的关系.土攘通报,1994,25(2):74-77
    荆延德,亓建中,张志国.花卉栽培基质研究进展.浙江林业科技,2001,21(6):69-71
    荆延德,张志国.栽培基质常用理化性质“一条龙”测定法.北方园艺, 2002(3):18~19
    荆延德,张志国.主成分分析和聚类分析在花卉栽培基质配方选择中的应用.土壤通报, 2004,35(5):588-591
    荆延德,亓建中,张志国.花卉栽培基质研究进展.浙江林业科技, 2001,21(6):68-71
    康红梅,张启翔,唐昔.栽培基质的研究进展.土壤通报, 2005,36(1):124-127
    雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988:223-231.
    李斗争,张志国,设施栽培基质研究进展.北方园艺, 2005(5): 7-9
    李斗争,张志国.组成成分及颗粒粒径对基质孔隙特性的影响研究.泰安:山东农业大学,2006.
    李谦盛,裴晓宝,郭世荣,等.配对芦苇末基质物理性状的影响.南京农业大学学报,2003, 26 (3): 23- 26
    李谦盛,郭世荣,李式军.利用工农业有机废弃物生产优质无土栽培基质.自然资源学报, 2002,17(4):515-519
    李谦盛.芦苇末基质的应用基础研究及园艺基质质量标准的探讨,2003
    李式军,高祖明,等.现代无土栽培技术[M].北京:北京农业出版社,1998
    李新举,张志国,刘勋岭,等.秸秆覆盖对土壤水盐运动的影响.山东农业大学学报(自然科学版),2000,31(1):38~40
    李永胜,杜建军,刘士哲,等.保水剂对番茄生长及水分利用效率的影响.生态环境, 2006, 15(1): 140-144
    刘伟,余宏军,蒋卫杰.我国蔬菜无土栽培基质研究与应用进展.中国生态农业学报, 2006,14(3):5-7
    刘波.秸杆腐解最佳条件的研究.黑龙江环境通报, 2003,27(1):84-86
    刘超杰,王吉庆,王芳.不同氮源发酵的玉米秸基质对番茄育苗效果的影响.农业工程学报,2005, 21(2):162-164
    刘减珍,王淑敏,杨丽琳.秸秆还田添加氮素调节碳氮比的研究.河北农业大学学报, 1995,18(3):31-35
    刘士哲,连兆煌.蔗渣堆沤过程的变化特征与“有效C/N比值”的应用研究.华南农业大学学报, 1994, 15(4): 7~12
    刘文臣,王荣,李超伦.东海颗粒有机物中的碳氮比.海洋与湖沼, 1998,29(5):467-469
    马力,张志国.泥炭对砂基运动场坪床基质理化性质及草坪草的影响.上壤通报, 2009,37(2):330-333
    毛羽,张无敌.无土栽培基质的研究进展.农业与技术, 2004,24(3):83-88
    毛妮妮,翁忙玲,姜卫兵.固体栽培基质对园艺植物生长发育及生理生化影响研究进展.内蒙古农业大学学报, 2007,83(3):284-287
    苗兵兵,罗健,林东教,等.漂浮栽培系统收获植物残体作为番茄育苗基质的应用研究.农业工程学报, 2005,21(S):133-136.
    聂俊华,李丽,徐顺利.原料配比对无土复合栽培基质水分参数的影响.土壤通报2005(2):160-164
    朴哲,崔宗均,苏宝林.高温堆肥的生物化学变化特征及植物抑制物质的降解规律.农业环境保护, 2001,20(4):206一209
    秦玲,魏钦平,李嘉瑞,等.草炭对砂质土壤保水特性的影响.农业工程学报,2005,21(10):51-54
    尚庆茂,张志刚.蚯蚓粪基质及肥料添加量对茄子穴盘育苗影响的试验研究.农业工程学报,2 005,21(S):129-132
    唐菁,康红梅.几种栽培花卉基质的理化特性研究.上壤通报, 2006,37(2):291-293
    佟小刚,蒋卫杰,尹明安,等.无土栽培基质中的微生物及其对作物生长发育的影响.园艺学报2005, 32 (3)544-550
    王国良,宗良纲,李晓征.不同无土基质对微型盆栽月季生长发育的影响.园艺学报,2003, 30 (5): 618- 620
    王进鑫,黄宝龙,王迪海.不同地面覆盖材料对壤土浑水径流入渗规律的影响.农业工程学报,2004,20(6):68-72
    王清奎,黄玉明,张志国.基质理化性质的快速测定方法.北方园艺, 2003(1):40-41
    王清奎,张志国.白云石石粉调节育苗基质pH的试验研究.土壤, 2003, 35 (3): 262-264
    王清奎,张志国.以泥炭为主复合基质石灰反应的研究.土壤通报, 2003,34(1):79-80
    王少先,陈双臣,赵天义.黄瓜穴盘育苗低成本基质的筛选.中国农学通报, 2007,23(2):340-342
    王扬军,陈若霞,陆冬青,等.食用菌废料在花卉蔬菜上的再利用试验.
    吴涛,晋艳,杨宇虹,等.药渣及秸秆替代基质中草炭进行烤烟漂浮育苗研究初报.中国农学通报, 2007,23(1):305-309
    吴涛,晋艳,杨宇虹,等.烤烟漂浮育苗草炭替.中国农学通报, 2007,23(1):194-198
    吴正松,彭绪亚,蔡华帅,等.微生物在堆肥化中的应用研究.重庆建筑大学学报2005,27(1):92-96
    席北斗,李英军,刘鸿亮.生活垃圾堆肥分阶段反应动力学研究.环境污染与防治,2004,26(5):381-386
    肖海华,张毅功,方正,等.不同保水剂对基质保水性和黄瓜幼苗生长的影响.河北农业大学学报, 2002,25(3):45-53
    谢嘉霖,刘荣华,叶启芳,等.无土栽培基质电导率和pH值测定条件的研究.安徽农业科学, 2006,34(3):415-416
    谢小玉,邹志荣,江雪飞,等.中国蔬菜无土栽培基质研究进展.中国农学通报, 2005,21(6):280-283
    邢广萍,张志国,荆延德,等.牡丹栽培基质的研究.山东师范大学学报(自然科学版), 2004,19(4):78-81
    闫杰,罗庆熙,韩丽萍.工厂化育苗基质研究进展.中国蔬菜, 2006(2): 34-37
    尹少华,卢欣石,韩烈保.高尔夫球场果岭根系基质配方研究进展.中国草地学报, 2006,28(6):90-96
    余宏军,蒋卫杰,屈冬玉,等.基质含水率对春茬日光温室韭菜产量及生长的影响.农业工程学报, 2005,21(S):165-168.
    郁红艳,曾光明,胡天觉,等.真菌降解木质素研究进展及在好氧堆肥中的研究展望.中国生物工程杂志, 2003,23(10):57-61
    郁书君,汪天,金宗郁,等.白桦容器栽培试验—最适基质配方的筛选.北京林业大学学报, 2001,23(1):25-28
    翟胜,梁银丽,王巨媛.地面覆盖对温室黄瓜生产及水分利用效率的影响.农业工程学报, 2005,21(10):129-133.
    张勇,张志国.苑学霞.不同基质对凤仙扦插效果的影响.山东农业大学学报(自然科学版),2004,35(1):65~69
    张俊宁,李民赞,孔德秀,等.“电流-电压四端法”的温室栽培基质电导率测量.吉林大学学报(工学版), 2007,37(2)485-488
    张艳哲,李毅,刘吉平.秸秆综合利用技术进展.纤维素科学与技术, 2003(6):57-61
    张志国,徐琪.长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响.土壤学报, 1998,35(3):384-391
    赵亮,郭玉珍,丁明元.日光温室辣椒有机生态型无土栽培技术.中国蔬菜, 2007(2): 47-48
    赵九洲,陈洁敏,陈松笔,等.无土基质与营养液EC值对切花菊生长发育的影响.园艺学报, 1999, 26 (5)327- 330
    郑福琴,杨瑞长,刘日新.蘑菇培养料的碳氮比与养分转化和产量质量的关系.上海农业学报, 1995,11(1):33-38
    郑光华,蒋卫杰,刘伟,等.现代有机农业与无土栽培.北方园艺, 2002(1):7-9
    郑海金,欧立业,华珞.粉煤灰草坪基质的渗滤特性及其环境效应.土壤通报, 2005,36(6): 862-866
    Abreu C. A., Abreu M. F., Bataglia O. C., Furlani A. M. C., Furlani P. R., Paz-Gonzalez A. Micronutrient determination in water extracts of peat incubated with mineral fertilizers. Acta Hort, 2008, 779:375-384
    Acu?a R., Gil I., Bonachela S., Magán J. J. Oxyfertigation of a greenhouse melon crop grown in rockwool slabs in a mediterranean area. Acta Hort, 2008, 779:447-454
    Adams J. C., Lockaby B. G. Commercially produced superabsorbent material increases waterholding capacity of soil medium. Tree Planters' Notes, 1987 (38): 24-25
    Aendekerk T G L. Decomposition of peat substrate in relation to physical properties and growth of chammaecypairs.Acta Hort, 1997(450):191-198
    Alix C M. Retrofits curb biosolids composting odors.BioCycle ,1998(6):37-39
    Allison L. Organic matter and crop management problems,1965: 1367
    Alter H. The future course of solid waste management in the USA.Waste Management &Research, 1991(3):3-20
    Anicua-Sánchez R., Gutiérrez-Castorena M. C., Sánchez-García P. Physical and micromorphological properties of organic and inorganic materials for preparing growing media. Acta Hort, 2008, 779:577-582
    Aspinwall and Company Ltd. peat-based and alternative products in the gardening and landscape markets.Pub. UK Department of the environment, 1994
    Baker K. F. Development of nursery techniques. International Plant Propagators' Society Combined Proceedings, 1985 (34):152-164
    Barnett J. P. Effects of soil wetting agent concentration on southern pine seed germination. Southern Journal of Applied Forestry, 1977 (3):14-15
    Bartok J. W., Jr. Media mixing systems offer efficiency, variety. Greenhouse Manager,1985 (8): 108-113
    Baudoin W. O. Micro garden technologies. Acta Hort, 2007, 742:21-22
    Baumgarten A. Analytical methods for growing media– challenges and perspectives. Acta Hort, 2008,779:97-104
    Beardsell D V, Nichols D G. Wetting properties of dried out nursery container media. Scientia Horticulturae, 1982(17): 49-59.
    Beardsell D. V., Nichols D .G., Jones D. L.. Physical properties of nursery potting- mixtures. Scientia Horticulturae, 1979 (11):1-8
    Bender I., Raudseping M., Vabrit S. Effect of organic mulches on the growth of tomato plants and quality of fruits in organic cultivation. Acta Hort, 2008, 779:341-346
    Berghage R D, Krauskopf D M, Warncke K D, Widders I. Micronutrient testing of plant growth media: extractant identification and evaluation.Comm. soil sci. plant anal, 1987(18):1089-1110
    Bertoldi M, Vallini G, Pera A. The biology of composting: a review. Waste Management &Research,1983(1): 157~176
    Bethke C. L. Systematic approach solves grower problems. Greenhouse Manager, 1986(11):171, 173-174, 177
    Bhardwaj K K R. Improvements in microbial compost technology:a special reference to microbiology of composting,1995:115—135
    Biamonte R. L. Domestic vermiculite for horticultural use. Bull. TTB-104. Fogelsville, PA: W.R. Grace and Co., Horticultural Products,1982: 6
    Biernbaum J. Water and media testing essential to managing root zone environment. PPGA News.vol.23, 1992
    BioCycle, The biocycle guide to yard waste composting.JG Press, Emmaus, Pennsylvania, 1989
    Biran I, Eliassaf A. The effect of container size and aeration conditions on growth of roots and canopy of woody plants. Scientia Horticulturae, 1980(12): 385-394.
    Black C. H. Interaction of phosphorus fertilizer form and soil medium on Douglas- fir seedling phosphorus content, growth and photosynthesis. Plant and Soil, 1988 (2):191-199
    Blok C., Wever G. Experience with selected physical methods to characterize the suitability of growing media for plant growth. Acta Hort, 2008, 779:239-250
    Bluhm W. L. Peat, pests, and propagation. International Plant Propagators' Society Combined Proceedings , 1978(28):66-70
    Bohne H. Growth of nursery crops in peat-reduced and in peat free substrates. Acta Hort, 2004(644):103-106.
    Bohne H. Nitrogen and water household in peat reduced growing media during cultivation of tree nursery crops. Acta Hort, 2008, 779:213-220
    Bougoul S, Boulard T. Smulation of water movement in rockwool slabs used as growing media. Acta Hort, 2005(691): 275-284
    Bragg N, Chamber B J.. Interpretation and advisory service applications of compost air-filled porosity (AFP) measurements. Acta Hort, 1988(221): 35-44.
    Bragg N. C., Chambers B. J., Davies J. S. and Richards I. R. The effects of increasing levels of boron on the growth and yield of strawberries grown in peat-based systems. Acta Hort, 2008, 779:205-212
    Bragg N. Peat and its Alternatives.Horiticultural Development Council,UK, 1990
    Brentlinger D. J. New trends in hydroponic crop production in the u.s. Acta Hort, 2007, 742:31-33
    Brock T D, Smith D W, Madigan M T. Biology of Microorganisms.Prentice-Hall Inc.Englewood Cliffs.New Jersey,1984: 240
    Brown M W. Pest management benefits of compost mulch in apple orchards. Ecosystems and Environment, 2004 (103) : 465–472
    Bugbee G. J., Frink C. R. Aeration of potting media and plant growth. Soil Science,1986 (6): 438-441.
    Bunt A C. Media and mixes for container-grown plants.Boston Unwin Hyman,1988:309 .
    Bunt A C. Physical properties of mixtures of peats and minerals of different particle size and bulk density for potting substrates. Acta Horticulturae, 1984(150): 143-153.
    Bunt A. C. Media and mixes for container-grown plants. Boston: Unwin Hyman,1988:309
    Busbee G J, Frink C R. Aeration of pottine media and plant growth. Soil Science, 1986,141(6): 438-441.
    Cáceres R., Casadesús J., MarfàO. Comparison of methods to automatically activate irrigation systems for shrub species grown outdoors in containers. Acta Hort, 2008, 779:461-470
    Campbell, S.“The Mulch Book.”Pownal, VT: Storey Publishing. 1993.
    Canet R, Pomares F. Changes in physical, chemical and physico-chemica1 parameters during the composting of municipal solid wastes in two plants in Valencia. Biore source Technology, 1995(51):259-264
    Carlile W R. Growing media and the environment lobby in the UK 1997-2001.Acta hort, 2004(644): 107-113
    Carlile W R. The Effects of environmentLobby on the Selection and Use of Growing Media in the UK. Acta Hort, 1997( 580)
    Carlile W R. The effects of the environment lobby on the selection and use of growing media. Acta Horticulturae, 1999(481): 587-596.
    Carlile W. R. The use of composted materials in growing media. Acta hort, 2008, 779:321-328
    Carlile W. R., Hammonds S. J. Micro-organisms of human health importance in growing media. Acta Hort, 2008, 779:67-74
    Carlson L. W. Guidelines for rearing containerized conifer seedlings in the Prairie provinces. Info. Rep. NOR-X-214F. Edmonton, AB: Canadian Forestry Service, Northern Forest Research Centre,1983: 64
    Caron J, Elrick D E, Beeson R ,Boudreau J. Defining critical capillary rise properties forgrowing media in nurseries. Soil Sci Soc Am J, 2005(69):794-806
    Caron J, Riviere L M, Morel P. Aeration in growing media containing large particle sizes. Acta hort,1999(548):229-234.
    Caron J., Elrick D. E. Defining critical capillary rise properties for growing media: model and methodology. Acta Hort, 2008, 779:149-154
    Caron J., Juneau V., Allaire S., Dorais M., Ménard, C. and Desbiens M. C. Towards improvement of peat substrates for greenhouse tomato. Acta Hort, 2008, 779:199-204
    Carrión C., Abad M., Fornes F., Noguera V., Puchades R., Maquieira A., Botella S., García R. Acidification of composts from agricultural wastes to prepare nursery potting mixtures. Acta Hort, 2008, 779:333-340
    Carruthers S. Challenges faced by the hydroponics industry worldwide. Acta Hort, 2007, 742:23-27
    Cavins T. J., Whipker B. E., Fonteno, W. C. Pourthru: a method for monitoring nutrition in the greenhouse. Acta Hort, 2008, 779:289-298
    CEN. prEN 13037, 13038, 13040, 13041. CEN (European committee for standardization). Soil improvers and growing media. 1999.
    Cendón Y., Moldes A., Barral M. T. Evaluation of municipal solid waste compost as a growing media component for potted plant production. Acta Hort, 2008, 779:591-598
    Cereti C. F., Rossini F., Stancanelli G. Nitrate and ammonia leaching of bermudagrass turf on different substrates in mediterranean area (central italy). Acta Hort, 2008, 779:669-676
    Chandler J A, Jewell W J, Gassett J M, VanSoest P J, Robertson J B. Predicting methane fermentation.Biotechnology and Bioengineering Symposium No.10.John Wiley & Sons Inc, New York, 1980
    Charpentier S. Water Potential in the substrate-solution system in Horticulture.Acta Horticulturae, 1988(221):25-33.
    Chen Y, Hader y..Water-Extractable components released during composting of MSW. Acta Hort, 1998(469):111-118
    Chong C., Cline R. A., Rinker D. L. Spent mushroom compost and papermill sludge as soil amendments for containerized nursery crops. Combined Proceedings of the International Plant Propagators' Society ,1988(37): 347-353
    Chrustic G. A., Wright R. D. Influence of liming rate on holly, azalea, and juniper growth in pine bark. Journal of the American Society for Horticultural Science, 1983(5):791-795
    Clarke D. The wise use of peat in horticulture. Acta Hort,2008, 779:161-164
    Coic Y, Lesaint C.La nutrition minerafe et en eau des plantes en horticulture avancee. Le document technique S CPA, 1975(23):11-31.
    Council on Soil Testing and Plant Analysis.Soil andplant anslysis registry for the United states and Canada. Athens, Ga.:Council on Soil Testing and Plant Analysis, 1992
    David W R. Water, media and nutrition for greenhouse crops. Batavia,Illinois USA: Ball Publishing,1996.
    Davidson H., Mecklenberg R. Nursery management: administration and culture. Englewood Cliffs, NJ: Prentice-Hall, Inc,1981:450
    De Boodt M, Verdonck O, Cappaert J.Determination and study of the water availability of substrates of ornamental plant growing. Acta Horticulturae, 1974(89):89-94.
    De Boodt M,Verdonck O. The physical properties of the substrates in horticulture. Acta Horticulturae,1972(26):37-44.
    De Boodt M., Verdonck O, Cappert I. Method for measuring the Waterrelease curve of organic substrates. Acta Hort, 1974( 450):2054-2062
    Demars K R, Long R P, Ives J R. New england transportation onsortium use of wood waste materials for erosion control. April, 2000
    Demars K R, Long R P. Field evaluation of source separated compost and coneg. Model procurement specifications for connecticut dot projects. December, 1998
    Department of Environment. Mineral Planning Guidance Note 13. Guidelines for Peat Provision in England including the place of alternative materials, 1995
    Desbiens M. C., Bussières P., Caron J., Beeson R., Haydu J., Boudreau J., Elrick D. Improved water saving in nursery production using sphagnum peat. Acta Hort, 2008, 779:407-414
    Diane R. Making compost from yard waste. Environmental Horticulture, 2001: 426-703
    Dickinson k, Carlile W R. The storage properties of wood-based peat-free growing media.Acta Hort, 1995(40):89-96
    Dickson N, Richard T L,Kozlowski R E. Composting to reduce the waste stream:A guide to small scale food and yard waste composting.Natural Resource, Agriculture,and Engineering Service(NRAES),Ithaca, New York, 1991
    Digat B. The bacterization of horticultural substrates and its effects on plant growth. Acta Horticulturae, 1988(221):279-288.
    Dorothea C. Changes in maturity indicators during the degradation of organic wastes subjected to simple composting procedures. Biol Fertil Soils , 2004 (39):280–286
    Dresboll D. B. Structural quality of composted plant residues to be used as an organic growing medium. Acta Hort, 2008, 779:329-332
    Dubsky M., Sramek F. Crushed rockwool as a component of growing substrates. Acta Hort, 2008, 779:491-496
    Eiland F, Klamer M. Influence of Initial C/N Ratio on Chemical and Microbial Compositionduring Long Term Composting of Straw. Microb Ecol 2001 (41): 272–280
    Eitzer B. D, Iannucci-Berger W A. Fate of Toxic Compounds During Composting. Bull.
    Environ. Contam. Toxico, 1997 (58): 953-960
    EN 13037, 1999. Soil improvers and growing media-Determination of pH.
    EN 13038, 1999. Soil improver and growing media-Determination of electrical conductivity.
    EN 13039, 1999. Soil improver and growing media-Determination of orgnic mattercontent and ash.
    EN 13040, 1999. Soil improver and growing media-Sample preparation for chemical and physical test, determination of dry matter content, moisture content and laboratory compacted bulk density.
    EN 13041. 1999. Soil improves and growing media-Determination of physical properties-Dry bulk density ,air volume, water volume, shrinkage value and total pore space. European Committee for Standardisation, Brussels.
    Enviros Aspinwall and the ADAS. Monitoring and Assessment of Peat and Alternative Products for Growing Media and Soil Improvers in the UK(1996-1999) Published by the UK DETR, 2000
    Epstein E,Willson G B, Parr J F. The Beltsville aerated pile method for composting sewage sludge,1977:20l-213
    Epstein E. The Science of Composting.Technomic Publishing Inc.,Lancaster, Pennsylvania, 1997: 83
    Felicita B, Nina H, Marija V. Aerobic composting of tobacco industry solid waste-simulation of the process. Clean Techn Environ Policy, 2003 (5) :295–301
    Florida Department of Environmental Regulation. The Florida Development Manual: A Guide to Sound Land and Water Management (Chapter 6). Tallahassee, FL. 1988.
    Fonteno W C. A common misconception about media.N.C.comm.flower growers bull,1991,36(3):1-4
    Gabriels R. Standardization of growing media analysis and evaluation: CEN/JSO/ISHS. Chronica Horticulture, 1995(35):5-6.
    Gates W. Personal communication. Victoria, BC: British Columbia Ministry of Forest, Silviculture Branch. Gessert, G. 1976. Measuring air space and water holding capacity. Ornamentals Northwest ,1986(3):59-60
    Gislerod H R. Physical conditions of propagation media and their influence on the rooting of cuttings.Plant & Soil, 1983,69(3):445-456.
    Gladon D. Amendments and media. Container grower: news and notes. Fall 1988. Ames, IA:
    Iowa State University of Science and Technology, Department of Forestry, 1988:10
    Golueke G,.Putting principles into successful practice,1989:106-110
    Goodwin O. C. Greenhouse container seedling production manual. For. Note 19. Raleigh, NC: North Carolina Forest Service, 1975: 23
    Gouin F. Compost use in the horticulture industries. green industry composting biocycle special report, 1995.
    Gras R. Influence de Cepaisseur des massifs poreux sur leur retention en eau; Capacites en bac. Science du Sol, 1981(3):171-186.
    Gruda N., Rocksch T., Schmidt U. Co2 concentration in the root zone of vegetables grown in different substrates - preliminary results. Acta Hort, 2008, 779:505-512
    Hamoda F, Abu Qdais A, Newham J. Evaluation of municipal solid waste composting kinetics.Resources.Conservation and Recycling ,1998(23):209-223
    Handreck K A, Black N D. Growing media for omamental Plants and turf. 2nd edition. NSW Australia: New South Whales University Press,1989
    Harlass S. Uncover answers to media guessing game. Greenhouse Manager,1984 (5):102-107
    Hartman H. T., Kester D. E. Plant propagation: principles and practices. Englewood Cliffs, NJ: Prentice-Hall, Inc, 1983;727
    Haug R T. The Practical Handbook of Composting Engineering.Lewis Publishers, Boca Raton, Florida, 1993
    Havis J. R., Hamilton W. W. Physical properties of container media. Journal of Arboriculture, 1976(7):139-140
    Hellum A. K. Selecting peat for rearing coniferous container seedlings. Forestry Chronicle ,1975(51):200-202
    Hoitink H. A. J. Composted bark, a lightweight growth medium with fungicidal properties. Plant Disease ,1980(2):142-147
    Holcomb E J, White J W, Tooze S A. A vacuum extraction procedure for N, K, and conductivity evaluation of potted crop media.Comm..SoilSci.Plant Anal, 1982(13): 879-889
    Holtman W., Oppedijk, B., Draaijer, A., van Duijn, B., Graven, P., Buren J. Models of oxygen profiles in growing media and their use as a cultivation tool. Acta Hort, 2008, 779:273-280
    Iwasaki Y. Root zone aeration improves growth and yields of coir-cultured strawberry (fragaria ananassa duch.) During summer. Acta Hort,) 2008, 779:251-254
    James B. L. Propagation media: what a grower needs to know. Combined Proceedings, International Plant Propagators' Society Meeting, 1987(36):396-399
    Jean Caron , Nsalambi V, Nkongolo. Assessing Gas Diffusion Coefficients in Growing Media from in situ Water Flow and Storage Measurements. Vadose Zone Journal 2004(3):300-311
    Jeris L S, Regan R W. Controlling environmental parameters for optimum composting(PartⅡ).Compost Science, 1973(2):8-15
    Johnson P. Horticultural and agricultural uses of sawdust and soil amendments. National City, CA: Paul Johnson, 1968:46
    Joiner J. N., Conover C. A. Characteristics affecting desirability of various media components for production of container-grown plants. Proceedings of the Soil and Crop Science Society of Florida, 1965(25):320-328
    Jordao C P, Nascentes C C. Heavy metal availability in soil amended with composted urban solidwastes. Environmental Monitoring and Assessment, 2006 (112:)309–326
    Judd R. W., Jr. Making soilless mixes not without its problems. Greenhouse Manager ,1984(2):135-137
    Judd R. W., Jr. Soilless mixes for nursery production. Journal of Environmental Horticulture, 1983(4):106-109
    Kayhanian M, Tchobanoglous G. Computations of C / N ratio for various organic fractions.Biocycle, 1992(5):58—60
    Kirven D M. An industry viewpoint:horticultural testing-is our language confusing? Hortscience, 1986(21): 215-217
    Kluepfel M, Polomski B.“Mulch.”HGIC 1604. The Clemson University Cooperative Extension Service. 1999
    Kuhns L. J. Fertilizing woody ornamentals. University Park, PA: Pennsylvania State University, College of Agriculture, 1985: 16
    Kusey W. Beware of hidden costs in mixing your own media. Greenhouse Manager,1989.(5):134-141
    Kuter G A. Biosolids Composting.Water Environment Federation,Alexandria, Virginia, 1995
    Lackey M., Alm A. Evaluation of growing media for culturing containerized red pine and white spruce. Tree Planters' Notes, 1982(1):3-7
    Landis T D. Containers tree growing media[M]. Washington D C,1990.
    Lang H J, Elliott G C. How to read your media.GrowerTalks,1993(57): 57-65
    Lang H J. Variation associated with testing procedures for pH and electrical conductivity of soilless potting media.Hortscience, 1994(29):502
    Langerud B. R. A simple in situ method for the characterization of porosity in growth media. Plant and Soil ,1986(3):413-425
    Lemaire F. The problem of biostability in organic substrates. Acta Horticulturae, 1997(450):63-69.
    Lennox T .L., Lumis G. P. Evaluation of physical properties of several growing media for use in aerial seeding containers. Canadian Journal of Forest Research, 1987(17): 165-173
    Letom T G,Stentiford E L.Control of aeration in static pile composting[J].Wastes Management&Research,1998(8): 229-306
    Liao P H, May A C, Chieng S T. Monitoring process efficiency of a full-scale in-vessel system for composting fisheries wastes. Bioresource Technology ,1995(54): 159-163
    Lopez-Real J, Baptisa M. A preliminary study of three manure composting systems and their influence on process parameters and methane emissions.Compost Science and Utilization, 1996(3): 71-82
    Lynch N J, Cherry R S. Design of passively aerated compost piles:vertical air velocities between pipes, 1996: 973-982
    Lynch N J, Cherry R S. Winter composting using the passively aerated windrow system.Compost Science and Utilization, 1996(3): 44-52
    Marta B, Alberto M. Chemical and microbiological parameters for the characterization of the stability and maturity of pruning waste compost. Biol Fertil Soils, 2003 (37):184–189
    Martinez F X, Sepo N, Valero J. Physicochemical Properties of peat-core mixes and the effect of clay material addition.Acta Hort, 1997(450):39-46
    Mastalerz J. W. The greenhouse environment. New York: John Wiley and Sons, 1977:629
    Mathur S P, Richards R W. Large-scale generation of hygenic,high.quality com.post from beef feedlot manure and sawmill residues in natural aeration static piles(NASP) without pipes,plenums or envelope, 1999:36
    Matkin O A, Chandler P A. The U.C. type soil mixes. The U.C. system for producing healthy container-grown plants. Ext. Serv. Man. 23, 1957.
    McKinley V L, Vestal J R. Physical and chemical correlates of microbial activity and biomass in composting municipal sewage sludge.Applied and Environmental Microbiology , 1985(6): 1395-1403
    Merillot J M.Recycling organic municipal wastes in France[J].Biocycle,2003(7):30-31
    Michel J C, Riviere L M. Bellon-Fontaine M N, Ailteric C. Effects of wetting agents on the wettability of air-dried sphagnum peats. Peat in horticulture-its use and sustainability, International Peat Conference Proceedings. Amsterdam,1997: 74-79.
    Michel J. C., Naasz R., Charpentier S., Morel P., Rivière L. M., Caron J. Water repellency of organic growing media and its consequences on their hydraulic properties . Acta Hort, 2008,779:121-130
    Milbocker D. Pine bark shows promise for plugs. Greenhouse Manager, 1987(11):12
    Milks R. R., Fonteno W. C., Larson R. A. Hydrology of horticultural substrates: III.
    Predicting air and water content of limited-volume plug cells. Journal of the American Society for Horticultural Science 1, 1989(1):57-61
    Moliter H D, Briuckner U. Waste paper-A substitute for peat in horticulture. Acta Hort, 1997(450):47-55
    Montague T, Kjelgren R. Energy balance of six common landscape surfaces and the influence of surface properties on gas exchange of four containerized tree species. Scientia Horticulturae, 2004 (100): 229–249
    Moore G. Perlite: start to finish. International Plant Propagators' Society Combined Proceedings, 1988(37): 48-5 2
    Naasz R., Michel J. C. and Charpentier S. Modeling oxygen and water flows in peat substrate with root uptakes. Acta Hort, 2008, 779:191-198
    Naasz R., Michel J. C., Charpentier S. Microbial respiration and its consequences on oxygen availability in peat substrate. Acta Hort, 2008,779:91-96
    Nelson P V. Greenhouse operation and management. 4th ed.Englewood Cliffs,N.J: prentice-Hall,Inc,1991
    Nelson W. R. Personal communication. Starke Ayres. Pietermaritzburg, South Africa. Nelson P.V. Greenhouse operation and management. Englewood Cliffs, NJ: Prentice-Hall, Inc, 1978: 1989:598
    Noble R. Influence of straw types and nitrogen sources on mushroom composting emissions and compost productivity. Journal of Industrial Microbiology & Biotechnology 2002 (29): 99 –110
    Owen Jr., J. S., Warren S. L., Bilderback T. E., Cassel D. K. and Albano J. P. Physical properties of pine bark substrate amended with industrial mineral aggregate. Acta Hort, 2008,779:131-138
    Pálsdóttir A. M., Alsanius B. W., Johannesson V. and Ask A. Prospects of non-destructive analysis of root growth and geometry using computerized tomography (ct-x-ray). Acta Hort, 2008, 779:155-160
    Pannkuk T, Lang H J..Growth of New Guinea impatients at three fertilizer concentrations and two irrigation regimes using soil-state microtensiometers. Hortscience, 1994(29): 503
    Parramatta, Australia: Australian Nurserymen's Association [First printed by the University of alifornia, Division of Agricultural Sciences, California Agricultural Experiment Station]: 68-85.
    Peck K.. Peat moss and peats. Hummert's Quarterly, 1984 (3):1, 4-5
    Penningsfeld P. Kurzman P. Cultures sans sol et sur Tourbe. Ed. La Maison Rustique,1966:219.
    Perlite Institute. Typical chemical and physical properties of perlite. Tech. Data sheet. NewYork, 1983: 2
    Peter J S, Brian A K. Compost utilization in horticultural cropping systems [M]. London: Lewis Publishers,2001:51-93.
    Picken P., Reinikainen O., Herranen M. Horticultural peat raw material and its chemical and physico-chemical characteristics in western finland and western estonia. Acta Hort, 2008, 779:415-422
    Pokorny F. A. Available water and root development within the micropores of pine bark particles. Journal of Environmental Horticulture, 1987(2):89-92
    Pokorny F. A. Pine bark container media: an overview. International Plant Propagators' Society Combined Proceedings, 1979(29):484-495
    P?ldma P., Vabrit S., Merivee A., Suigusaar K. Influence of trichoderma viride-inoculated growing substrate on the growth and yield of lettuce (lactuca sativa l.). Acta Hort, 2008, 779:85-90
    Prasad M, O’Shea J. Relative breakdown of peat and non-peat growing media. Acta Hort, 1999(481):121-128
    Prasad M, Spiers T M, Ravenwood I C. Soil testing of horticultural substrates evalution of 1:1.5 water extract for nitrogen. Comm. SiolSci. Plant Anal, 1981(12): 811-823
    Prasad M,Maher M J. Stability of peat alternatives and use of moderately decomposed peat as a structure builder in growing meida. Acta Hort, 2004(648):145-151.
    Prasad M., Ni Chualain D., Maher M. J. The effect of addition of composted greenwaste and biowaste on enzyme activity of peats of two degrees of decomposition. Acta Hort, 2008, 779:59-67
    Prasad M., Maher M. J. Moderately decomposed peat as a structure builder for younger peats in growing media. Acta Hort, 2008, 779:185-190
    Puustj?rvi V. peat and its use in horticulture. Turventeollisuusliitto ry, 2004
    Puustjarvi V. Peat in horticulture. In: Organic materials as fertilizers. Soils Bull. 27. Rome: FAO, 1975:133-145
    Puustjarvi V., Robertson R. A. Physical and chemical properties. In: Peat in horticulture. London: Academic Press, 1975:170
    Puutsjarvi V. Peat and its use in horticulture. Turveteollisuusliitto ry Helsinki,1974:160.
    Rainbow Wilson Associates. An English Nature and RSPB joint report based on commissioned research by horticultural consultants. 2001. http://www.english- nature.org. uk /pubs/publication/ PDF/ peatering.pdf
    Raviv M, Wallach R,Silber A,Medina Sh,Krasnovsky A. The effect of hydraulic characteristics of volcanic materials on yield of roses grown in soilless culture. AmericanSociety for Horticultural Science, 1999: 205-209
    Raviv M. The use of compost in growing media as suppressive agent against soil-borne diseases. Acta Hort, 2008, 779: 39-50
    Reeker R. The wettability of dried peat. Torfnachrichten, 1954(7):15-16.
    Relf D.“Mulching for a Healthy Landscape.”Publication 426-724. Virginia Cooperative Extension. 2001
    Rhydderch R. Green lobby’s voice grows in peat debate. Horiticulture Week, March 22,2001(16)
    Richard T L. Municipal solid waste composting:physical and biological processing.Biomass and Bioenergy, 1992(3-4): 163-180
    Richman B, Rynk R. Recycling Yard debris.panhandle health district, Couerd’Alene, Idaho, 1994
    Rivière L M, Foucard J C, Lemaire F. Irrigation of container crop according to the substrate. Scientia Horticulture, 1990(43):339-349.
    Riviere L M, Jean Caron. Research on substrates: state of the art and need for the coming 10 years. Acta Hort , 2001(548):29-42.
    Rivière L M, Morel P, Coulomb N. The use of clay in organic substrates for pot plants. Acta Horticulturae, 1995(401):97-105.
    Rivière L M., Morel P., Michel J C. Growing media in french horticulture. Acta Hort, 2008, 779: 33-38
    Rynk R. Composting equipment, 1994: 147-179
    Rynk R. Review of contained composting systems:Part I.BioCycle, 2000(3): 30-36
    Sanderson K. C. Growing with artificial media: the advantages, disadvantages. Southern Florist and Nurseryman, 1983(20):13-17
    Scagel R. K. Personal communication. Pacific Phytometric Consultants, Surrey, BC.,1989
    Silber A. High frequency irrigations as means for enhancement of nutrient use efficiency: soilless grown bell pepper as a model plant. Acta Hort, 2008, 779:281-288
    Sonneveld C, Van Den Ende J, De Bes S S. Estimating the chemical composition of soil solutions by obtaining saturation extracts or specific 1:2 by volume extracts. Plant and Soil, 1990(122):169-175
    Sonneveld C. estimating quantities of water-soluble nutrients in soils using a spocific 1:2 by volume extracts. Comm. Soil Sci. Plant Anal, 1990(21):1257-1265
    Spomer L. A. Availability of water absorbed by hardwood bark soil amendment. Agronomy Journal ,1975(67):589-590
    Stentiford E I. Composting control:principles and practice, 1996:49-59
    Steuteville R. The state of garbage in America(I). Biocycle, 1995(36):54-58
    Stewart N. Production of bark for composts. International Plant Propagators' Society, Combined Proceedings, 1986(35):454-458
    Susan L, Steinberg, Gerard J. Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium.The Journal of The American Society For Horticultural Science ,2005,130(5): 767-774
    Suzanne E. Air-filled Porosity, Gas Relative Diffusivity, and Tortuosity: Indices of Prunus ×cistena sp. Growth in Peat Substrates. American Society for Horticultural Science,1996,121(2): 236-242
    Swanson B. T. Critical physical properties of container media. American Nurseryman, 1989 (11):59-63
    Takashi O, Kazutaka K, Michihiro Y. Determination of nitrous oxide, methane, and ammonia emissions from a swine waste composting process. J Mater Cycles Waste Manage, 2000 (2):51–56
    Takeki M, Juzo M, Hiroshi N. Composting of food refuse from a student restaurant in Hokkaido University. J Mater Cycles Waste Manage, 2000 (2):143–149
    Tchobanoglous G, Theisen H, Vigil S. Biological and chemical conversion technologies,1993:671–716
    Tolk J A, Howell T A, Effect of mulch, irrigation, and soil type water use and yield of maize. EvettSoil & Tillage Research 1999 (50): 137-147
    Tseng D Y, Chalmers J J, Tuovinen O H, Hoitink H A J. Characterization of a bench-scale system for studying the biodegradation of organic wastes . Biotechnology Progress, 1995(11):443-451
    United States Environmental Protection Agency(U.S.EPA).1994.In-Vessel Composting of Municipal Wastewater Sludge. EPA / 625 / 8-89 / 016 . Office of Wastewater Management, Cincinnati,Ohio.
    US Composting Council. Field guide to Compost Utilization. 1996
    Valat B , Jouany C, Riviere L.M. Characterization of the wetting properties of air dried peats and composts. Soil Science, 1991,152(2):100-107.
    Van Noordwijk M, Raats P A C. Drip and drainage system for rockwool cultures in relation to accumulation and leaching of salts. Int. Soc. Of Soilless Culture Proc, 1980:279-287.
    Veijalainen A. M., Heiskanen J., Juntunen M. L., Lilja, A. Tree-seedling compost as a component in sphagnum peat-based growing media for conifer seedlings: physical and chemical properties. Acta Hort, 2008, 779:431-438
    Verdonck O, Demeyer P. The influence of the particle sizes on the physical properties of growing media[J]. Acta Hort,2004,644:99-101.
    Verdonck O, Penninck R, DeBoodt M.. The physical properties of different horticultural substrates. Acta Hort, 1983(150):161-167
    Verdonck O. Status of soilless culture in europe. Acta Hort, 2007, 742:35-39
    Verhagen J B G M. CEC and the saturation of the adsorption complex of coir dust. Acta Hort, 1999(481):151-155
    Verhagen J. B. G. M., Boon H. T. M. Classification of growing media on their environmental profile. Acta Hort, 2008, 779:231-238
    Vikman M. The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions. Appl Microbiol Biotechnol 2002 (59): 591–598
    Wallach R., Raviv M. The hydraulic properties of growing media - from laboratory measurements to greenhouse management. Acta Hort, 2008, 779:263-272
    Ward J., Bragg N. C., Chambers B. J. Peat-based composts: their properties defined and modified to your needs. International Plant Propagators' Society Combined Proceedings, 1987(36):288-292
    Warker J F.Methods to evaluate maturity of compost[J].Compost Science,2001(12):33-35
    Warncke D D, Krauskopf D M. greenhouse growth media: testing and nutrition guidelines. MSU Ext.Bul. E-1736, 1983
    Warncke D D. Analyzing greenhouse growth media by the saturation extraction method. Hort. Sci, 1986(2):223-225
    Warren S L, Bilderback T E. Arillite: effect on chemical and physical properties of pine bark subtrate and plant growth. J. Environ. Hort, 1992(10):63-69
    Wever G, Nowak J S, De Sousa Oliveira O M,Van Winkel A. Determination of hydraulic conductivity in growing media. Acta Hort, 2004(648):135-143
    Wever G, Van der B, Straatsma G. Potential of adapted mushroom compost as a growing medium in horticulture[J]. Acta Hort,2005,697:171-177.
    Wever G, Winkel A. Interlaboratory study cen-methods for the analysis of growing media and soil improvers, Acta Hort,2004(644):597-603
    Wever G., Van Leeuwen A A, Van Der M C. Saturation, Rate and hysteresis on substrates, Acta Hort. 1974(450):287-295
    Whitcomb C. E. Plant production in containers. Stillwater, OK: Lacebark Publications.,1988:633
    Williams B. J., Peterson J. C., Utzinger J. D. Liming reactions in sphagnum peat-based growing media. Journal of the American Society for Horticultural Science, 1988(2):210-214
    Willson G B. Combining raw materials for composting,1993:102-105
    Willson G B. Manual for composting sewage sludge by the aerated static pile method. U.S.Environmental Protection Agency(U.S.EPA),Cincinnati.Ohio, 1980
    Wilson G C S. The physico-chemical and physical properties of horticultural substrate. Acta Hort, 1983(150):19-32
    Wilson G. C. S. Effects of additives to peat on the air and water capacity. Acta Horticulturae, 1985(172):207-209
    Wohanka W., Bodenburg S., Molitor H. D. Disease suppressiveness and microbial communities of flax straw compost. Acta Hort, 2008,779:51-58
    Wolffhechel H. The suppressiveness of sphagnum peat to Pythium spp. Acta Horticulturae, 1988(221) :217-222
    Worrall R. The use of sawdust in potting mixes. International Plant Propagators' Society Combined Proceedings, 1976(26):379-381
    Wright R D, Grueber K L, Leda C..Medium nutrient extraction with the pour-through and saturated medium extract procedures for poinsettia. HortScience 1990(25): 658-660
    Wright R D. The pour-though nutrient extraction procedure. HortScience, 1986(21): 227-229 www.dot.state.tx.us/insdtdot/orgchart/gsd/recycle/compost.htm .Use of compost and shredded wood on rights of way. 2001.
    Yeager T H, Wright R D, Donohue S J. Comparison of pourthrought and saturated pine bark extract N, P, K, and pH levels. J. Amer. Soc. Hort. Sci, 19
    Yuwono A S, Boeker P. Detection of odour emissions from a composting facility using a QCM sensor array. Anal Bioanal Chem 2003 (375): 1045–1048

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700