用户名: 密码: 验证码:
浙江省主要常绿阔叶树种功能评价及其人工恢复群落功能特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常绿阔叶林是中亚热带地带性植被分布的一个典型代表,由于长期人为破坏,其面积不断减小,生境的岛屿化与破碎化问题越来越突出,群落的功能日益下降。近年来,常绿阔叶林的生态恢复工作已在浙江省全面展开。因此,围绕常绿阔叶林造林树种的功能和植被恢复过程中群落功能的动态变化特征等方面的研究具有十分重要的理论和实践意义。本文应用群落生态学调查方法,结合光合生理生态测定技术和锥形量热仪燃烧特性测定技术,对主要常绿阔叶树种的光适应特征、可燃性及其它多种功能进行了研究,探讨了不同演替阶段人工恢复群落的物种多样性、抗火树种组成和植被功能群组成等功能特征及其存在的问题。研究结果表明:
     (1)苗木的光适应能力是影响物种能否在群落中生存、生长和发育关键因素。研究发现处于演替中后期的常绿阔叶树种幼苗,对光环境的变化均有着较强的适应能力,秃瓣杜英、全缘冬青、小叶铁冬青、桃叶石楠、香樟等树种的表现尤为突出;荧光特性的研究也应证了这一观点,测定结果表明多数树种的PSⅡ反应中心并未受到明显氧化破坏,在全光照条件下仍能维持较高的光合电子传递活性,能通过提高非辐射性热耗散,消耗PSⅡ吸收的过剩的光能,从而保护PSⅡ反应中心免受因吸收过多光能而引起的光氧化伤害。同时,通过树种生理、形态和环境特性与其生长的回归关系分析,发现净光合速率、最大净光合速率、表观量子效率、叶片数量和环境湿度与高生长显著正相关,径生长则与净光合速率、叶片数量和环境温度正相关,而光强和环境温度与植物生长则呈较为明显的负相关关系。研究认为尽管强光不会造成多数常绿阔叶林树种幼苗的PSⅡ作用中心失活或破坏,但强光对常绿阔叶树种幼苗的生长有明显的抑制作用。
     (2)利用除趋势对应分析和主成分分析对72个树种的抗火性能进行了综合评价,结果表明:微毛柃、撒金珊瑚、海桐、含笑、蚊母树、秃辦杜英抗火性能最好,珊瑚树、檵木、乐昌含笑、乳源木莲、青冈、广玉兰等12种树种次之。综合看来,多数常绿阔叶树种均表现出了较好的防火性能。同时,对树种的适宜性、萌生能力、生长速度、经济价值也进行了分析,为造林树种的功能需求提供了依据。
     (3)将除趋势对应分析与TWINSPAN分类方法相结合,根据恢复群落与环境的关系剔除了一些环境因子差异过大的样方,降低了因为研究地生态特点和环境差异性所带来的试验误差。研究结果不仅反映了恢复样方种类组成上的差异,也反映了环境因子的作用,体现了各环境因子对植被的影响,以及这些因子在群落分异中的综合作用。应用生态种群来判别森林的恢复状态,TWINSPAN群落指示种的研究表明,人工构建的演替序列其生态种群与自然演替序列存在一定差异。
     (4)人工恢复群落的物种多样性研究表明,人工恢复植物群落的生物多样性各个指标,随着群落演替梯度,基本呈现出同自然演替规律一致的变化,但总体来讲人工恢复的植物群落生物多样性是低于自然恢复群落的;人工群落的物种多样性与群落功能恢复的目的紧密相关,以恢复成常绿阔叶林为主的群落多样性较高,兼顾生物防火林带的群落多样性指数偏低,兼顾景观生态林的群落,稀有种数量偏多。群落抗火树种功能群组成研究表明,减少林内可燃物和群落快速构建是现行的生物防火林带建设技术的主要内容,短期内可以立竿见影,但由于防火树种组成单一,普遍存在林分结构差,关键种优势突出,保水保土功能差,难以实现自我更替等诸多问题;选择抗火性能较好的不同树种组成生物防火林带,有利于提高群落的防火性能,建立长期稳定的防火群落。对群落植被功能型的研究表明,模拟自然群落的功能群组成可以加速生态系统沿着自然演替的路线发展,甚至可以跨越某些演替阶段。总的来说,围绕功能群组成开展恢复群落的系统异质性、功能多样性和群落稳定性方面的研究,可以为常绿阔叶林生态系统的恢复技术与评价提供一定理论依据。
Evergreen broad-leaved forest is a typical zonalvegetation and climax community type in the middle subtropics. Because of the long-term artificial destruction, its area and community function were unceasingly small, diversity loss and environmental degradation have been a serious problem especially when more and more fragmentation and island were presented. In recent years, restoration of evergreen broad-leaved forest work started full swing in Zhejiang Province. Under the current situation, it is of great practical significance to study focusedly on the functions of evergreen broad-leaved species and dynamic characteristics of community during the process of vegetation restoration.
     Based on the methods of community ecology, photosynthesis measurement and combustion technique of cone calorimeter, photosynthesis, combustibility and other characteristics of the main evergreen broad-leaved species were analysed. In addition, this paper also carried out on species diversity, fire-resistant tree species composition and vegetation functional group composition at different restoration stages. Aiming at the question of the forests cultivation in Zhejiang Province, some suggestions were given. The specific results as follow:
     The photosynthetic adapt abilities of various tree specie is a key factor for tree's survival and growth at communities. The study shows that: evergreen broad-leaved species during the middle and later period succession have better adaptability under the different light surroundings, such as Elaeocarpus glabripetalus, Ilex integra, Photinia prunifolia, Cinnamommum camphora.
     And Fluorescent Characteristics also verifies the above result. The experiment results indicate that: PSⅡreaction centers of majority tree species are not marked oxidized under the full light surroundings. Photosynthetic electron transport activity can maintain highly, in this way, it is helpful to enhance radiant energy dissipation and thus dissipate excess light energy. That is to say, the increase of non-photochemical quenching coefficient can conduce to protect PSⅡ, and mitigate the effect of high light on photosynthesis.
     Multivariate regression analysis on the interrelationship between growth and physiology, plant morphology, environmental characteristic, the results indicate that: high growth is significantly positive correlated with Pn, Pmax, ARY and leaf number. Diameter growth is significantly positive correlated with Pn, leaf number and relative humidity of environment, but environmental temperature and light intensity are negatively correlated with plant growth, it means that in despite of that strong light doesn't inactivate or damage PSⅡreaction center, light intensity had little effect on evergreen broadleaved seedlings growth.
     The fire-resistance properties of main evergreen broad-leaved species in Zhejiang Province are analysed synthetically through the method of principal component analysis (PCA) and detrended correspondence analysis (DCA) in this paper. The results are as follows: Eurya hebeclados, Michelia figo, Distylium racemosum, Elaeocarpaus glabripetalus, Aucuba japonica are in the first grade, their fire-resistance property are the best. And Loropetalum chinense, Viburnum odoratissimum, Michelia chapensis, Manglietia yuyuanensis, Cyclobalanopsis glauca (12species) are the second grade. In a word, most of evergreen broad-leaved species showed better fire-resistance property. Of course, ecosystem adaptability, sprout ability, growth rate, economic value can be also calculated.
     By using DCA ordination and TWINSPAN classification, a total of 42 plots with artificial community restoration are partitioned into 9 community types. Both the methods of DCA ordination and TWINSPAN classification obtained very consistent results, and decreases the error of experiment for environmental deviations. The study is manifested not only the difference in trees species composition but also the functions of environment factors its incarnate the relationship between plants and environmenty. The method of TWINSPAN quantitative classification is applied to classify artificial community restoration, a succession serial and law of artificial community restoration further analyse the succession series of natural succession and artificial renewal of evergreen broad-leaved forest.
     The regularity of developments of species diversity of artificial community restoration and community natural succession are similar mainly. On the whole, the species diversity artificial community restoration was lower.
     It is very important that the correlation of species diversity and the aim of function restoration, the index of evergreen broad-leaved forest diversity of the nine communities was higher, the fire biological forest and landscape ecosystem wood is lower. Forest reduced combustible matter and composed of fast growing species is emphasis on the building of the fire biological forest, the ways may be immediately obvious, but there are many questions. For example, tree species composition is simple, forest structure is unreasonable, function of soil and water conservation is significantly decreased, and so on. In order to resolve the afore-mentioned issues, multiple tree species must be further enhanced and perfected. Simulation of structure features of natural community is the best ways for the accelerating restoration of evergreen broad-leaved forest, the community succession is on the rapid development phase rapidly during the least time. In conclusion, plant functional composition, heterogeneity of community and stability of community are correlated with functional group composition, the study of the issues can provide the theory basis for recovery technique and appraisal on evergreen broad-leaved forest ecological system.
引文
[1] 中国植被编辑委员会.中国植被[M].北京:科学出版社,1980.
    [2] 李昌华.亚洲东部常绿阔叶林的分布[J].资源科学,1997,2:37-46.
    [3] 宋永昌,陈小勇,王希华.中国常绿阔叶林研究的回顾与展望[J].华东师范大学学报(自然科学版),2005,01:3-10.
    [4] 黄清麟,李元红.中亚热带天然阔叶林研究综述[J].福建林学院学报,1999,19(2):189-192.
    [5] 黄清麟.亚热带天然阔叶林经营的五大误区[J].世界林业研究.1998,11(4):31-342.
    [6] MyintA.K, Hofer.ForestryandKeyAsianWatersheds[M].Kathmandu, ICIMOD, 1998, 44-49.
    [7] 贺金生,陈伟烈,中国亚热带地区的退化生态系统:类型、分布、结构特征及恢复途径.见:陈灵芝,陈伟烈主编,中国退化生态系统[M].北京:中国科学技术出版社,1995,61-93.
    [8] Huddle J.A.&Pallardy S.G. Effect of fire on survival and growth of Acer rubrum and Quercus seedlings[J]. Forest Ecology and Management. 1999, 118: 49-56.
    [9] Spanos J.A., Daskalakou E.N., Thanos of Pinus brutia forest in Thasos island C.A. Post:fire, natural regeneration Greece[J].Aeta Oecologica. 2000, 21 (1): 13-20.
    [10] Osunmi K.&Sakurai S. Seedling emergence of Betula maximowicziana following human disturbance and the role of buried viable seeds[J]. Forest Ecology and Management. 1997, 93: 235-243.
    [11] Thanos C.A. Fire effects on forest vegetation, the case of Mediterranean pine forests in Greece[M], in: Eftichidis G., Balabanis P., GhaziA. (Eds.), Wildfire Management, Algosystens&European Commission DGXⅡ, Athens. 1999, 323-336.
    [12] 余作岳,彭少麟.热带亚热带退化生态系统植被恢复生态学研究[M].广东:广州科技出版社,1996.
    [13] 章家恩,徐琪.恢复生态学研究的一些基本问题的探讨[J].应用生态学报,1999,10(1):109-1 13.
    [14] 包维楷,陈庆恒.生态系统退化的过程及其特点[J].生态学杂志,1999,18(2):36-42.
    [15] 任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001.
    [16] Miyawaki, A. (ed.) .Vegetation of Japan. (I-X) . Tokyo; Shibundo.Miyawaki, A.Das.system der Loebeerwalder (Camellieteajaponicae) Japans[M].In: Dieschke, H. (ed.) Syntaxonoeie, 1980-1989, 589-599.
    [17] Fujiwara K., and Box, E.O. Evergreen broad-leaved forests of the southeastern United States: In: Miyawaki, A (ed.). Vegetation in Eastern North America-Vegetation System and Dynamics under Human Activity in the Eastern North American Cultural Region in Comparison with Japan[M], University of tokyo press, 1994, 273-312.
    [18] Wardle P. M, J A Bulfin, and J Dugdale. Temperate broad-leaved evergreen forests of New Zealand[M]. In: Ovington, J D (ED.) temperate Broad-Leaved Evergreen Forests. Ecosystem of the World 10.Amsterdam: Elsevier, 1983 , 33-72.
    [19] Ohsawa, M, W Wildpret, and Mdel Arco. Anaga Cloud Forest-A Comparative Study on Evergreen Broad-Leaved Forests and Trees of the Canary Islands and Japan[J].Chiba Universety, 1999.
    [20] 丁圣彦,宋永昌.常绿阔叶林植被动态研究进展[J].生态学报,2004,24(8):1769-1780.
    [21] 彭少麟.热带亚热带退化生态系统恢复重建的生态学理论.余作岳,彭少麟.热带亚热带退化生态系统植被恢复 生态学研究[M].广州:广东科学技术出版社,2003.
    [22] 王希华,宋永昌,王良衍.马尾松林恢复为常绿阔叶林的研究[J].生态学杂志,2001,20(1):30-32.
    [23] Bazzaz F.A. Physiolcal ecology of tropical succession: a comparative review [J] . Annu. Rev. Ecol. Syst., 1980, 11: 287~130.
    [24] Bazzaz F. A.The physiology of ecology of plant succession[J]. Ann Rev. Ecol. Syst, 1979, 10: 351~371.
    [25] Neuner G., Bannister P. Forest resistance and susceptibly to ice formation during natural hardening in relation to leaf anatomy in three evergreen tree species from New Zealand[J]. Tree Physiol, 1995, 15: 371~377.
    [26] Abrams M. D., Mostoller S. A. Gas exchange, leaf structure and nitrogen in contrasting successional tree species growing in open and understory sites during a drought[J].Tree Physiol, 1995, 15: 361~370.
    [27] Whitmore, T.C. Canopy gaps and the two major groups of forest trees[J]. Ecology, 1989, 70: 536-538.
    [28] Valladares E, Wright S. J., Lasso E. Plastic phenotypie respons to light of 16congeneric shrubs from a Panarnanianra in forest[J].Ecology, 2000, 81: 1925-1936.
    [29] Denslow J. S. Tropical rainforest gaps and tree species diversity[J].Annu Rev Ecol Syst, 1987, 18:431-451.
    [30] Krause G.. H., weisf.Chlorophyll fluorescence and photosynthesis: The basics[J].Ann Rev Plant Physiol Plant Mol Biol., 1991, (42): 313-349.
    [31] Govingiee. Sixty-three years since Kautsky: Chlorophyll a fluorescence[J]. Plant Physiol. 1995, 22, 131-160.
    [32] Darnatta, EM., M. Maestri &R. S. Barros. Photosynthetic performance of two coffee species under drought. Photosynthetica[J], 1997, 34: 257-264.
    [33] 冯玉龙,曹坤芳,冯志立,等.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应[J].生态学报,2002,22(6):901-910.
    [34] 丁圣彦,宋永昌.浙江天童常绿阔叶林演替系列优势种光合生理生态的比较[J].生态学报,1999,19(3):318~323.
    [35] 郭晓荣,曹坤芳,许再富.热带雨林不同生态习性树种幼苗光合作用和抗氧化酶对生长光环境的反应[J].应用生态学报,2004,15(03):377-381.
    [36] 齐欣,蔡志全.热带雨林蒲桃属三个树种的幼苗由遮荫转入强光后叶片的光抑制[J].内蒙古大学学报(自然科学版),2004,35(01):70-76.
    [37] 曹洪麟,邓雄,蔡楚雄,等.18个树种叶绿素荧光Fv/Fm在不同郁闭度生态公益林中的变化[J].中山大学学报(自然科学版),2005,44(6):222-225
    [38] 王博轶,冯玉龙.生长环境光强对两种热带雨林树种幼苗光合作用的影响[J].生态学报,2005,25(01):23-30.
    [39] 林植芳,彭长连,孙梓健,等.4种木本植物叶片的光合电子传递和吸收光能分配特性对光强的适应[J].植物生理学报,2000,26(05):387-392.
    [40] 林植芳,彭长连,孙梓健,等.光强对4种亚热带森林植物光合电子传递向光呼吸分配的影响[J].中国科学C辑,2000,30(1):72-77.
    [41] 林植芳,林桂珠,孔国辉,等.生长光强和冬季低温对三种亚热带木本植物生理特性的影响[J].热带亚热带植物学报,1994,2(3):54-61.
    [42] 梁春,林植芳,孔国辉.不同光强下生长的亚热带树苗的光合-光响应特性的比较[J].应用生态学报,1997, (01).7-11.
    [43] 蔡志全,曹坤芳.遮荫下2种热带树苗叶片光合特性和抗氧化酶系统对自然降温的响应[J].林业科学,2004,(01):47-51.
    [44] 张教林,曹坤芳.光照对两种热带雨林树种幼苗光合能力、热耗散和抗氧化系统的影响[J].植物生态学报,2002,26(06):639-646.
    [45] 齐欣,曹坤芳,冯玉龙.热带雨林蒲桃属3个树种的幼苗光合作用对生长光强的适应[J].植物生态学报,2004,28(01):31~38.
    [46] 李晓征,彭峰,徐迎春,等.不同光强下6种常绿阔叶树幼苗的生理特性[J].广西农业科学,2005,(04):312-315.
    [47] 蔡志全,曹坤芳,郑丽.6种热带雨林木本植物幼苗光合诱导的研究[J].植物生态学报,2003,27(05):617-623.
    [48] 赵广东,王兵,李少宁,等.江西大岗山常绿阔叶林优势种丝栗栲和苦槠栲不同叶龄叶片光合特性研究[J].江西农业大学学报,2005,27(2):161-165.
    [49] Clark J.S. Why trees biology and the paleorecord migrate so fast: confronting theory with dispersal invasion[J]. The American Naturalist. 1998, 152: 204-224.
    [50] Szwagrzyk J., Szewczyk. J, Bodziarczyk J. Dynamics of seedling banks in beech forest: result of a 10-year study on germination, growth and survival[J]. Forest ecology and management, 2001, 141: 237-250.
    [51] John B.P. Hurricane disturbance and the regeneration ofLysiloma latisiliquum (Fabaceae): a tropical tree in south Florida[J]. Forest Ecology and Management. 1997, 92: 97-106.
    [52] Chazdon, R.L. Sunflecks and their importance to forest understory plants[J]. Advance in Ecology Research, 1988, 18: 1~63.
    [53] Nakashizuka T, Numata M.Regeneration process of climax beech forests. 1. Structure of a beech forest with the undergrowth of Sasa[J]. Japanese Journal of Ecology, 1982, 32, 57-67.
    [54] Shimano K The effects of snow upon Japan Sea type beech forests[J]. Journal of Phytogeography and Taxonomy, 1999, 47, 97-106.
    [55] Arista M. The structure and dynamics of an Abies pinsapo forest in southern Spain[J]. Forest Ecology and Management. 1995, 74: 81-89.
    [56] Grime J.P & Hitler S.H. The contribution of seedling regeneration to the structure and dynamics of plants communities and larger units of landscape. In: Fenner, M. ed. Seeds, the ecology of regeneration in plant communities[M].Wallingford: C.A.B.intematiunal, 1992, 349-364.
    [57] Rice K.J., Gordon D.R., Hardison J.L., Welker J.M. Phenotypic variation Seedlings of a "keystone" free species (Quercus douglasii): the interactive effects of acorn source and competitive environment [J]. Oecologica. 1993, 96: 537-547.
    [58] Hirosh J.& Masashi O. Genetic diversity and local population structure of fragmented population of Trillium camschatcensec[J]. Biological conservation. 2003, 109: 249-258.
    [59] Kuusipalo, J Y Jafarsidik, G Adjers & K Tuomela. Population dynamics of tree seedlings in a mixed dipterocarp rainforest before and after logging and crown liberation[J]. For. Ecol. Manage., 1996, 81: 85~94.
    [60] 何永涛,李贵才,曹敏等.云南哀牢山栎类次生林树种多样性特征研究[J].热带亚热带植物学报,2003,02:14-18.
    [61] 于明坚,陈启瑺.浙江建德青冈种群结构的研究[J].东北林业大学学报,1998,05:11-16.
    [62] 王希华,严晓,闫恩荣,等.天童几种常绿阔叶林优势种在砍伐后萌枝更新的初步研究[J].武汉植物学研究,2004,22(1):52-57.
    [63] Nakagoshi N. Forest fire and management in pine forest ecosystems in Japan[J]. Hikobia, 2001, 13:301-311.
    [64] Grant C. D., Loneragan WA.The effects of burning on the under storey composition of 11~13 year-old rehabilitated bauxite mines in Western Australia[J].Plant Ecology, 1999, 145: 291-305.
    [65] Kammesheidt, L. 1998. The role of tree sprouts in the restoration of stand structure and specie diversity in tropical rnoist after slash-and-burn agriculture in Fastern Paraguay[J]. Plant Fcology. 139: 155-165.
    [66] Pascarella, J.B., T.M. Aide, M.I. Serrano&J.k. Zimmerman. Land-use history and forest regeneration in the Cayey mountains[J], Puerto Rico. Ecosystems, 2000, 3: 217-228.
    [67] 李兴东,宋永昌,浙江东部常绿阔叶林次生演替的随机过程模型[J].植物生态学与地植物学学报,1993,17:345-351.
    [68] 彭少麟.南亚热带森林群落动态学[M].北京:科学出版社,1996:444.
    [69] 彭少麟.南亚热带退化生态系统恢复和重建的生态学理论和应用[J].热带亚热带植物学报,1996,03:36-44.
    [70] 丁圣彦,宋永昌.浙江天童国家森林公园常绿阔叶林演替前期的群落生态学特征[J].植物生态学报,1999,23(2):97-107.
    [71] 金则新,蔡辉华.浙江天台山常绿阔叶林不同演替阶段优势种群动态[J].浙江林学院学报,2005,03:27-31.
    [72] 张水松,林光,陈长发等,次生常绿阔叶林抚育改造技术研究[J].林业科学研究,1997,10(5):506-513.
    [73] 丁圣彦,宋永昌.常绿阔叶林演替过程中马尾松消退的原因[J].植物学报,1998,08:76-81.
    [74] 王献溥,蒋高明.广西马尾松林分类、分布和演替的研究[J].植物研究,2002,02:23-27.
    [75] 彭少麟.植物群落演替研究Ⅱ动态研究方法[J].生态科学,1994,2:117-119.
    [76] 彭少麟.南亚热带演替群落的边缘效应及其对森林片断化恢复的意义[J].生态学报,2000,20(1):1~8.
    [77] 刘玉成,杜道林,岳泉.缙云山森林次生演替中优势种群的特性与生态因子的关联度分析[J].植物生态学报,1994,03:283-286+284+288-289.
    [78] 丁圣彦,宋永昌.浙江天童国家森林公园常绿阔叶林演替前期的群落生态学特征[J].植物生态学报,1999,02:2-10+12.
    [79] 包维楷,刘照光,刘朝禄.中亚热带湿性常绿阔叶次生林自然恢复15年来群落乔木层的动态变化[J].植物生态学报,2000,24(6):702-709.
    [80] 安树青,洪必恭,李朝阳等.紫金山次生森林林窗的植被和环境特征[J].应用生态学报,1997,8(3):245-249.
    [81] 安树青,赵儒林.中国北亚热带次生森林植被的特征分析[J].南京大学学报(自然科学版),1991,27(2):323-331.
    [82] 安树青,赵儒林.紫金山次生森林植被特征分析[J].植物生态学与地植物学学报,1990,14(1):13-21.
    [83] 任海,彭少麟.鼎湖山森林生态系统演替过程中的能量生态特征[J].生态学报,1999,19(6):817-822.
    [84] 方运霆,莫江明,彭少麟,等.森林演替在南亚热带森林生态系统碳吸存中的作用[J].生态学报,2003,09:5-14.
    [85] 郭全邦,刘玉成,李旭光.缙云山森林次生演替序列群落的物种多样性动态[J].应用生态学报,1999,lO(5):521-524.
    [86] Hobbs RJ and Norton DA. Towards a conceptual framework for restoration ecology[J]. Restoration ecology, 1996, 4 (2): 93~110.
    [87] Walker, D. Diversity and stability. Ecological concepts (d, Cherett J. M.) [M]. Oxford: Blackwell Scientific Publications.1989: 115--145.
    [88] Tilman, D. et al., Habitat destruction and the extinctiond ebt[J].Nature, 1994, 371: 65~66.
    [89] Laurance, W.E., and R. O. Bierregaard, Jr., editors. Tropical forest remnants: ecology, management, and conservation of fragmented communities[M]. University of Chicogo Press, Chicago, Illinois, USA. 1997.
    [90] 彭少麟.鼎湖山植被演替过程椎栗和木荷种群动态研究[J].植物生态学报,1995,19(4):311-318.
    [91] 黄忠良,孔国辉,何道泉等.鼎湖山植物群多样性研究[J].生态学报,2000,20(2):193-198.
    [92] 贺金生,陈伟烈,李凌浩.中国中亚热带东部常绿阔叶林主要类型的群落多样性特征[J].植物生态学报,1998,04:16-24.
    [93] 廖成章,王新功,洪伟,等.福建中亚热带常绿阔叶林种类组成的空间分布[J].山东农业大学学报(自然科学版),2004,35(03):352-356.
    [94] 吴承祯,洪伟,陈辉,等.万木林中亚热带常绿阔叶林物种多样性研究[J].福建林学院学报,1996,01:33-37.
    [95] 王伯荪,张炜银,张军丽.海南岛热带山地雨林群落物种多样性的空间格局分析[J].热带亚热带植物学报,2001,03:47-52.
    [96] 包维楷,刘照光,刘朝禄,等.亚热带次生常绿阔叶林主要乔木种群自然恢复15年来的变化[J].林业科学,2001,01:10-17.
    [97] 丛沛桐,赵则海,张文辉,等.东灵山辽东栎群落演替的连续时间马尔可夫过程研究[J].木本植物研究,2000,04:78-83.
    [98] 余树全.浙江淳安天然次生林演替的定量研究[J].林业科学,2003,01:18-23.
    [99] 熊利民,钟章成.四川缙云山森林群落的同期发生演替及其模型预测[J].生态学报1991,11(1):49-53.
    [100] 桑卫国,马克平,陈灵芝,等.森林动态模型概论[J].植物学通报,1999,03:2-9+88.
    [101] 延晓冬,赵士洞,于振良.中国东北森林生长演替模拟模型及其在全球变化研究中的应用[J].植物生态学报,2000,24(01):1-8.
    [102] 陈雄文,王凤友.林窗模型BKPF模拟伊春地区红松针阔叶混交林采伐迹地对气候变化的潜在反应[J].应用牛杰学报,2000,04:34-38.
    [103] Hubbell, S.EThe unified neutral theory ofbiodiversity and biogeography[M]. Princeton University Press. 2001.
    [104] Hooper, D.U. and P.M. Vitousek. The effects of plant composition and diversity on ecosystem processes[J]. Science 1997, 277: 1302-1305.
    [105] Bai, Y., X. Han, J. Wu, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature 2004, 431: 181-184.
    [106] Williams, W. A., Loomis, R. S. and Lepley, et al.. Vegetative grow th of co m as effected by population density[M]. Productivity in relation to interception of solar radiation. Crop Sci., 5: 211-215.
    [107] Leak W. B., and S. M. Filip. Thiry2eight Years of Group Selection in New England Northern Hard Woods[J]. Journal of Forestry, 1987, 10: 641-643.
    [108] Ray-GJ. Restoring Caribbean dry forest: evaluation of tree propagation techniques[J]. Restoration-Ecology, 1995, 3: 86-94.
    [109] Ted Horgan, Coillte, Shelter is key to successful broadleaf silviculture[J], forestry & british timber, 2004, 14-21.
    [110] 丁圣彦,宋永昌.演替研究在常绿阔叶林抚育和恢复上的应用[J].应用生态学报,2003,14(3):423-426.
    [111] 苏增建,余树全,周国模.浙江省几种生态型商品林水土保持技术研究与应用现状[J].浙江林学院学报,2002,19(4):440-445.
    [112] José Sarukhán,Anne Whyte和千年生态系统评估编审委员会.千年生态系统评估;生态系统与人类福祉:生物多样件综合报告[M].Washington DC:世界资源研究所,2005:1-32.
    [113] 俞益武,江志标,胡永旭.杭州木荷常绿阔叶林的林分特征[J].浙江林学院学报,1999,16(3):242-246.
    [114] 胡正华,于明坚.浙江古田山常绿阔叶林演替序列研究:群落物种多样性[J].生态学杂志,2006,25(6):603-606.
    [115] 金则新.浙江天台山常绿阔叶林次生演替序列群落物种多样性[J].浙江林学院学报,2002,19(2):133.137.
    [116] 张金屯.数量生态学[M].北京:科学出版社,2004,7.
    [117] Bassman J.H. & Zwier.J.C. Gas exchange characteristic of Popul us trichocarpa, Populus deltoides and Populus trichocarpa×Populus deltoides clone[J]. Tree Physiology, 1991: 8, 145-159.
    [118] Comelissen J., Lavorel S., Gamier Let al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51.335~380.
    [119] 孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能[J].植物生态学报,2007,31(1)150-165.
    [120] 孙谷畴,曾小平,刘晓静,等.适度高温胁迫对亚热带森林3种建群树种幼树光合作用的影响[J].生态学报,2007,27(4):1283—1291.
    [121] 邓雄,李小明,张希明,等.多枝柽柳气体交换特性研究[J].生态学报,2003,23(1):180-187.
    [122] 刘宇锋,萧浪涛,童建华,等.非直线双曲线模型在光合光响应曲线数据分析中的应用[J].中国农学通报,2005,21(8):76-79.
    [123] 常杰,葛滢,陈增鸿,等.青冈常绿阔叶林主要植物种叶片的光合特性及其群落学意义[J].植物生态学报,1999,23(5)393~400.
    [124] 郝建军,康宗利.植物生理学[M].北京:化学工业出版社,2005.6:87~106.
    [125] 余叔文,汤章成.植物生理与分子生物学.第2版[M].北京:科学出版社,1998.262-267.
    [126] Ruban A. V., Horton P.An investigation of the sustained component of nonphotochemical quenching of chlorophyll flurescence in isolated chloroplasts and leaves of spinach[J]. Plant Physiol, 1995, 108: 721-726.
    [127] Bader M. R., Ruuska S., Nakano H.Electron flow to Oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction ) and rubisco oxygenase[J].Biological Science, 2000, 1402: 1433-1445.
    [128] 张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(04):444-448.
    [129] 许大全.光合作用效率[M].上海:上海科学出版社,2002,32-34.
    [130] 浙江森林编辑委员会.浙江森林[M].北京:中国林业出版社,2003,135~181.
    [131] Lavorel S., Gamier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct[J].Ecol. 2002, 16, 545-556.
    [132] 沈琪,张骏,朱锦茹,等.浙江省生态公益林植被恢复过程中物种组成及多样性的变化[J].生态学报,2005,25(9):2131-2138.
    [133] Richards, P.W. The Tropical Rain Forest: An Ecological Study[M]. Cambridge: Cambridge University Press. 1996.
    [134] George, L. O. and F. A. Bazzaz. The fern understory as an ecological filter: Emergence and establishment of canopy-tree seedlings[J]. Ecology , 1999, 80: 833-845.
    [135] Mesquita, R. C. G., K. lckes, G. Ganade, and G. B. Williamson. Alternative successional pathways in the Amazon Basin[J]. Journal of Ecology. 2001, 89: 528-537.
    [136] Tilman D. Resource competition and community structure[M]. Princeton Univ. Press.USA, 1994.
    [137] Macgilivray C. W., Grime J. P. and Team ISP.Testing predictions of the resistance and resilience of vegetation subjected to extreme events[J]. Functional Ecology, 1995, 9: 640~649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700