用户名: 密码: 验证码:
海上对流层波导的雷达海杂波/GPS信号反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海上对流层波导是一种发生在海上低空对流层大气中的异常负梯度折射率结构,该结构能够使得电磁波在传播过程中向下弯曲,曲率大于地球表面的曲率,从而被陷获在一定厚度的大气层结内发生对流层波导传播。这种异常传播机制对工作在海洋大气环境中的雷达、移动通信等无线电系统的性能具有严重的影响。提前感知对流层波导环境,就可以采取相应的手段对波导陷获结构产生的影响进行补偿和修正,还可以利用对流层波导中的异常传播现象来实现雷达系统对低空突防目标的超视距探测等。因此,对海上对流层波导特征参数的实时探测反演具有重要意义。
     本文首先研究了实际粗糙海面上对流层波导环境中雷达波和低仰角GPS信号的传播特性,然后在此基础上系统地研究了基于雷达海杂波和GPS海面散射信号的海上对流层波导反演方法。主要的研究内容及取得的研究成果如下:
     1、系统阐述了海上对流层波导陷获结构形成的机理、分类以及区域分布特性,分析了电磁波在海上对流层波导环境中的传播机理以及能够形成波导传播的条件;详细描述了计算海上对流层波导环境中电波传播的抛物方程(PE)理论和射线描迹理论,并使用这两种理论方法分析了雷达波和GPS海面散射信号在海上对流层波导环境中的传播特性和陷获特性。
     2、对粗糙海面上包含与不包含岛屿不规则地形两种情况下对流层波导环境中的电磁波传播进行了建模,分析了海面粗糙度以及海岛尺度对雷达波传播特性的影响;计算了水平非均匀对流层波导环境中的电波传播特性并与水平均匀情况进行了比较分析;提出了一种新的球形、粗糙、阻抗海面上低仰角GPS信号传播的PE初始场模型,对该类海面边界条件情况下对流层波导环境中的低仰角GPS信号传播特性进行了建模。
     3、在对海上对流层波导环境中的雷达海杂波传播进行正演模拟的基础上,详细给出了海上对流层波导的雷达海杂波反演模型;提出了一种新的具有更高的蒸发波导剖面匹配性能与反演性能的四参数蒸发波导修正折射率剖面模型;为了获得对流层波导反演的不确定性统计信息,建立了波导参数的贝叶斯反演模型,计算了波导参数的一维与多维后验边缘概率密度,实现了海上对流层波导反演的不确定性统计估计。
     4、分析讨论了影响雷达海杂波反演海上对流层波导精度的影响因素,在此基础上提出了两个提高对流层波导反演性能的方法:(1)提出了一种用于对流层波导雷达海杂波反演的自适应目标函数模型,该模型针对不同的雷达系统参数对不同距离处的实测雷达海杂波功率给予目标函数的贡献进行加权,从而提高对流层波导的反演精度;(2)提出了基于变天线高度雷达海杂波的杂波功率增量图匹配法用于海上对流层波导反演。此外,建立了用于海上对流层波导反演的雷达参数优劣定量评判模型,分析了用于我国周边海域对流层波导反演的最佳雷达系统参数。
     5、使用主分量分析方法对水平非均匀对流层波导剖面进行了建模,在此基础上,建立了水平非均匀对流层波导的雷达海杂波反演模型;提出了一种含区域对流层波导历史数值预报先验信息的对流层波导参数的贝叶斯后验概率估计模型,实现了区域性非均匀对流层波导的反演,并且通过耦合进历史数值预报先验信息,提高了反演的精度。
     6、计算并分析了低仰角GPS信号的海面散射特性,在此基础上对GPS海面散射信号在对流层波导环境中的传播进行了建模,并提出了一种基于低仰角GPS海面散射信号的对流层波导多仰角被动反演模型,实现了局部区域非均匀对流层波导的被动式探测反演。
A marine tropospheric duct is an anomalous refractivity structure that often occursin the low-altitude troposphere on the ocean surface. This structure can bend a radiowave to the earth surface with a curvature larger than the earth’s curvature, resulting inducting propagation within an atmospheric layer with a certain thickness. Thisanomalous propagation mechanism has a serious effect on the performances of manyradio systems working in the marine atmosphere environment, such as radar, and mobilecommunication systems. Sensing the tropospheric duct environment in advance, we canuse some certain methods to compensate or modify the effects of the duct trappingstructure on the radio systems, and also can make the radar’s over-the-horizon detectionof low-altitude military targets by using the anomalous propagation mechanismsinduced by the tropospheric duct. Therefore, it is meaningful to detect or retrieve thetypical parameters of the marine tropospheric duct in real-time.
     This dissertation studies the propagation characteristics of the radar andlow-elevation GPS signals in tropospheric duct environments over the actual roughocean surface at first, then systemically studies the inversion methods for the marinetropospheric duct from radar sea clutters and ocean-scattered low elevation GPS signals.The main contents and innovations are as follows:
     1. The mechanism of formation, types, and regional statistics of the marinetropospheric duct are described in detail. The propagation mechanisms and theconditions to form ducting propagation of the electromagnetic wave within thetropospheric duct environment are analyzed. The parabolic equation (PE) andray-tracing theories used to model the radio wave propagation are described andimplemented on the computer, and they are used to analysis the propagationcharacteristics of radar and ocean-scattered GPS signals in the ducting environment.
     2. The propagation of the electromagnetic wave in a tropospheric duct on therough ocean surface with or without islands is modeled, then the effects of the oceansurface roughness and the island size on the propagation characteristics of radar waveare analyzed in detail. In order to quantify the effects of the horizontal variation of therefractivity profile on the radio wave propagation, the propagation characteristics ofradar wave in range-independent and range-dependent tropospheric ducts are calculatedand compared. A new GPS PE initial field model which takes ocean surface roughness,impedance, and earth’s curvature into account is proposed to model the low elevationGPS signal propagation in marine tropospheric ducts.
     3. On the basis of forward modeling the radar sea clutter propagation in marinetropospheric duct environments, the model of retrieving the marine tropospheric ductfrom radar sea clutter is presented theoretically. A new four-parameter modifiedrefractivity profile (M-profile) model for the evaporation duct is proposed. It has theability to more accurately match and retrieve real-world evaporation duct M-profiles.Besides, in order to obtain not only the tropospheric duct M-profile estimations but alsothe uncertainties in these estimates, we establish a Bayesian inversion model for theduct parameters. Through this model the one-dimensional and multi-dimensionalmarginal posterior probability distributions of the duct parameters are calculated, andthe inversion uncertainty estimation is realized.
     4. The factors that affect the inversion of marine tropospheric duct from radar seaclutters are analyzed and discussed in detail. Accordingly, two methods for improvingthe inversion quality are proposed.(1) An adaptive objective function model which canbe used in the inversion problem is proposed. In this new model, the contributions of themeasured radar sea clutter power from different distances on the objective function areweighted differently according to the radar system parameters and clutter measuringranges, thus the duct inversion precision is improved;(2) An inversion method whichuses the changes in radar sea clutter power versus receiving height as input is proposedto retrieve the marine tropospheric duct. Moreover, we established a metric model usedfor quantitatively evaluate the performance of the radar parameters which are employedin the tropospheric duct inversion. On this basis, the optimal radar parameters used forthe tropospheric duct inversion in the sea areas around China are explored.
     5. The range-dependent tropospheric duct M-profile is modeled using theprincipal component analysis method. On this basis, the inversion model of therange-dependent tropospheric duct from radar sea clutters is established andimplemented. Further, a Bayesian posterior probability estimation model of thetropospheric duct parameters which incorporates the historical information of thenumerically predicted regional tropospheric duct is proposed. By using this model, theinversion of the regional tropospheric duct is realized successfully. Besides, because ofthe incorporation of the historically predicted duct information, the inversion precisionis improved.
     6. The ocean surface scattering properties of low-elevation GPS signals arecalculated and analyzed, on this basis, the propagation model of the ocean-scatteredlow-elevation GPS signals within marine tropospheric duct environment is established and evaluated. Using this propagation model as the forward model, a passive inversionmodel of the tropospheric duct is proposed, which uses the ocean-scattered GPS signalsfrom multiple low-elevation GPS satellites as the inversion inputs. This model realizesthe passive inversion of partially regional tropospheric duct successfully.
引文
[1] C. A. Levis, J. T. Johnson, and F. L. Teixeira, Radiowave Propagation: Physics andApplications, Hoboken, New Jersey: John Wiley&Sons, Inc.,2010.
    [2]焦培南,张忠治,雷达电波环境与电波传播特性,北京:电子工业出版社,2007.
    [3] H. V. Hitney, J. H. Richter, R. A. Pappert et al.,“Tropospheric radio propagationassessment,” Proc. IEEE, vol.73, no.2, pp.265-283,1985.
    [4] B. R. Bean and E. J. Dutton, Radio Meteorology, New York: Dover Publications,1968.
    [5] J. D. Turton, D. A. Bennetts, and S. F. G. Farmer,“An introduction to radio ducting,”Meteorol. Mag., vol.117, pp.245-254,1988.
    [6] D. E. Kerr, Propagation of Short Radio Waves, Los Altos: Peninsula Publishing,1988.
    [7] ITU-R, The radio refractive index: its formula and refractivity data, P.453-9,2003.
    [8] W. Patterson, Ducting Climatology Summary, SPAWAR Sys. Cent., San Diego, Calif.,1992.
    [9] A. von Engeln and J. Teixeira,“A ducting climatology derived from the European Centre forMedium-Range Weather Forecasts global analysis fields,” J. Geophy. Res., vol.109, no.D18104,2004.
    [10] P. Lopez,“A5-yr40-km-resolution global climatology of superrefraction for ground-basedweather radars,” J. Appl. Meteorol. Clim., vol.48, no.1, pp.89-110,2009.
    [11]刘成国,黄际英,江长阴,“东南沿海对流层大气波导结构的出现规律,”电波科学学报,vol.17, no.5, pp.509-513,2002.
    [12]刘成国,黄际英,江长阴等,“我国对流层波导环境特性研究,”西安电子科技大学学报, vol.29, no.1, pp.119-122,2002.
    [13]蔺发军,刘成国,成思等,“海上大气波导的统计分析,”电波科学学报, vol.20, no.1,pp.64-68,2005.
    [14] R. L. Olsen and T. Tjelta,“Worldwide techniques for predicting the multipath fadingdistribution on terrestrial LOS links: background and results of tests,” IEEE Trans. AntennasPropag., vol.47, no.1, pp.157-170,1999.
    [15] R. L. Olsen, T. Tjelta, L. Martin et al.,“Worldwide techniques for predicting the multipathfading distribution on terrestrial LOS links: comparison with regional techniques,” IEEETrans. Antennas Propag., vol.51, no.1, pp.23-30,2003.
    [16] K. D. Anderson,“Radar detection of low-altitude targets in a maritime environment,” IEEETrans. Antennas Propag., vol.43, no.6, pp.609-613,1995.
    [17] R. E. Marshall, V. R. Wiss, and W. D. Thornton,"Multi-wavelength radar performancemodeling during an extreme clear air propagation event over the Persian gulf," in Proc. of4thEuropean Conference on Antennas and Propagation (EuCAP), pp.1576-1580, Barcelona,Spain, April12-16,2010.
    [18] N. Douchin, S. Bolioli, F. Christophe et al.,“Theoretical study of the evaporation duct effectson satellite-to-ship radio links near the horizon,” IEE Proc.-Microw. Antennas Propag., vol.141, no.4, pp.272-278,1994.
    [19] S. Sen and A. Nehorai,“OFDM MIMO radar with mutual-information waveform design forlow-grazing angle tracking,” IEEE Trans. Signal Proces., vol.58, no.6, pp.3152-3162,2010.
    [20] W. C. Y. Lee, Mobile Communications Design Fundamentals: John Wiley&Sons., Inc.,1993.
    [21] R. A. Paulus,"VOCAR: an experiment in variability of coastal atmospheric refracitivty," inProc. of International Geoscience and Remote Sensing Symposium, IEEE, pp.386-388,1994.
    [22] M. Katzin, R. W. Bauchman, and W. Binnian,“3-and9-centimeter propagation in low oceanducts,” Proc. IRE, vol.35, no.7, pp.891-905,1947.
    [23] T. P. Mouras, Effects of atmospheric refraction on U.S. ground warfare, DTIC Document,Naval Postgraduate School, Monterey, California,1983.
    [24] K. D. Anderson,“Radar measurements at16.5GHz in the oceanic evaporation duct,” IEEETrans. Antennas Propag., vol.37, no.1, pp.100-106,1989.
    [25] K. D. Anderson,“94-GHz propagation in the evaporation duct,” IEEE Trans. AntennasPropag., vol.38, no.5, pp.746-753,1990.
    [26] J. P. Reilly and G. D. Dockery,“Influence of evaporation ducts on radar sea return,” IEEProc.-Radar Signal Process, vol.137, no.2, pp.80-88,1990.
    [27] P. L. Slingsby,“Modelling tropospheric ducting effects on VHF/UHF propagation,” IEEETrans. Broadcasting, vol.37, no.2, pp.25-34,1991.
    [28] A. S. Kulessa, G. S. Woods, B. Piper et al.,“Line-of-sight EM propagation experiment at10.25GHz in the tropical ocean evaporation duct,” IEE Proc.-Microw. Antennas Propag.,vol.145, no.1, pp.65-69,1998.
    [29] J. K. Stapleton, V. R. Wiss, and R. E. Marshall,"Measured anomalous radar propagation andocean backscatter in the Virginia coastal region," in Proc. of31st International Conferenceon Radar Meteorology, Seattle, Wash.,2003.
    [30] D. R. Siddle, E. M. Warrington, and S. D. Gunashekar,“Signal strenght variations at2GHzfor three sea paths in the British Channel Islands: Observations and statistical analysis,”Radio Sci., vol.42, RS4019,2007.
    [31] S. D. Gunashekar, E. M. Warrington, D. R. Siddle et al.,“Signal strenght variations at2GHzfor three sea paths in the British Channel Islands: Detailed discussion and propagationmodeling,” Radio Sci., vol.42, RS4020,2007.
    [32] S. D. Gunashekar, E. M. Warrington, and D. R. Siddle,“Long-term statistics related toevaporation duct propagation of2GHz radio waves in the English Channel,” Radio Sci., vol.45, RS6010,2010.
    [33]姚展予,赵柏林,李万彪等,“大气波导特征分析及其对电磁波传播的影响,”气象学报, vol.58, no.5, pp.605-616,2000.
    [34]王华,张永刚,黄小毛等,“表面波导条件下雷达的探测特征,”系统工程与电子技术,vol.25, no.10, pp.1212-1215,2003.
    [35]王华,赵颖,黄小毛,“蒸发波导对雷达探测的影响,”现代雷达, vol.26, no.4, pp.5-7,2004.
    [36]黄小毛,张永刚,王华等,“大气波导对雷达异常探测影响的评估与试验分析,”电子学报, vol.34, no.4, pp.722-725,2006.
    [37]焦林,张永刚,“大气波导条件下雷达电磁盲区的预报研究,”西安电子科技大学学报(自然科学版), vol.34, no.6, pp.989-994,2007.
    [38]刘爱国,察豪,“海上蒸发波导条件下电磁波传播损耗实验研究,”电波科学学报, vol.23,no.6, pp.1199-1203,2008.
    [39]蔺发军,刘成国,潘中伟,“近海面大气波导探测及与其它研究结果的比较,”电波科学学报, vol.17, no.3, pp.269-272,2002.
    [40]刘成国,“蒸发波导环境特性和传播特性及其应用研究,”博士学位论文,理学院,西安电子科技大学,西安,2003.
    [41]赵小龙,“电磁波在大气波导环境中的传播特性,”博士学位论文,理学院,西安电子科技大学,西安,2008.
    [42] L. M. Brekhovskikh, Waves in Layered Media,2nd ed., San Diego, Calif: Academic,1980.
    [43] G. B. Baumgartner, H. V. Hitney, and R. A. Pappert,“Duct propagation modeling for theIntegrated Refractive Effects Prediction System (IREPS),” IEE Proc.-Communications,Radar and Signal Processing, vol.130, no.7, pp.630-642,1983.
    [44] M. F. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, London:The Institution of Electrical Engineers,2000.
    [45] J. R. Kuttler and G. D. Dockery,“Theoretical description of the parabolicapproximation/Fourier split-step method of representing electromagnetic propagation in thetroposphere,” Radio Sci., vol.26, no.2, pp.381-393,1991.
    [46] G. N. Watson,“The diffraction of radiowaves by the earth,” Proc. Roy. Soc. London, Ser. A,vol.95, pp.83-99,1918.
    [47] J. R. Wait,“Coupled mode analysis for a nonuniform tropospheric waveguide,” Radio Sci.,vol.15, pp.667-673,1980.
    [48] R. A. Pappert,“Conversion of radiation modes to trapped modes due to lateralinhomogeneity of a simple elevated layer,” Radio Sci., vol.17, no.2, pp.305-322,1982.
    [49] M. Leontovich and V. A. Fock,“Solution of the problem of propagation of electromagneticwaves along the earth's surface by the method of parabolic equations,” Journal of Physics ofUSSR, vol.10, pp.13-24,1946.
    [50] R. H. Hardin and F. D. Tappert,“Application of the split-step Fourier method to thenumerical solution of nonlinear and variable coefficient wave equations,” SIAM Rev., vol.15,pp.423,1973.
    [51] G. D. Dockery,“Modeling electromagnetic wave propagation in the troposhere using theparabolic equation,” IEEE Trans. Antennas Propag., vol.36, no.10, pp.1464-1470,1988.
    [52] A. A. Zaporozhets and M. F. Levy,“Modeling of radiowave propagation in urbanenvironment with parabolic equation method,” IEE Electronics Letters, vol.32, no.17, pp.1615-1616,1996.
    [53] A. A. Zaporozhets,"Modelling of radiowave propagation in urban environment," in Proc. of10th International Conference on Antennas and Propagation, IET, pp.83-89,1997.
    [54] K. Arshad, F. Katsriku, and A. Lasebae,"An investigation of wave propagation over irregularterrain and urban streets using finite elements," in Proc. of6th WSEAS Int. Conference onTeleconmunications and Informatics, Dallas, Texas, USA,2007.
    [55] G. D. Dockery and J. R. Kuttler,“An improved impedance-boundary algorithm for Fouriersplit-step solutions of the parabolic wave equation,” IEEE Trans. Antennas Propag., vol.44,no.12, pp.1592-1599,1996.
    [56] J. R. Kuttler and R. Janaswamy,“Improved Fourier transform methods for solving theparabolic wave equation,” Radio Sci., vol.37, no.2, RS002488,2002.
    [57] A. R. Miller, R. M. Brown, and E. Vegh,“New derivation for the rough-surface reflectioncoefficient and for the distribution of sea-wave elevations,” IEE Proc.-Microw. Opt.Antennas, vol.131, no.2, pp.114-116,1984.
    [58] O. Benhmammouch, A. Khenchaf, and N. Caouren,"Electromagnetic waves propagationabove rough sea surface application to evaporation ducts," in Proc. of InternationalGeoscience and Remote Sensing Symposium, IEEE, pp.1189-1192,2008.
    [59] O. Benhmammouch, N. Caouren, and A. Khenchaf,"Influence of sea surface roughness onelectromagnetic waves propagation in presence of evaporation duct," in Proc. ofInternational Radar Conference-Surveillance for a Safer World, IEEE, pp.1-6, Bordeaux,France,2009.
    [60] V. Fabbro, C. Bourlier, and P. F. Combes,“Forward propagation modeling above Gaussianrough surfaces by the parabolic wave equation: introduction of the shadowing effect,” Prog.Electromagn. Res., vol.58, pp.243-269,2006.
    [61] M. F. Levy,“Parabolic equation modelling of propagation over irregular terrain,” Electron.Lett., vol.26, no.15, pp.1153-1155,1990.
    [62] S. Ayasli,“SEKE: A computer model for low altitude radar propagation over irregularterrain,” IEEE Trans. Antennas Propag., vol.34, no.8, pp.1013-1022,1986.
    [63] M. H. Newkirk,"Recent advances in the tropospheric electromagnetic parabolic equationroutine (TEMPER) propagation model," in Proc. of Battlespace Atmosphere Conference, SanDiego, CA,1998.
    [64] A. E. Barrios,"Terrain and refractivity effects on non-optical paths," in Proc. of AGARDMeeting on "Multiple Mechanism Propagation Paths (MMPPs): Their Characterisation andInfluence on System Design",1994.
    [65] A. Beilis and F. D. Tappert,“Coupled mode analysis of multiple rough surface scattering,” J.Acoust. Soc. Amer., vol.66, no.3, pp.811-826,1979.
    [66] A. E. Barrios,“A terrain parabolic equation model for propagation in the troposphere,” IEEETrans. Antennas Propag., vol.42, no.1, pp.90-98,1994.
    [67] R. Janaswamy,“A curvilinear coordinate-based split-step parabolic equation method forpropagation prediction over terrain,” IEEE Trans. Antennas Propag., vol.46, no.7, pp.1089-1097,1998.
    [68] D. J. Donohue and J. R. Kuttler,“Propagation modeling over terrain using the parabolic waveequation,” IEEE Trans. Antennas Propag., vol.48, no.2, pp.260-277,2000.
    [69] M. D. Feit and J. A. Fleck,“Light propagation in graded-index fibers,” Appl. Opt., vol.17, no.24, pp.3990-3998,1978.
    [70]胡绘斌,“预测复杂环境下电波传播特性的算法研究,”博士学位论文,国防科学技术大学,武汉,2006.
    [71]郭建炎,“复杂环境电波传播的抛物方程法研究,”博士学位论文,中山大学,2008.
    [72] J. R. Kuttler,“Differences between the narrow-angle and wide-angle propagators in thesplit-step Fourier solution of the parabolic wave equation,” IEEE Trans. Antennas Propag.,vol.47, no.7, pp.1131-1140,1999.
    [73] M. Collins and R. B. Evans,“A two-way parabolic equation for acoustic backscattering in theocean,” J. Acoust. Soc. Amer., vol.91, no.3, pp.1357-1368,1992.
    [74] O. Ozgun,“Recursive two-way parabolic equation approach for modeling terrain effects intropospheric propagation,” IEEE Trans. Antennas Propag., vol.57, no.9, pp.2706-2714,2009.
    [75] R. S. Awadallah, J. Z. Gehman, J. R. Kuttler et al.,“Modeling radar propagation in threedimensional environments,” J. Hopkins Apl. Tech. D, vol.25, no.2, pp.101-111,2004.
    [76] R. S. Awadallah, J. Z. Gehman, J. R. Kuttler et al.,“Effects of lateral terrain variations ontropospheric radar propagation,” IEEE Trans. Antennas Propag., vol.53, no.1, pp.420-434,2005.
    [77] A. A. Zaporozhets,“Application of vector parabolic equation method to urban radiowavepropagation problems,” IEE Proc.-Microw. Antennas Propag., vol.146, no.4, pp.253-256,1999.
    [78] A. A. Zaporozhets and M. F. Levy,“Bistatic RCS calculations with the vector parabolicequation method,” IEEE Trans. Antennas Propag., vol.47, no.11, pp.1688-1696,1999.
    [79] M. A. N. da Silva, E. Costa, and M. Liniger,"Analysis of the effects from lateral variationsof irregular terrain based on a three-dimensional parabolic equation," in Proc. of4thEuropean Conference on Antennas and Propagation (EuCAP), IEEE, pp.1-4, Barcelona,Spain,2010.
    [80] W. L. Patterson, C. P. Hattan, and G. E. Lindem, Engineer's refractive effects predictionsystem (EREPS) version3.0, DTIC Document,1994.
    [81] F. J. Ryan, User's guide for the VTRPE (Variable Terrain Radio Parabolic Equation)computer model, Technical Report1456, DTIC Document, Naval Ocean Systems Center,San Diego, California,1991.
    [82] G. D. Dockery, R. S. Awadallah, D. E. Freund et al.,"An overview of recent advances for theTEMPER radar propagation model," in Proc. of IEEE Radar Conference, IEEE, pp.896-905,Boston, MA, USA, April17-20,2007.
    [83] A. E. Barrios, W. L. Patterson, and R. A. Sprague, Advanced propagation model (APM)version2.1.04computer software configuration item (CSCI) documents, Technical Document3214, DTIC Document, SPAWAR Systems Center, San Diego, California,2007.
    [84] W. L. Patterson, Advanced refractive effects prediction system (AREPS) version2.0user'smanual,2000.
    [85]高倩,“澳开发可预测大气波导现象的软件系统,”飞航导弹, vol.12, no.6, pp.59,1999.
    [86] J. P. Skura, H. W. Ko, and J. W. Sari,“Anamolous microwave propagation throughatmospheric ducts,” J. Hopkins Apl. Tech. D, vol.4, no.1, pp.12-16,1983.
    [87] J. R. Rowland, G. C. Konstanzer, M. R. Neves et al.,"SEAWASP: Refractivitycharacterization using shipboard sensors," in Proc. of the Battlespace AtmosphericsConference Tech. Doc.2938, pp.155-164, Nav. Command, Control and Ocean SurveillanceCent., San Diego, Calif.,1996.
    [88] J. H. Richter,"Sensing of radio refractivity and aerosol extinction," in Proc. of InternationalGeoscience and Remote Sensing Symposium, IEEE, pp.381-385, Pasadena, CA, Aug.8-12,1994.
    [89] H. Jeske,"State and limits of prediction methods of radar wave propagation conditions oversea," in Proc. of Modern Topics in Microwave Propagation and Air-Sea Interaction, ReidelPublishers, pp.131-148, Boston, MA,1973.
    [90] R. A. Paulus,“Practical application of an evaporation duct model,” Radio Sci., vol.20, no.4,pp.887-896,1985.
    [91] L. Musson-Genon, S. Gauthier, and E. Bruth,“A simple method to determine evaporationduct height in the sea surface boundary layer,” Radio Sci., vol.27, no.5, pp.635-644,1992.
    [92] J. F. Louis,“A parametric model of vertical eddy fluxes in the atmosphere,” Bound.-LayerMeteor., vol.17, no.2, pp.187-202,1979.
    [93] S. M. Babin,“A new model of the oceanic evaporation duct and its comparison with currentmodels,” Ph.D. Dissertation, Department of Meteorology, Univerisity of Maryland,1996.
    [94] S. M. Babin, G. S. Young, and J. A. Carton,“A new model of the oceanic evaporation duct,”J. Appl. Meteorol., vol.36, no.3, pp.193-204,1997.
    [95] W. T. Liu, K. B. Katsaros, and J. A. Businger,“Bulk parameterization of air-sea exchangesof heat and water vapor including molecular constraints on the interface,” J. Atmos. Sci., vol.36, no.9, pp.1722-1735,1979.
    [96] P. A. Frederickson, K. L. Davidson, and A. K. Goroch, Operational bulk evaporation ductmodel for MORIAH, Tech. Rep. NPS/MR-2000-002, ver.1.2, Nav. Postgrad. Sch., Monterey,Calif.,2000.
    [97] J. Cook and S. Burk,“Potential refractivity as a similarity variable,” Bound.-Layer Meteor.,vol.58, no.1, pp.151-159,1992.
    [98]刘成国,黄际英,江长阴,“用伪折射率和相似理论计算海上蒸发波导剖面,”电子学报,vol.29, no.7, pp.970-972,2001.
    [99] R. M. Hodur,“The Naval Research Laboratory's Coupled Ocean/Atmosphere MesoscalePrediction System(COAMPS),” Mon. Weather Rev., vol.125, no.7, pp.1414-1430,1996.
    [100]陈莉,“中国近海大气波导的统计特征分析及演变机理的数值研究,”博士学位论文,中国海洋大学,青岛,2010.
    [101]成印河,“海上低空大气波导的遥感反演及数值模拟研究,”博士学位论文,中国科学院海洋研究所,青岛,2009.
    [102]张玉生,康士峰,赵振维等,“大气波导与气象物理量场相关性的模拟分析,”电波科学学报, vol.24, no.4, pp.742-747,2009.
    [103]王振会,王喆,康士峰等,“利用WRF模式对大气波导的数值模拟研究,”电波科学学报, vol.25, no.5, pp.913-919,2010.
    [104] E. E. Gossard, Relationships of height gradients of passive atmospheric properties to theirvariances: applications to ground-based sensing of profiles, TR ERL448-WPL, NationalOceanic and Atmospheric Administration, Boulder, CO. Wave Propagation Lab.,1992.
    [105] M. I. Skolnik, Introduction to Radar Systems,3ed., New York: McGraw-Hill,2001.
    [106] C. R. Philbrick and D. W. Blood,"Lidar measurements of refractivity propagation effects," inProc. of AGARD Conference, DTIC Document, pp.567, Bremerhaven, Germany,1994.
    [107] A. J. Gibson, K. H. Craig, and U. M. Yilmaz,"Remote sensing of radio refractivity byLidar," in Proc. of10th International Conference on Antennas and Propagation, April14-17,1997.
    [108] A. Willitsford and C. R. Philbrick,"Lidar description of the evaporative duct in oceanenvironments," in Proc. of Proc. SPIE, pp.140-147,2005.
    [109] J. Agnew and K. Twort,"A Raman backscattering lidar system for tropospheric radiorefractivity determination," in Proc. of21st ILRC Conference, Defence R&D Canada, pp.713-716,2002.
    [110] J. Tabrikian and J. L. Krolik,“Theoretical performance limits on tropospheric refractivityestimation using point-to-point microwave measurements,” IEEE Trans. Antennas Propag.,vol.47, no.11, pp.1727-1734,1999.
    [111] P. Gerstoft, D. F. Gingras, L. T. Rogers et al.,“Estimation of radio refractivity structureusing matched-field array processing,” IEEE Trans. Antennas Propag., vol.48, no.3, pp.345-356,2000.
    [112] P. Valtr, P. Pechac, V. Kvicera et al.,“Estimation of the refractivity structure of the lowertroposphere from measurements on a terrestrial multiple-receiver radio link,” IEEE Trans.Antennas Propag., vol.59, no.5, pp.1707-1715,2011.
    [113] X.-F. Zhao,“Evaporation duct height estimation and source localization from fieldmeasurements at an array of radio receivers,” IEEE Trans. Antennas Propag., vol.60, no.2,pp.1020-1025,2012.
    [114]赵小峰,黄思训,“垂直天线阵观测信息反演大气折射率廓线,”物理学报, vol.60, no.11,119203,2011.
    [115] A. Barrios,“Estimation of surface-based duct parameters from surface clutter using a raytrace approach,” Radio Sci., vol.39, RS6013,2004.
    [116] N. Sengupta and I. A. Glover,"Refractivity and humidity profiling using wind profiler andmicrowave radiometer observations for the inference of radio ducts," in Proc. of URSIGeneral Assembly, New Delhi, India,2005.
    [117]赵振维,王宁,“微波辐射计反演大气折射率剖面技术研究,”电波科学学报, vol.25, no.1, pp.132-138,2010.
    [118] P. Valtr and P. Pechac,"Novel method of vertical refractivity profile estimation using angleof arrival spectra," in Proc. of28th General Assembly of International Union of RadioScience, New Delhi, India,2005.
    [119] X.-F. Zhao and S.-X. Huang,“Refractivity estimations from an angle-of-arrival spectrum,”Chin. Phys. B, vol.20, no.2,029201,2011.
    [120] B. L. Cheong, R. D. Palmer, C. D. Curtis et al.,“Refractivity retrieval using the phased-arrayradar: first results and potential for multimission operation,” IEEE Trans. Geosci. RemoteSens., vol.46, no.9, pp.2527-2537,2008.
    [121] J. Fritz, V. Chandrasekar, P. Kennedy et al.,"Retrieval of surface-layer refractivity using theCSU-CHILL radar," in Proc. of International Conference on Geoscience and Remote SensingSymposium, IEEE, pp.1914-1917,2006.
    [122] R. J. Watson and C. J. Coleman,"The use of signals of opportunity for the measurement ofatmospheric refractivity," in Proc. of4th European Conference on Antennas and Propagation(EuCAP), Barcelona, Spain, April12–16,2010.
    [123] S. Park and F. Fabry,“Estimation of near-ground propagation conditions using radar groundecho coverage,” J. Atmos. Oceanic Technol., vol.28, no.2, pp.165-180,2011.
    [124] J. L. Krolik and J.Tabrikian,"Tropospheric refractivity estimation using radar clutter fromthe sea surface," in Proc. of the1997Battlespace Atmospherics Conference, SPAWAR Sys.Command Tech., pp.635-642, San Diego, USA, Dec.2-4,1997.
    [125] J. H. Richter,“High resolution tropospheric radar sounding,” Radio Sci., vol.4, no.12, pp.1261-1268,1969.
    [126] R. A. Pappert, R. A. Paulus, and F. D. Tappert,“Sea echo in tropospheric ductingenvironments,” Radio Sci., vol.27, no.2, pp.189-209,1992.
    [127] C. Yardim,"Kalman and Particle Filters," presented at the Atmosphere and Oceanic SciencesSeminar, Feb.8,2007.
    [128] J. L. Krolik, J. Tabrikian, S. Vasudevan et al.,"Using radar sea clutter to estimate refractivityprofiles associated with the capping inversion of the marine atmospheric boundary layer," inProc. of International Geoscience and Remote Sensing Symposium, IEEE, pp.649-651,Hamburg, Germany, June28-July2,1999.
    [129] L. T. Rogers, C. P. Hattan, and J. K. Stapleton,“Estimating evaporation duct heights fromradar sea echo,” Radio Sci., vol.35, no.4, pp.955-966,2000.
    [130] J. Stapleton and S. Kang,"Direct measurement of microwave propagation effects," in Proc.of AGARD SPP Symposium on Remote Sensing: A Valuable Soure of Information, pp.12.1-12.10, Toulouse, France, April22-25,1996.
    [131] R. W. Stahl and D. A. Crippen, An Experimenters Guide to the NASA Atmospheric SciencesResearch Facility, Wallops Is. Va.: NASA Goddard Space Flight Center, Wallops FlightFacil.,1994.
    [132] L. T. Rogers, C. P. Hattan, and J. L. Krolik,"Using radar sea echo to estimate surface layerrefractivity profiles," in Proc. of International Geoscience and Remote Sensing Symposium,IEEE, pp.658-662, Germany,1999.
    [133] S. Vasudevan and J. L. Krolik,"Refractivity estimation from radar clutter by sequentialimportance sampling with a Markov model for microwave propagation," in Proc. ofInternational Conference on Signals, Systems and Communications, pp.2905-2908,2001.
    [134] S. Vasudevan,“Recursive bayesian refractivity estimation using radar sea clutter return,”Ph.D. Dissertation, Department of Electrical and Computer Engineering, Duke University,2002.
    [135] P. Gerstoft, L. T. Rogers, J. L. Krolik et al.,“Inversion for refractivity parameters from radarsea clutter,” Radio Sci., vol.38,8053,2003.
    [136] P. Gerstoft, L. T. Rogers, W. S. Hodgkiss et al.,“Refractivity estimation using multipleelevation angles,” IEEE J. Ocean. Eng., vol.28, no.3, pp.513-525,2003.
    [137] P. Gerstoft, W. S. Hodgkiss, L. T. Rogers et al.,“Probability distribution of low altitudepropagation loss from radar sea clutter data,” Radio Sci., vol.39, RS6006,2004.
    [138] L. T. Rogers, M. Jablecki, and P. Gerstoft,“Posterior distributions of a statistic ofpropagation loss inferred from radar sea clutter,” Radio Sci., vol.40, RS6005,2005.
    [139] C. Yardim, P. Gerstoft, and W. S. Hodgkiss,“Estimation of radio refractivity from radarclutter using Bayesian Monte Carlo analysis,” IEEE Trans. Antennas Propag., vol.54, no.4,pp.1318-1327,2006.
    [140] C. Yardim, P. Gerstoft, and W. S. Hodgkiss,“Statistical maritime radar duct estimation usinga hybrid genetic algorithm-Markov chain Monte Carlo method,” Radio Sci., vol.42, RS3014,2007.
    [141] C. Yardim, P. Gerstoft, and W. S. Hodgkiss,"Tracking atmospheric ducts using radar clutter:evaporation duct tracking using Kalman filters," in Proc. of International Symposium onAntennas and Propagation Society IEEE, pp.4609-4612,2007.
    [142] C. Yardim,“Statistical estimation and tracking of refractivity from radar clutter,” Appl.OceanSci.,2007.
    [143] C. Yardim,“Statistical Estimation and Tracking of Refractivity from Radar Clutter,” Ph.D.Dissertation, University of California, San Diego, San Diego,2007.
    [144] C. Yardim, P. Gerstoft, and W. S. Hodgkiss,“Tracking refractivity from clutter using kalmanand particle filters,” IEEE Trans. Antennas Propag., vol.56, no.4, pp.1058-1070,2008.
    [145] S. Vasudevan, R. H. Anderson, S. Kraut et al.,“Recursive bayesian electromagneticrefractivity estimation from radar sea clutter,” Radio Sci., vol.42, RS2014,2007.
    [146] C. Yardim, P. Gerstoft, and W. S. Hodgkiss,“Sensitivity analysis and performanceestimation of refractivity from clutter techniques,” Radio Sci., vol.44, RS1008,2009.
    [147] R. Douvenot, V. Fabbro, C. Bourlier et al.,"Inverse methods for refractivity from clutter," inProc. of International Conference on Radar, IEEE, pp.488-491,2008.
    [148] R. Douvenot, V. Fabbro, C. Bourlier et al.,"Refractivity from sea clutter applied onVAMPIRA and Wallop's98data," in Proc. of International Conference on Radar, IEEE, pp.482-487,2008.
    [149] R. Douvenot, V. Fabbro, P. Gerstoft et al.,“A duct mapping method using least squaressupport vector machines,” Radio Sci., vol.43, RS6005,2008.
    [150] R. Douvenot, V. Fabbro, C. Bourlier et al.,"A real-time RFC system for radar coverageprediction," in Proc. of International Radar Conference-Surveillance for a Safer World,IEEE, pp.1-4,2009.
    [151] R. Douvenot, V. Fabbro, C. Bourlier et al.,“Retrieve the evaporation duct height byleast-squares support vector machine algorithm,” J. Appl. Remote Sens., vol.3, no.1,033503,2009.
    [152] R. Douvenot and V. Fabbro,“On the knowledeg of radar coverage at sea using real timerefractivity from clutter,” IET Radar Sonar Navig., vol.4, no.2, pp.293-301,2010.
    [153] R. Douvenot, V. Fabbro, P. Gerstoft et al.,“Real time refractivity from clutter using a best fitapproach improved with physical information,” Radio Sci., vol.45, RS1007,2010.
    [154] A. Karimian, C. Yardim, P. Gerstoft et al.,“Refractivity estimation from sea clutter: Aninvited review,” Radio Sci., vol.46, RS6013,2011.
    [155] A. Karimian, C. Yardim, W. S. Hodgkiss et al.,“Estimation of radio refractivity using amultiple angle clutter model,” Radio Sci., vol.47, RS0M07,2012.
    [156] A. Karimian, C. Yardim, P. Gerstoft et al.,“Multiple grazing angle sea clutter modeling,”IEEE Trans. Antennas Propag., vol.60, no.9, pp.4408-4417,2012.
    [157] A.-g. Liu, H. Cha, Z.-m. Xi et al.,"Estimation of refractivity profile from radar sea clutterand key problems," in Proc. of CIE International Conference on Radar, pp.1705-1707,Shanghai,2006.
    [158]刘爱国,察豪,刘峰,“基于雷达海杂波的大气折射率剖面估计技术,”电波科学学报,vol.22, no.5, pp.867-871,2007.
    [159]王向敏,“海上大气波导的预测方法,”硕士学位论文,遥感学院,南京信息工程大学,南京,2007.
    [160]韩杰,康士峰,王红光等,“利用海杂波估计蒸发波导高度的仿真实现,”电波科学学报, vol.22, no.增刊, pp.156-158,2007.
    [161]韩杰,“基于海杂波反演近海面大气折射率剖面的研究,”硕士学位论文,电子科学研究院,北京,2008.
    [162]盛峥,黄思训,“雷达回波资料反演海洋波导的算法和抗噪能力研究,”物理学报, vol.58,no.6, pp.4328-4334,2009.
    [163]盛峥,黄思训,赵小峰,“雷达回波资料反演海洋波导中观测值权重的确定,”物理学报,vol.58, no.9, pp.6627-6632,2009.
    [164] X.-F. Zhao, S.-X. Huang, and Z. Sheng,“Ray tracing/correlation approach to estimation ofsurface-based duct parameters from radar clutter,” Chin. Phys. B, vol.19, no.4,049201,2010.
    [165] X.-F. Zhao, S.-X. Huang, and H.-D. Du,“Theoretical analysis and numerical experiments ofvariational adjoint approach for refractivity estimation,” Radio Sci., vol.46, RS1006,2011.
    [166]何然,黄思训,周晨腾等,“遗传算法结合正则化方法反演海洋大气波导,”物理学报,vol.61, no.4,049201,2012.
    [167] B. Wang, Z.-S. Wu, Z.-W. Zhao et al.,“Retrieving evaporation duct heights from radar seaclutter using particle swarm optimization (PSO) algorithm,” Prog. Electromagn. Res. M, vol.9, pp.79-91,2009.
    [168]王波,赵振维,吴振森等,“多波段雷达海杂波反演大气波导方法研究,”电波科学学报, vol.25, no.5, pp.865-870,2010.
    [169]王波,“基于雷达杂波和GNSS的大气波导反演方法与实验,”博士学位论文,理学院,西安电子科技大学,西安,2011.
    [170]杨超,“大气波导中电磁波传播及反演关键技术,”博士学位论文,理学院,西安电子科技大学,西安,2010.
    [171]李宏强,“电磁波在大气波导环境中的传播特性及基于遗传算法的反演研究,”硕士学位论文,理学院,西安电子科技大学,西安,2009.
    [172]郝永生,“海上蒸发波导中的电磁波传播及基于神经网络的反演问题研究,”硕士学位论文,理学院,西安电子科技大学,西安,2009.
    [173]韩星星,“雷达海杂波反演海面大气波导的研究,”硕士学位论文,理学院,西安电子科技大学,西安,2009.
    [174] E. E. Gossard,“Clear weather meteorological effects on propagation at frequencies above1GHz,” Radio Sci., vol.16, no.5, pp.589-608,1981.
    [175] M. Martín-Neira,“A passive reflectometry and interferometry system (PARIS): Applicationto ocean altimetry,” ESA Journal, vol.17, no.4, pp.331-355,1993.
    [176] J. Auber, A. Bibaut, and J. Rigal,"Characterization of multipath on land and sea at GPSfrequencies," in Proc. of7th International Technical Meeting of the Satellite Division of TheInstitute of Navigation, pp.1155-1171, Salt Lake City, USA,1994.
    [177] J. L. Garrison, S. J. Katzberg, and M. I. Hill,“Effect of sea roughness on bistaticallyscattered range coded signals from the Global Positioning System,” Geophys. Res. Lett., vol.25, no.13, pp.2257-2260,1998.
    [178] S. T. Lowe, C. Zuffada, J. L. LaBrecque et al.,"An ocean-altimetry measurement usingreflected GPS signals observed from a low-altitude aircraft," in Proc. of InternationalGeoscience and Remote Sensing Symposium, IEEE, pp.2185-2187, Honolulu, HI, Jul.24-28,2000.
    [179] S. T. Lowe, C. Zuffada, Y. Chao et al.,“5-cm-Precision aircraft ocean altimetry using GPSreflections,” Geophys. Res. Lett., vol.29, no.10, pp.1375,2002.
    [180] R. N. Treuhaft, S. T. Lowe, C. Zuffada et al.,“2-cm GPS altimetry over Crater Lake,”Geophys. Res. Lett., vol.22, no.23, pp.4343-4346,2001.
    [181] M. Martín-Neira, M. Caparrini, J. Font-Rossello et al.,“The PARIS concept: an experimentaldemonstration of sea surface altimetry using GPS reflected signals,” IEEE Trans. Geosci.Remote Sens., vol.39, no.1, pp.142-150,2001.
    [182] G. A. Hajj and C. Zuffada,“Theoretical description of a bistatic system for ocean altimetryusing the GPS signal,” Radio Sci., vol.38, no.5,1089,2003.
    [183] G. Ruffini, F. Soulat, M. Caparrini et al.,“The eddy experiment: Accurate GNSS-R oceanaltimetry from low altitude aircraft,” Geophys. Res. Lett., vol.31, L12306,2004.
    [184] B. Wilmhoff, F. Lalezari, V. Zavorotny et al.,"GPS ocean altimetry from aircraft using theP(Y) code signal," in Proc. of International Geoscience and Remote Sensing Symposium,IEEE, pp.5093-5096,2007.
    [185]邵连军,张训械,王鑫等,“利用GNSS-R信号反演海浪波高,”武汉大学学报·信息科学版, vol.33, no.5, pp.475-478,2008.
    [186] E. Cardellach, J. M. Aparicio, D. Pino et al.,"Coastal sea state measurements using GPSreflected signals from an airborne platform," in Proc. of ION GPS2002:15th InternationalTechnical Meeting of the Satellite Division of The Institute of Navigation,2002.
    [187] F. Soulat, M. Caparrini, O. Germain et al.,“Sea state monitoring using coastal GNSS-R,”Geophys. Res. Lett., vol.31, no.21, L21303,2004.
    [188]张训械,张冬娅,胡雄等,“利用GPS反射信号遥感全球海态,”全球定位系统, vol.29,no.5, pp.2-9,2004.
    [189] J. F. Marchan-Hernandez, E. Valencia, N. Rodriguez-Alvarez et al.,“Sea-state determinationusing GNSS-R data,” IEEE Geosci. and Remote Sens. Lett., vol.7, no.4, pp.621-625,2010.
    [190] O. Germain, G. Ruffini, F. Soulat et al.,“The eddy experiment: GNSS-R speculometry fordirectional sea-roughness retrieval from low altitude aircraft,” Geophys. Res. Lett., vol.31,no.21, L21307,2004.
    [191] K. Yu, C. Rizos, and A. Dempster,"Sea surface roughness estimation using signals frommultiple GNSS satellites," in Proc. of International Global Navigation Satellite SystemsSymposium, Sydney, NSW, Australia, Nov.15-17,2011.
    [192] A. Komjathy, V. U. Zavorotny, P. Axelrad et al.,“GPS signal scattering from sea surface:Wind speed retrieval using experimental data and theoretical model,” Remote Sens. Environ.,vol.73, no.2, pp.162-174,2000.
    [193] A. Komjathy, M. Armatys, D. Masters et al.,“Retrieval of ocean surface wind speed andwind direction using reflected GPS signals,” J. Atmos. Oceanic Technol., vol.21, no.3, pp.515-526,2004.
    [194] M. Armatys,“Estimation of sea surface winds using reflected GPS signals,” Ph.D.Dissertation, Department of Aerospace Engineering Sciences, University of Colorado,2001.
    [195] J. L. Garrsion, A. Komjathy, V. U. Zavorotny et al.,“Wind speed measurement usingforward scattered GPS signals,” IEEE Trans. Geosci. Remote Sens., vol.40, no.1, pp.50-65,2002.
    [196] C. Zuffada, T. Elfouhaily, and S. Lowe,“Sensitivity analysis of wind vector measurementsfrom ocean reflected GPS signals,” Remote Sens. Environ., vol.88, no.3, pp.341-350,2003.
    [197]杨东凯,张益强,张其善等,“基于GPS散射信号的机载海面风场反演系统,”航空学报, vol.27, no.2, pp.310-313,2006.
    [198]周兆明,符养,严卫等,“利用GPS反射信号遥感Michael飓风海面风场研究,”武汉大学学报·信息科学版, vol.31, no.11, pp.991-994,2006.
    [199]王迎强,严卫,张锐,“GNSS海面散射信号的海面风场遥感,”海洋技术, vol.27, no.2,pp.72-76,2008.
    [200] D. K. Yang, Y. Q. Zhang, Y. Lu et al.,“GPS reflections for sea surface wind speedmeasurement,” IEEE Geosci. and Remote Sens. Lett., vol.5, no.4, pp.569-572,2008.
    [201] E. Valencia, A. Camps, J. F. Marchan-Hernandez et al.,“Ocean surface's scatteringcoefficient retrieval by delay-doppler map inversion,” IEEE Geosci. and Remote Sens. Lett.,vol.8, no.4, pp.750-754,2011.
    [202] J. F. Marchan-Hernandez, M. Vall llossera, A. Camps et al.,"Ground-based GNSS-Rmeasurements with the PAU instrument and their application to the sea surface salinityretrieval: First results," in Proc. of International Geosicence and Remote Sensing Symposium,IEEE, pp.530-533,2008.
    [203] E. Valencia, A. Camps, N. Rodriguez-Alvarez et al.,“Improving the accuracy of sea surfacesalinity retrieval using GNSS-R data to correct the sea state effect,” Radio Sci., vol.46,RS0C02,2011.
    [204] J. L. Garrison, J. K. Voo, S. H. Yueh et al.,“Estimation of sea surface roughness effects inmicrowave radiometric measurements of salinity using reflected global navigation satellitesystem signals,” IEEE Geosci. and Remote Sens. Lett., vol.8, no.6, pp.1170-1174,2011.
    [205] D. S. Masters,“Surface Remote Sensing Applications of GNSS Bistatic Radar: Soil Moistureand Aircraft Altimetry,” Ph.D. Dissertation, Department of Aerospace Engineering Sciences,University of Colorado,2004.
    [206] S. J. Katzberg, O. Torres, M. S. Grant et al.,“Utilizing calibrated GPS reflected signals toestimate soil reflectivity and dielectric constant: results from SMEX2,” Remote Sens.Environ., vol.100, no.1, pp.17-28,2006.
    [207] M. S. Grant, S. T. Acton, and S. J. Katzberg,“Terrain moisture classification using GPSsurface-reflected signals,” IEEE Geosci. and Remote Sens. Lett., vol.4, no.1, pp.41-45,2007.
    [208] K.-B. Mao, M.-Y. Zhang, J.-M. Wang et al.,"The study of soil moisture retrieval algorithmfrom GNSS-R," in Proc. of International Workshop on Geoscience and Remote Sensing,IEEE, pp.438-442,2008.
    [209] V. U. Zavorotny, K. M. Larson, J. J. Braun et al.,“A physical model for GPS multipathcaused by land reflections: toward bare soil moisture retrievals,” IEEE Journal of SelectedTopics in Applied Earth Observations and Remote Sensing, vol.3, no.1, pp.100-110,2010.
    [210] N. Rodriguez-Alvarez, X. Bosch-Lluis, A. Camps et al.,“Soil moisture retrieval usingGNSS-R techniques: Experimental results over a bare soil field,” IEEE Trans. Geosci.Remote Sens., vol.47, no.11, pp.3616-3624,2009.
    [211] N. Rodriguez-Alvarez, X. Bosch‐Lluis, A. Camps et al.,“Review of crop growth and soilmoisture monitoring from a ground-based instrument implementing the Interference PatternGNSS-R Technique,” Radio Sci., vol.46, RS0C03,2011.
    [212] S. Gleason and D. Gebre-Egziabher, GNSS Applications and Methods, Norwood, MA:Artech House,2009.
    [213]符养,周兆明,“GNSS-R海洋遥感方法研究,”武汉大学学报·信息科学版, vol.31, no.2, pp.128-131,2006.
    [214]刘经南,邵连军,张训械,“GNSS-R研究进展及其关键技术,”武汉大学学报·信息科学版, vol.32, no.11, pp.955-960,2007.
    [215] S. Jin and A. Komjathy,“GNSS reflectometry and remote sensing: New objectives andresults,” Advances in Space Research, vol.46, no.2, pp.111-117,2010.
    [216] S. Jin, G. P. Feng, and S. Gleason,“Remote sensing using GNSS signals: Current status andfuture directions,” Advances in Space Research, vol.47, no.10, pp.1645-1653,2011.
    [217]胡雄,曾桢,张训械,“无线电掩星技术及其应用,”电波科学学报, vol.17, no.5, pp.549-556,2002.
    [218] C. Zuffada, G. A. Hajj, and E. R. Kursinski,“A novel approach to atmospheric profiling witha mountain-based or airborne GPS receiver,” J. Geophy. Res., vol.104, no. D20, pp.24435-24447,1999.
    [219]曾桢,“地球大气无线电掩星观测技术研究”博士学位论文,武汉大学,武汉2003.
    [220]胡雄,张训械,吴小成,“山基GPS掩星观测实验及其反演原理,”地球物理学报, vol.49,no.1, pp.22-27,2006.
    [221]徐晓华,李征航,罗佳,“利用GPS掩星资料反演地球中性大气参数折射角方法研究,”武汉大学学报·信息科学版, vol.28, no.5, pp.589-592,2003.
    [222]王鑫,吕达仁,“GPS无线电掩星技术反演大气参数方法对比,”地球物理学报, vol.50,no.2, pp.346-353,2007.
    [223] P. Lubomir and P. JarLemark,“Ground-based GPS tomography of water vapor: analysis ofsimulated and real data,” Journal of the Meteorological Society of Japan, vol.82, no.1, pp.551-560,2004.
    [224] S. Y. Ha, Y. R. Guo, and C. Roken,“Comparison of GPS slant wet delay measurements withmodel simulations during the passage of a squall line,” Geophys. Res. Lett., vol.29, no.23,pp.2113-2116,2002.
    [225] U. Foelsche,“Tropospheric water vapor imaging by combination of ground-based andspaceborne GNSS sounding data,” J. Geophy. Res., vol.106, no. D21, pp.27221-27231,2001.
    [226]宋淑丽,“地基GPS网对水汽三维分布的监测及其在气象学中的应用,”博士学位论文,中国科学院研究生院,2004.
    [227] K. D. Anderson,"Tropospheric refractivity profiles inferred from low elevation anglemeasurements of Global Positioning System (GPS) signals," in Proc. of AGARD Conference,Propagation Assessment in Coastal Environments, pp.1-6,1994.
    [228] K. D. Anderson,"Using the global positioning system to detect surface-based ducts," in Proc.of the1997Battlespace Atmospherics Conference, pp.557-562, San Diego, USA, Dec.2-4,1997.
    [229] A. R. Lowry, C. Rocken, S. V. Sokolovskiy et al.,“Vertical profiling of atmosphericrefractivity from ground-based GPS,” Radio Sci., vol.37, no.3, pp.1041-1059,2002.
    [230]林乐科,张业荣,赵振维等,“一种GPS大气折射率剖面统计反演方法,”电波科学学报增刊, vol.22, pp.182-183,2007.
    [231]李玲玲,张红旗,陈林如等,“利用GPS接收机监测海上大气波导,”电波科学学报增刊, vol.22, pp.159-161,2007.
    [232]焦林,张永刚,张宇,“利用卫星数据反演海洋蒸发波导的研究,”海洋技术, vol.26, no.4, pp.58-61,2007.
    [233]成印河,何宜军,赵振维等,“利用AMSR-E卫星数据反演蒸发波导高度的BP神经网络方法,”海洋技术, vol.27, no.4, pp.63-67,2008.
    [234]伍亦亦,洪振杰,郭鹏等,“地基GPS低高度角观测反演大气折射率廓线的模拟仿真,”地球物理学报, vol.53, no.5, pp.1085-1090,2010.
    [235]朱庆林,“基于单站地基GNSS的电波折射参数估计,”博士学位论文,理学院,西安电子科技大学,西安,2010.
    [236] L. K. Lin, Z. W. Zhao, Y. R. Zhang et al.,“Tropospheric refractivity profiling based onrefractivity profile model using single ground-based global positioning system,” IET RadarSonar Navig., vol.5, no.1, pp.7-11,2011.
    [237] B. Wang, Z.-S. Wu, Z.-W. Zhao et al.,“A passive technique to monitor evaporaiton ductheight using coastal GNSS-R,” IEEE Geosci. and Remote Sens. Lett., vol.8, no.4, pp.587-591,2011.
    [238] M. P. M. Hall, Effects of the Troposphere on Radio Communication, Stevenage: PeterPeregrinus Ltd.,1979.
    [239] P. J. W. Debye, Polar Molecules, New York: The Chmical Catalog Co.,1929.
    [240] X.-L. Zhao, J.-Y. Huang, and S.-H. Gong,“Modeling on multi-eigenpath channel in marineatmospheric duct,” Radio Sci., vol.44, RS1009,2009.
    [241] R. A. Paulus, Specification for environmental measurements to assess radar sensors,Technical Document1685, DTIC Document, Naval Ocean Systems Center, San Diego,California,1989.
    [242] V. N. Shalyapin, V. K. Ivanov, and Y. V. Levadnyi,"Microwave leakage out of anevaporation duct," in Proc. of IEEE,2009.
    [243]江长阴,张明高, GJB-雷达电波传播折射与衰减手册,北京:国防科学技术工业委员会,1997.
    [244]孙方,王红光,康士峰等,“大气波导环境下的射线追踪算法,”电波科学学报, vol.23,no.1, pp.179-194,2008.
    [245]江长阴,“低仰角无线电定位测速的大气层电波传播误差,”电波与天线, vol.1, pp.1-62,1982.
    [246] W. S. Ament,“Towards a theory of reflection by a rough surface,” Proc. IRE, vol.41, no.1,pp.142-146,1953.
    [247] A. Ishimaru, Wave Propagation and Scattering in Random Media, San Diego: AcademicPress,1978.
    [248] C. I. Beard,“Coherent and incoherent scattering of microwaves from the ocean,” IRE Trans.on Antennas and Propag., vol.9, no.5, pp.470-483,1961.
    [249] D. E. Freund, N. E. Woods, H.-C. Ku et al.,“Forward radar propagation over a rough seasurface: A numerical assessment of the Miller-Brown approximation using a horizontallypolarized3-GHz line soure,” IEEE Trans. Antennas Propag., vol.54, no.4, pp.1292-1304,2006.
    [250] J. Deygout,“Multiple knife-edge diffraction of microwaves,” IEEE Trans. Antennas Propag.,vol.14, no.4, pp.480-489,1966.
    [251] J. Deygout,“Correction factor for multiple knife-edge diffraction,” IEEE Trans. AntennasPropag., vol.39, no.8, pp.1256-1258,1991.
    [252] R. J. Luebbers,“Propagation prediction for hilly terrain using GTD wedge diffraction,” IEEETrans. Antennas Propag., vol.32, no.9, pp.951-955,1984.
    [253] R. H. Ott and L. A. Berr,“An alternative integral equation for propagation over irregularterrain,” Radio Sci., vol.5, pp.767-771,1970.
    [254] R. H. Ott,“An alternative integral equation for propagation over irregular terrain,2,” RadioSci., vol.6, no.4, pp.429-435,1971.
    [255] J. T. Hviid, J. B. Anderson, and J. Toftgard,“Terrain-based propagation model for rural area-an integral equation approach,” IEEE Trans. Antennas Propag., vol.43, no.1, pp.41-46,1995.
    [256] J. R. Kuttler and J. D. Huffaker,“Solving the parabolic wave equation with a rough surfaceboundary condition,” J. Acoust. Soc. Amer., vol.94, no.4, pp.2451-2454,1993.
    [257] A. E. Barrios,“Parabolic equation modeling in horizontally inhomogeneous environments,”IEEE Trans. Antennas Propag., vol.40, no.7, pp.791-797,1992.
    [258] J. Goldhirsh and G. D. Dockery,“Propagation factor errors due to the assumption of lateralhomogeneity,” Radio Sci., vol.33, no.2, pp.239-249,1998.
    [259] M. Bevis, S. Businger, T. A. Herring et al.,“GPS meteorology: remote sensing ofatmospheric water vapor using the global positioning system,” J. Geophy. Res., vol.97, no.D14, pp.15787-15801,1992.
    [260] J. L. Garrsion and S. J. Katzberg,“The application of reflected GPS signals to ocean remotesensing,” Remote Sens. Environ., vol.73, no.2, pp.175-187,2000.
    [261] N. Rodriguez-Alvarez, A. Camps, M. Vall-llossera et al.,“Land geophysical parametersretrieval using the interference pattern GNSS-R technique,” IEEE Trans. Geosci. RemoteSens., vol.49, no.1, pp.71-84,2011.
    [262] A. B. V. Oliveira, T. N. Morais, and F. Walter,"VTEC global behavior," in Proc. of IONNational Technical Meeting, San Diego, Calif., USA, Jan.24-26,2005.
    [263] R. A. Walker,“The operation and simulation of GPS positioning in harsh environments,”Ph.D. Dissertation, Space Centre for Satellite Navigation, Queensland University ofTechnology, Brisbane,1999.
    [264] B. M. Hannah,“Modelling and simulation of GPS multipath propagation,” Ph.D. Dissertation,The Cooperative Research Centre for Satellite Systems, Queensland University ofTechnology, Brisbane,2001.
    [265] G. C. Balvedi and F. Walter,"Analysis of GPS signal propagation in tropospheric ducts usingnumerical methods," in Proc. of11th URSI Comission F Open Symposium on Radio WavePropagation and Remote Sensing, Rio de Janeiro, RJ, Brazil,2007.
    [266] G. C. Balvedi and F. Walter,"GPS signal propagation in tropospheric ducts," in Proc. of TheXXIXth URSI General Assembly, Chicago, Illinois, USA, Aug.9-16,2008.
    [267] P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from RoughSurfaces, Norwood, MA: Artech House,1987.
    [268] I.-R. R. P.1008-1, Reflection from the surface of the earth, International TelecommunicationUnion,1990.
    [269] P. Misra and P. Enge, Global Positioning System, Signals, Measurements, and Performance,2ed.: Ganga-Jamuna Press,2006.
    [270]郭立新,王蕊,吴振森,随机粗糙面散射的基本理论与方法,北京:科学出版社,2010.
    [271] D. E. Barrick,“Grazing behavior of scatter and propagation above any rough surface,” IEEETrans. Antennas Propagat., vol.46, no.1, pp.73-83,1998.
    [272] H. Sittrop,"Characteristics of clutter and targets at X-and Ku-band," in Proc. of AGARDConf.-New Devices, Tech. and Systems in Radar, pp.27, The Hague, The Netherlands,1977.
    [273] M. M. Horst, F. B. Dyer, and M. T. Tuley,"Radar sea clutter model," in Proc. ofInternational Conference on Antennas and Propagation, IEE, pp.6-10,1978.
    [274] C. Fletcher,“Clutter subroutine,” Memo. TSC-W84-01/cad,1978.
    [275] V. Gregers-Hansen and R. Mital,"An empirical sea clutter model for low grazing angles," inProc. of IEEE Radar Conference, IEEE, pp.1-5, Pasadena, Calif,2009.
    [276] I. Antipov, Simulation of sea clutter returns, DSTO-TR-0679, DTIC Document,1998.
    [277] F. E. Nathanson, J. P. Reilly, and M. Cohen, Radar Design Principles,2ed., New York:McGraw-Hill,1991.
    [278] M. Clerc, Particle Swarm Optimization, London: ISTE Publishing Company,2006.
    [279] J. Goldhirsh and G. D. Dockery,"Measurement resolution criteria for assessment of coastalducting," in Proc. of9th International Conference on Antennas and Propagation, IEE, pp.317-322,1995.
    [280] R. A. Paulus and K. D. Anderson,"Application of an evaporation duct climatology in thelittoral," in Proc. of Battlespace Atmospherics and Cloud Impact on Military OperationsConference, pp.1-9, Fort Collins, CO,2000.
    [281] V. K. Ivanov, V. N. Shalyapin, and Y. V. Levadny,“Microwave scattering by troposphericfluctuations in an evaporation duct,” Radiophysics and Quantum Electronics, vol.52, no.4,pp.277-286,2009.
    [282] D. L. Mabey,“Variability of refractivity in the surface layer,” Ph.D. Dissertation, NavalPostgraduate School, Monterey, California,2002.
    [283] V. G. Bocharov, A. V. Kukushkin, V. G. Sinitsyn et al.,“Propagation of radio waves intropospheric evaporation ducts,” Inst. Radiophys. Electron., National Acad. Sci., no.126,1979.
    [284]吴凡,“大气波导中的抛物型方程法研究,”硕士学位论文,理学院,武汉理工大学,武汉,2008.
    [285] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms, Cambrideg, U.K.:Cambrideg Univ. Press,2003.
    [286] J. J. K. O. Ruanaidh and W. J. Fitzgerald, Numerical Bayesian Methods Applied to SignalProcessing, New York: Springer-Verlag,1996.
    [287] M. W. Long, Radar Reflectivity of Land and Sea,3nd ed.: Artech House,2001.
    [288] G. A. Grell, J. Duhia, and D. R. Stauffer,“A description of the fifth-generation PennState/NCAR mesoscale model (MM5),” NCAR Tech. Note NCAR/TN-398+STR, pp.121,1995.
    [289] J. Duhdia, D. Gill, Y. R. Guo et al., PSU/NCAR Mesoscale modeling system tutorial classnote and User's Guide: MM5modeling system version3, National Center for AtmosphericResearch, Boulder, Colorado,2001.
    [290] S. Y. Hong and H. L. Pan,“Nonlocal boundary layer vertical diffusion in a medium-rangeforecast model,” Mon. Weather Rev., vol.124, no.10, pp.2322-2339,1996.
    [291] J. Dudhia,“Numerical study of convective observed during the winter monsoon experimentusing a mesoscale two-dimensional model,” J. Atmos. Sci., vol.46, no.20, pp.3077-3107,1989.
    [292] R. A. Anthes,“A cumulus parameterization scheme utilizing a one-dimensional cloudmodel,” Mon. Weather Rev., vol.105, pp.270-286,1977.
    [293] G. A. Grell,“Prognostic evaluation of assumptions used by cumulus parameterizations,” Mon.Weather Rev., vol.121, no.3, pp.764-787,1993.
    [294]肖子牛,张万成,段玮,中尺度数值模式在低纬高原地区的应用研究,北京:气象出版社,2005.
    [295] E. I. Thorsos,“The validity of the Kirchhoff approximation for rough surface scattering usinga Gaussian roughness spectrum,” J. Acoust. Soc. Amer., vol.83, no.1, pp.78-92,1988.
    [296] L. Tsang, J. A. Kong, K.-H. Ding et al., Scattering of Electromagnetic Waves: NumericalSimulations: John Wiley&Sons, Inc.,2001.
    [297] W. C. Chew, J. M. Jin, E. Michielssen et al., Fast and Efficient Algorithms in ComputationalElectromagnetics, Boston/London: Artech House,2001.
    [298] M. I. Skolnik, Radar Handbook,2nd ed.: McGraw-Hill Companies, Inc.,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700