用户名: 密码: 验证码:
微结构光学元器件的设计、制作与应用关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微结构聚合物光学元件以其灵活多变的微结构特征、新颖的光学特性以及独特的加工方法,已成为现代光学技术领域的重要组成部分,是国内外专家学者不断开拓创新的热门领域。本论文将以微结构光纤技术为切入点,开展规模化制造与应用技术研究。近年,3D光学技术也在快速发展,而3D光学获取是该领域的的重点研究领域之一。本论文将尝试以梯度折射率透镜阵列获取3D光学信息为新的切入点,开展梯度折射率透镜阵列在多孔径3D成像装置中的应用研究。
     本学位论文共分为7章,主要包括以下内容:
     第1章介绍光纤的发展历史和光在光纤中的传输理论,微结构光纤的概念、分类及研究现状,聚合物光纤传像束、微结构传像光纤的特点、常用制作方法和发展现状,内窥镜的发展历史和立体窥镜的特点与研究现状,多孔径3D成像技术的发展概况。在此基础上,提出了本论文的研究目标。
     第2章介绍微结构光纤预制棒的制作方法,在比较分析几种方法优缺点的基础上,提出用注塑成型法制作聚合物微结构光纤预制棒的设想。研究聚合物微结构光纤预制棒的成型工艺,拟用PMMA和TOPAS COC两种材料制作光纤预制棒。研究聚合物微结构光纤的拉伸工艺,对光纤的结构和TOPAS COC微结构光纤在太赫兹波传输中的应用做探索性研究。
     第3章在介绍聚合物微结构传像光纤的材料特性和常用材料种类的基础上,选择本论文制作聚合物微结构传像光纤的材料。研究聚合物微结构传像光纤器件的制作流程和工艺,对传像器件的传像特性做理论分析和实验表征。
     第4章拟用排丝法制作长距离的聚合物光纤传像束。研究长距离聚合物光纤传像束的制作工艺,分析传像束的图像传输特性。然后探索长距离聚合物光纤传像束作为超长窥镜的应用。此外,拟研究结构紧凑的整体式聚合物传像光纤预制棒制作及拉伸工艺,研制圆形、正六边形的传像光纤预制棒及传像光纤,探索其应用。
     第5章基于双目立体视觉原理,设计、制作3D光纤窥镜系统。在此基础上,利用自制的整体式聚合物传像光纤,目镜、物镜搭建双目立体视觉光纤窥镜样机。
     第6章在阐述多孔径3D图像光学获取的基本原理、研究现状和几种典型结构的基础上,将梯度折射率透镜阵列应用于多孔径3D成像系统。试制四方紧密排列梯度折射率透镜阵列,对尼康J1型数码相机进行改装,匹配主镜头后组装多孔径3D相机。
     第7章对攻读博士学位期间的研究工作取得的成果进行总结,提出今后的发展方向。
With unique structural features, novel optical properties and excellentprocessing performance, the polymer microstructured fiber has become an importantpart in the research field of fiber optics, as well as a research hotspot at home andabroad.3D stereoscopic imaging technology is also a research focus with importantresearch significance and application value. In this thesis, we focus on thefabrication of polymer microstructured optical fiber and its applications in imagetransmission and3D fiber-optic endoscope, fabrication and application of thepolymer fiber bundle and fabrication of gradient-index lens array and its applicationin3D multi-aperture imaging device.
     The first chapter of this thesis is a brief introduction of the following contents:the development of optical fiber and the light transmission theory in optical fibers;the concept, classification and current research works of microstructured fiber; thecharacteristics, commonly used production methods and the research status quo ofthe polymer fiber-optic image bundles and microstructured image fibers; the historyof the endoscope and the characteristics of stereo endoscope; the status quo of themulti-aperture3D imaging technology. On this basis of this introduction, theresearch purpose, significances and the characteristics of this thesis are proposed.
     In the second chapter, several fabrication methods of the microstructure fiberpreforms are introduced. Based on the analysis of the advantages and disadvantagesof these methods,a new method, injection molding method, is proposed. Moldingprocess of the polymer microstructured optical fiber preform is researched, and thematerials used in experiment are PMMA and Topas COC. Polymer microstructuredfiber drawing process and the transmission loss of Topas COC microstructuredterahertz fiber are also studied experimentally. As the experimental result shows, thetransmission loss of suspended core sub-wavelength THz fiber at206GHz is0.034dB/cm, and for anti-resonant reflection type THz fiber, the transmission loss at206GHz and1.2THz are0.122dB/cm and0.120dB/cm, respectively.
     In the third chapter, the properties and types of materials commonly used in thefabrication of polymer microstructure imaging fiber are introduced firstly. Based on this introduction, the polymer material for microstructured polymer imaging fiber ischosen. Then the fabrication process of the microstructured imaging fiber is studied,and the imaging properties of this fiber are analyzed theoretically and characterizedexperimentally. The results show that the polymer microstructured imaging fiber hasgood imaging capability, wherein for microstructured imaging fiber with an outerdiameter of250μm, monofilament diameter is3μm, the theoretical limit resolution isup to192lp/mm, and the scale image of10μm can be transmitted.
     In the fourth chapter, we make a long polymer imaging fiber bundle with thelength of15m by arranging and lamination method. The fabrication process andtransmission characteristics of this polymer imaging fiber bundle are also studied.With matched eyepiece (or coupling lens) and image sensors, this long polymerimaging fiber-bundle can be used for exploration application after earthquake. Then,the study of the fabricating and stretching processes of compact polymer imagingfiber performs is shown as well, and both circular and regular hexagon polymerimaging fiber preforms are developed. The pixel number of this imaging fiber is upto approximately7100. At the same time, with matched eyepiece and image sensors,the application of this imaging fiber in safety monitoring is explored initially. Theresults show that the imaging fiber has a good image transmission capability whichcan be applied in some special occasions.
     The fifth chapter introduces the basic principle of binocular stereo vision firstly.Based on this principle, the structure of the3D fiber-optic endoscope system isdesigned, and the selection principles and methods of objective lenses and eyepiecesin this system are shown, as well as the design principles of angle between twoobjectives. On this basis, with home-made polymer imaging fibers and matchedeyepieces and objective lenses, a3D fiber-optic endoscope binocular stereo visionsystem is built, which has been proven to have good stereoscopic image capturingcapabilities. Finally, a compact eyewear-style3-D endoscope derived from polymerimaging fiber is designed and fabricated.
     The sixth chapter introduces the basic principles, research status and severaltypical structures of multi-aperture3D image optical obtainment devices firstly. Onthis basis, the gradient-index lens array is used in the3D multi-aperture imagingsystem. Then, the12×8gradient-index lens array is fabricated, and assembled witha modified Nikon J1digital camera which has a matched camera lens with35mm focal length and super-large aperture. After analyzing and calculating the depthresolution, the depth of field and field angles of this imaging system theoretically,moreover, testing the depth resolution and field angle experimentally, the resultshows that theoretical and experimental results are basically identical. The depthresolution and field angle of the camera are4%and29.4°respectively.
     Chapter7is the summary of the research works undertaken during my PhDprogram and the development direction of my academic career.
引文
[1] Johnston Iii W K. The Birth of Fiberoptics from" Light Guiding"[J]. Journal ofendourology.2004,18(5):425~426.
    [2] Tyndall J. On the action of rays of high refrangibility upon gaseous matter[J].Philosophical Transactions of the Royal Society of London.1870,160:333~365.
    [3] Coillet A. Microfibres pour l'optique non linéaire[D]. Universitéde Bourgogne,2011.
    [4] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J].Electrical Engineers, Proceedings of the Institution of.1966,113(7):1151~1158.
    [5] John S. Strong localization of photons in certain disordered dielectric superlattices[J].Physical review letters.1987,58(23):2486~2489.
    [6] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J].Physical review letters.1987,58(20):2059~2062.
    [7] Yablonovitch E, Gmitter T J. Photonic band structure: The face-centered-cubic case[J].Physical Review Letters.1989,63(18):1950~1953.
    [8] Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber withphotonic crystal cladding[J]. Optics letters.1996,21(19):1547~1549.
    [9] Knight J C, Broeng J, Birks T A, et al. Photonic band gap guidance in optical fibers[J].Science.1998,282(5393):1476~1478.
    [10] Russell P. Photonic crystal fiber: finding the holey grail[J]. Optics and photonics news.2007,18(7):26~31.
    [11]王伟,侯蓝田.光子晶体光纤的现状和发展[J].激光与光电子学进展.2008,45(02):43~58.
    [12] Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber[J].Optics letters.1997,22(13):961~963.
    [13] Bjarklev A, Broeng J, Dridi K, et al. Dispersion properties of photonic crystal fibres[C].IEEE,1998.
    [14] Broeng J, Mogilevstev D, Barkou S E, et al. Photonic Crystal Fibers: A New Class ofOptical Waveguides[J]. Optical Fiber Technology.1999,5(3):305~330.
    [15] Jensen J B, Pedersen L H, Hoiby P E, et al. Photonic crystal fiber based evanescent-wavesensor for detection ofbiomolecules in aqueous solutions[J]. Opt. Lett.2004,29(17):1974~1976.
    [16] Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber withphotonic crystal cladding: errata[J]. Optics letters.1997,22(7):484~485.
    [17] Martelli C, Canning J, Groothoff N, et al. Strain and temperature characterization ofphotonic crystal fiber Bragg gratings[J]. Opt. Lett.2005,30(14):1785~1787.
    [18]孙婷婷.微结构光纤基本性质和微结构光纤光栅研究[D].南开大学,2005.
    [19]刘笑东,周述文,杨鹏,等.光纤光栅用PCF的制备[J].光纤与电缆及其应用技术.2007(05):40~42.
    [20]韩颖,侯蓝田,周桂耀,等.低损耗光子晶体光纤的研究进展[J].激光与光电子学进展.2007,44(08):39~43.
    [21]马景瑞.微结构光纤制备工艺的研究[D].燕山大学,2007.
    [22]杨洋,黄亮,王书涛.基于谐波检测的光纤传感器对甲烷检测的研究[C].中国河北秦皇岛:2010.
    [23]赵兴涛,郑义,刘晓旭,等.具有三个及四个零色散波长光子晶体光纤的仿真研究[J].物理学报.2012,61(19):225~229.
    [24]倪屹,王青,张磊,等.光子晶体光纤参量放大的理论模拟[J].中国激光.2004,31(03):310~312.
    [25]栗岩锋,王子涵,胡明列,等.光子晶体光纤色散特性的研究[C].中国杭州:2004.
    [26]孙喜文,王清月,胡明列,等.光子晶体光纤中非线性传输的数值分析[J].中国激光.2005,32(11):1478~1484.
    [27]田震,王昌雷,栗岩锋,等.基于光子晶体光纤飞秒激光器的紧凑型太赫兹时域光谱仪[J].中国激光.2008,35(03):477.
    [28]崔亮,李小英,赵宁波.基于光子晶体光纤的频谱可控关联光子[C].中国山东曲阜:2010.
    [29]潘蓉,宁鼎,刘笑东,等.大模面积掺镱光子晶体光纤的制备与性能测试[J].激光与红外.2010,40(010):1080~1082.
    [30] Ya-Ni Z, Run-Cai M, Li-Yong R, et al. Polarization properties of elliptical corenon-hexagonal symmetry polymer photonic crystal fibre[J]. Chinese Physics.2007,16(6):1719.
    [31]李进延,陈伟,蒋作文,等.国内光子晶体光纤的制造技术、应用研究现状[C].2007.
    [32] van Eijkelenborg M A, Argyros A, Barton G, et al. Recent progress in microstructuredpolymer optical fibre fabrication and characterisation[J]. Optical Fiber Technology.2003,9(4):199~209.
    [33] Wang J, Yang X, Wang L. Fabrication and experimental observation of monolithicmulti-air-core fiber array for image transmission[J]. Opt. Express.2008,16(11):7703~7708.
    [34] M. Fourestier A B J V. Perfectionnement del’s endoscopie medicale[J]. Presse. Med.1952,60:1292~1294.
    [35]朱全义.纤维内窥镜摄影[J].医学视听教育杂志.1990(01):70~76.
    [36] Shah J. Endoscopy through the ages[J]. BJU international.2002,89(7):645~652.
    [37]吕平,刘芳.内窥镜发展史[J].中华医史杂志.2002,32(001):10~14.
    [38]杜柏林.光纤自动排丝系统的设计[J].传输线技术.1981(04):23~27.
    [39]张健明,潘维超.玻璃光纤传像束排丝设备控制系统的改进[J].玻璃纤维.2010(06):26~30.
    [40]刘德森,殷宗敏,祝颂来,等.纤维光学[M].科学出版社,1987.
    [41] Kumar V V, George A, Reeves W, et al. Extruded soft glass photonic crystal fiber forultrabroad supercontinuum generation[J]. Optics Express.2002,10(25):1520~1525.
    [42] Knight J C. Photonic crystal fibres[J]. Nature.2003,424(6950):847~851.
    [43] Russell P. Photonic Crystal Fibers[J]. science.2003,1079280(358):299.
    [44] Ortigosa-Blanch A, Diez A, Delgado-Pinar M, et al. Ultrahigh birefringent nonlinearmicrostructured fiber[J]. Photonics Technology Letters, IEEE.2004,16(7):1667~1669.
    [45] Chillcce E F, Cordeiro C M D B, Barbosa L C, et al. Tellurite photonic crystal fiber madeby a stack-and-draw technique[J]. Journal of non-crystalline solids.2006,352(32):3423~3428.
    [46] Voronin A A, Mitrokhin V P, Ivanov A A, et al. Understanding the nonlinear-opticalresponse of a liquid‐core photonic‐crystal fiber[J]. Laser Physics Letters.2009,7(1):46~49.
    [47] ones A M, Nampoothiri A V, Ratanavis A, et al. Mid-infrared gas filled photonic crystalfiber laser based on population inversion[J]. Optics Express.2011,19(3):2309~2316.
    [48]于凤霞,周艳艳,唐吉龙,等.酸溶法光纤传像束暗丝问题研究[C].中国长春:2002.
    [49]苏晓薇.酸溶法大截面光纤传象束工艺及应用研究[D].长春理工大学,2005.
    [50]尹卫东.酸溶法光纤传像束在工业内窥镜系统中的实验研究[D].长春理工大学,2006.
    [51]王巧梅.酸溶法大截面光纤传像束制备工艺及性能研究[D].长春理工大学,2007.
    [52]王中俭,戴辉,胡一晨,等.酸溶法柔性光纤传像束成纤系统设计原理[J].玻璃与搪瓷.2008,36(02):31~34.
    [53]于凤霞,周德春,关锡彬,等.酸溶法光纤传像束酸溶工艺的研究[J].光学技术.2009,35(01):141~144.
    [54]王中俭,夏冬,胡一晨,等.酸溶法柔性光纤传像束的玻璃组成及性能[J].材料科学与工程学报.2009,27(006):809~812.
    [55]王中俭,胡一晨,姜建华,等.酸溶法传像束单丝成纤过程流体动力学分析[J].华东理工大学学报(自然科学版).2010,36(01):77~81.
    [56]崔媛,周德春,于凤霞,等.酸溶法光纤传像束材料匹配性设计[J].光子学报.2011,40(02):186~189.
    [57]周德春.酸溶法光纤材料与传像束的制备及性能研究[D].长春理工大学,2011.
    [58]周德春,于凤霞,谭芳,等.大截面柔性传像光纤光子材料的研制[J].中国激光.2010,36(03):836~841.
    [59]江源,邹宁宇.聚合物光纤[M].化学工业出版社,2002.
    [60]田芊,廖延彪,孙利群.工程光学[M].清华大学出版社,2006.
    [61] Hecht J. City of Light: The Story of Fiber Optics[M]. Oxford University Press, USA,1999.
    [62] Asahikasei. Image fiber[Web Page].http://www.asahi-kasei.co.jp/ake-mate/pof/en/product/image-fiber.html.(Accessed2013).
    [63] Nanoptics. Fused Fiber Optic Elements[Web Page].http://www.nanoptics.com/fused-elements.(Accessed2013).
    [64] Birkett D H, Josephs L G, Este-Mcdonald J. A new3-D laparoscope in gastrointestinalsurgery[J]. Surgical endoscopy.1994,8(12):1448~1451.
    [65] van Bergen P, Kunert W, Bessell J, et al. Comparative study of two-dimensional andthree-dimensional vision systems for minimally invasive surgery[J]. Surgical Endoscopy.1998,12(7):948~954.
    [66] Taffinder N, Smith S G T, Huber J, et al. The effect of a second-generation3D endoscopeon the laparoscopic precision of novices and experienced surgeons[J]. Surgical Endoscopy.1999,13(11):1087~1092.
    [67] Mueller-Richter U A, Limberger A, Weber P, et al. Possibilities and limitations of currentstereo-endoscopy[J]. Surgical endoscopy.2004,18(6):942~947.
    [68] van Bergen P, Kunert W, Buess G. The effect of high-definition imaging on surgical taskefficiency in minimally invasive surgery[J]. Surgical Endoscopy.2000,14(1):71~74.
    [69] Penne J, H ller K, Stürmer M, et al. Time-of-Flight3-D Endoscopy Medical ImageComputing and Computer-Assisted Intervention–MICCAI2009[M]. Yang G, Hawkes D,Rueckert D, et al, Springer Berlin/Heidelberg,2009:5761,467~474.
    [70] Bae S, Korniski R. Electronic Imaging&Signal Processing Toward a3D endoscope forminimally invasive surgery[J]. SPIE Newsroom.2011.
    [71] Bendall C A, Chilek T A, Karpen T W, et al. Stereo-measurement borescope with3-Dviewing[Z]. Google Patents,2007.
    [72] Gono K. Recent development in multifunctional endoscope[C].2008.
    [73] Namii Y, Hirose K, Yasunaga K. Three-dimensional medical imaging apparatus[P].
    [74]李冰.双目成像技术在内窥镜图像立体显示中的应用研究[D].重庆大学,2002.
    [75]刘洋.双CCD电子内窥镜动态立体显示系统研究[D].重庆大学,2004.
    [76]佟增亮.立体电子内窥镜[D].辽宁:长春理工大学,2006.
    [77]尹乐.立体摄像显示技术研究[D].长春理工大学,2006.
    [78]王爱国.三维内窥镜立体图像处理技术研究[D].长春理工大学,2007.
    [79]杨滨峰.枪械内膛测量技术的研究[D].长春理工大学,2009.
    [80]屈有山.多通道光学成像系统数据处理技术的研究[D].中国科学院研究生院(西安光学精密机械研究所),2004.
    [81]王丽娟.多孔径成像目标测距及高分辨率图像重构方法研究[D].西安电子科技大学,2012.
    [82]田维坚,姚胜利.用于运动目标探测的多通道成象系统[J].光子学报.2002,31(1):47~49.
    [83] Aldalali B, Li C, Zhang L, et al. Micro Cameras Capable of Multiple Viewpoint ImagingUtilizing Photoresist Microlens Arrays[J]. Microelectromechanical Systems, Journal of.2012,21(4):945~952.
    [84] Ng R, Levoy M, Brédif M, et al. Light field photography with a hand-held plenopticcamera[J]. Computer Science Technical Report CSTR.2005,2.
    [85] Yablonovitch E, Gmitter T J, Leung K M. Photonic band structure: Theface-centered-cubic case employing nonspherical atoms[J]. Physical review letters.1991,67(17):2295~2298.
    [86] Barton G, van Eijkelenborg M A, Henry G, et al. Fabrication of microstructured polymeroptical fibres[J]. Optical Fiber Technology.2004,10(4):325~335.
    [87] van Eijkelenborg M, Large M, Argyros A, et al. Microstructured polymer optical fibre[J].Optics Express.2001,9(7):319~327.
    [88] Optofab. Speciality Optical Fibre Production-Case Studies[Web Page].http://optofab.org.au/case_fibrefab.html.(Accessed2013).
    [89] Feng X, Mairaj A K, Hewak D W, et al. Nonsilica glasses for holey fibers[J]. Journal oflightwave technology.2005,23(6):2046.
    [90] Choi D Y K U. Fabrication and properties of polymer photonic crystal fibers[C].2001.
    [91] D. Asnaghi A G A M. Fabrication of a large-effective-area microstructured plastic opticalfibre: design and transmission tests[C].2003.
    [92]张亚妮.高双折射聚合物光子晶体保偏光纤设计及制备与表征的初步结果[D].陕西师范大学,2007.
    [93]杨兴华.微结构聚合物光纤的制备,修饰及在化学传感领域的应用研究[D].中国科学院研究生院(西安光学精密机械研究所),2008.
    [94] Tagaya A, Koike Y, Kinoshita T, et al. Polymer optical fiber amplifier[J]. Applied physicsletters.1993,63(7):883~884.
    [95] Zhang Q, Ming H, Zhai Y. A novel unclad Nd3+‐doped polymer optical fiber[J]. Journalof applied polymer science.1996,62(6):887~892.
    [96] Tagaya A, Teramoto S, Nihei E, et al. High-power and high-gain organic dye-dopedpolymer optical fiber amplifiers: novel techniques for preparation and spectralinvestigation[J]. Applied optics.1997,36(3):572~578.
    [97] Karimi M, Granpayeh N, Farshi M M. Analysis and design of a dye-doped polymeroptical fiber amplifier[J]. Applied Physics B.2004,78(3-4):387~396.
    [98] Rajesh M, Sheeba M, Geetha K, et al. Fabrication and characterization of dye-dopedpolymer optical fiber as a light amplifier[J]. Applied optics.2007,46(1):106~112.
    [99] Ebendorff-Heidepriem H, Monro T M. Extrusion of complex preforms formicrostructured optical fibers[J]. Optics Express.2007,15(23):15086~15092.
    [100] Ebendorff-Heidepriem H, Monro T M, van Eijkelenborg M A, et al. Extruded high-NAmicrostructured polymer optical fibre[J]. Optics communications.2007,273(1):133~137.
    [101] Kong D, Wang L. Ultrahigh-resolution fiber-optic image guides derived frommicrostructured polymer optical fiber preforms[J]. Optics letters.2009,34(16):2435~2437.
    [102]区英鸿,邢春明,李永先.塑料手册[M].北京:兵器工业出版社,1991.
    [103]吕飞.环烯烃共聚物的制备过程研究[D][D].浙江大学,2006.
    [104]戴东鹏.茂金属催化环烯烃结构性能表征及其纤维的研制[D].东华大学,2011.
    [105] Balakrishnan J. Developments in Double-Modulated Terahertz Differential Time-DomainSpectroscopy[D]. The University of Adelaide, Australia,2010.
    [106] Sengupta A, Bandyopadhyay A, Bowden B F, et al. Characterisation of olefin copolymersusing terahertz spectroscopy[J]. Electronics Letters.2006,42(25):1477~1479.
    [107] Nielsen K, Rasmussen H K, Adam A J, et al. Bendable, low-loss Topas fibers for theterahertz frequency range[J]. Optics express.2009,17(10):8592~8601.
    [108] Wang D. Research of polymer fibers for the terahertz frequency range[C]. InternationalSociety for Optics and Photonics,2011.
    [109] Duguay M A, Kokubun Y, Koch T L, et al. Antiresonant reflecting optical waveguides inSiO2‐Si multilayer structures[J]. Applied Physics Letters.1986,49(1):13~15.
    [110] Litchinitser N M, Abeeluck A K, Headley C, et al. Antiresonant reflecting photoniccrystal optical waveguides[J]. Optics letters.2002,27(18):1592~1594.
    [111] Argyros A, Leon-Saval S G, Pla J, et al. Antiresonant reflection and inhibited coupling inhollow-core square lattice optical fibres[J]. Optics Express.2008,16(8):5642~5648.
    [112] Gmitro A F, Aziz D. Confocal microscopy through a fiber-optic imaging bundle[J]. Opticsletters.1993,18(8):565~567.
    [113]张耀明.20孔双坩埚拉制多组份光导纤维[J].玻璃纤维.1999,3:27~29.
    [114]杨兴华,王丽莉,杨晟,等.纳米银修饰的微结构聚合物光纤作为化学-光学传感材料的初步研究[J].光子学报.2008,37(7):1338~1341.
    [115] Van Eijkelenborg M A. Imaging with microstructured polymer fibre[J]. Opt. Express.2004,12(2):342~346.
    [116]杨柏,高长有,沈家骢.聚合物光学树脂的分子设计与新型光学塑料[J].高分子通报.1995,6(2):92.
    [117] Ghaemi H F, Li Y, Thio T, et al. Fiber image guide with subwavelength resolution[J].Applied physics letters.1998,72(10):1137~1139.
    [118]王丽莉,谭伟,王学忠,等.微结构聚合物光纤制造方法及其装置[P].中国,[2006-05-10].
    [119]王丽莉,王学忠,吴国俊.微结构聚合物光纤制备技术的新探索[J].光子学报.2005,34(Z1):29~32.
    [120]王丽莉,陈兴华,赵卫.聚合物光纤预制棒拉伸装置[P].中国,[2008-08-20].
    [121]王丽莉,陈兴华,赵卫.大尺寸多孔聚合物光纤预制棒的生产方法[P].中国,[2008-06-25].
    [122]杨晟,王丽莉,延卫,等.三段加热系统对大尺寸MPOF预制棒一步拉伸工艺[J].光子学报.2008,37(9):1861~1864.
    [123] Ford H D, Tatam R P. Characterization of optical fiber imaging bundles for swept-sourceoptical coherence tomography[J]. Applied optics.2011,50(5):627~640.
    [124]房芳,林美荣,李英杰,等.微型光纤图像传输系统的设计与研究[J].光学学报.2000,20(05):654~658.
    [125]王慧,向阳,禹秉熙.线列光纤传像束的调制传递函数评价方法及检测[J].光学精密工程.2005,13(02):185~190.
    [126]周德春,于凤霞,谭芳.高分辨率光纤传像束的制备及其光学性能[J].中国激光.2009,36(03):723~726.
    [127]周德春,于凤霞,谭芳,等.大数值孔径传像光纤的制备及其光学性能研究[J].激光与光电子学进展.2010(12):34~37.
    [128]于凤霞,周航,周大为,等.基于酸溶法传像束的制备与性能研究[J].长春理工大学学报(自然科学版).2012,35(03):154~157.
    [129] F O I. Specialty Products (POF)[Web Page].http://i-fiberoptics.com/summary-info.php?id=110.(Accessed2011).
    [130] Saxena A K, Ho llwarth M E. Essentials of Pediatric Endoscopic Surgery[M]. Springer,2009.
    [131] Durrani A F, Preminger G M. Three-dimensional video imaging for endoscopic surgery[J].Computers in biology and medicine.1995,25(2):237~247.
    [132]周丽萍.虚拟现实中立体视觉的研究[J].计算机应用.1999,19(04):26~28.
    [133] Brown S M, Tabaee A, Singh A, et al. Three-dimensional endoscopic sinus surgery:Feasibility and technical aspects[J]. Otolaryngology--Head and Neck Surgery.2008,138(3):400~402.
    [134] Shaked N T, Katz B, Rosen J. Review of three-dimensional holographic imaging bymultiple-viewpoint-projection based methods[J]. Applied optics.2009,48(34): H120~H136.
    [135]侯春萍,俞斯乐.一种平面图像立体化的新方法[J].电子学报.2002,30(12):1861~1864.
    [136]刘然.基于计算机立体视觉的双目立体成像研究[D].重庆大学,2007.
    [137] V lkel R, Eisner M, Weible K J. Miniaturized imaging systems[J]. MicroelectronicEngineering.2003,67:461~472.
    [138]金伟其,林青,裘溯,等.多孔径仿生复眼成像系统技术进展综述[J].光学与光电技术.2011(06):9~13.
    [139] Ogata S, Ishida J, Sasano T. Optical sensor array in an artificial compound eye[J]. OpticalEngineering.1994,33(11):3649~3655.
    [140] Tanida J, Kumagai T, Yamada K, et al. Thin observation module by bound optics(TOMBO): concept and experimental verification[J]. Applied Optics.2001,40(11):1806~1813.
    [141] Tanida J, Kumagai T, Yamada K, et al. Thin observation module by bound optics(TOMBO): an optoelectronic image capturing system[C]. International Society for Opticsand Photonics,2000.
    [142] Yamada K, Tanida J, Yu W, et al. Fabrication of diffractive microlens array foropto-electronic hybrid information system[Z]. Orsay, France: European Optical Society,Orsay, France,199952~53.
    [143] Tanida J, Yamada K. Tombo: Thin observation module by bound optics[C]. IEEE,2002.
    [144] Miyatake S, Shogenji R, Miyamoto M, et al. Thin observation module by bound optics(TOMBO) with color filters[C]. International Society for Optics and Photonics,2004.
    [145] Nitta K, Shogenji R, Miyatake S, et al. Image reconstruction for thin observation moduleby bound optics by using the iterative backprojection method[J]. Applied optics.2006,45(13):2893~2900.
    [146] Kanaev A V, Ackerman J R, Fleet E F, et al. TOMBO sensor with scene-independentsuperresolution processing[J]. Optics letters.2007,32(19):2855~2857.
    [147] Duparre J W, Schreiber P, Dannberg P, et al. Artificial compound eyes: different conceptsand their application for ultraflat image acquisition sensors[J].2004:89~100.
    [148] DuparréJ, Dannberg P, Schreiber P, et al. Artificial apposition compound eye fabricatedby micro-optics technology[J]. Applied optics.2004,43(22):4303~4310.
    [149] Laycock L C, Handerek V A. Multi-aperture imaging device for airborne platforms[J].2007:673709.
    [150] Fife K, Gamal A E, Wong H P. A multi-aperture image sensor with0.7μm pixels in0.11μm CMOS technology[J]. IEEE Journal of Solid-State Circuits.2008,43(12):2990~3005.
    [151] Tian W, Huang M, Chen R, et al. Microarray imaging system for measuring the propertiesof a moving object[C]. International Society for Optics and Photonics,2000.
    [152]王红梅,李言俊,张科.生物视觉仿生在计算机视觉中的应用研究[J].计算机应用研究.2009,26(3):1157.
    [153]陶圣,曾理江.结合空间侧抑制的仿生复眼模型[J].光学技术.2007,33(3):337~340,344.
    [154] Liu H, Chen F, Yang Q, et al. Fabrication of bioinspired omnidirectional and gaplessmicrolens array for wide field-of-view detections[J]. Applied Physics Letters.2012,100(13):133701.
    [155]李娜娜.重叠型复眼光学系统的研究[D].长春理工大学,2010.
    [156] Nitta K, Shogenji R, Miyatake S, et al. Image reconstruction for thin observation moduleby bound optics by using the iterative backprojection method[J]. Applied optics.2006,45(13):2893~2900.
    [157] Fife K G. Devices for integrated multi-aperture imaging[D]. Stanford University,2009.
    [158]刘德森.变折射率介质理论及其技术实践[M].重庆:西南师范大学出版社,2005.
    [159]刘德森,高应俊.变折射率介质的物理基础[M].北京:国防工业出版社,1991.
    [160]边玲,刘德森.图解法分析自聚焦透镜的物像关系[J].光学与光电技术.2006,4(6):32~34.
    [161]郁道银,杜吉,李云青.自聚焦透镜的薄透镜等效系统[J].光子学报.1993,22(2):150~156.
    [162] Fife K, El Gamal A, Wong H. A3D multi-aperture image sensor architecture[C]. IEEE,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700