用户名: 密码: 验证码:
酿酒酵母HOR2基因缺失突变株的构建及其生物学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业革命以来,世界经济的发展离不开能源的发展,化石燃料一直是能源供应的主流、经济发展的支撑点。但是,随着科学技术的发展、工业的进步以及人口的膨胀,对能源的需求越来越紧迫。但是由于这些化石燃料属于不可再生燃料,在不同程度上都会对环境造成污染和破坏,因而找到一种可再生的燃料将是关键。生物作为可再生能源开发的媒介尤为重要,其中以可再生的燃料乙醇凸显。作为传统真核模式生物菌的酿酒酵母(Saccharomyces cerevisiae)是典型的乙醇产生菌,现已被广泛的用于生物乙醇的实验研究和发酵生产。
     甘油是酿酒酵母(Saccharomyces cerevisiae)乙醇代谢的主要副产物之一。酿酒酵母中含有两个基因(HOR2, RHR2)编码与甘油代谢相关的3-磷酸甘油酯酶系。其中,HOR2为渗透压调节型,在高渗透压的条件下有较大量的表达;而RHR2则为厌氧调节型,在缺氧的条件下有较多量的表达。因此,通过敲除HOR2或者RHR2(本研究选择敲除HOR2)基因在一定条件下可以阻断或者部分的阻断甘油代谢,从而减少甘油的产生,最终使更多的碳源用于转化生成乙醇,为酿酒酵母代谢调控打下一定的基础。
     本论文通过设计含有与HOR2 (GPP2)基因两侧序列同源的长引物,以质粒PUG6为模板进行PCR构建含有Cre/loxP系统的酿酒酵母HOR2基因敲除组件,转化酿酒酵母(Saccharomyces cerevisiae) YS2,获得为loxP-kan-loxP序列组件所替换而产生kanr的阳性克隆子。然后再将质粒pSH65转入阳性克隆子诱导表达Cre酶切除筛选标记,在原ORF基因处保留一个loxP位点,丢失质粒后获得HOR2单倍体缺陷型菌株。重复转化敲除组件实现另一条等位基因的敲除。从而成功的获得了酿酒酵母HOR2基因缺失的突变株,并命名为YS2-HOR2。发酵实验表明,突变株甘油产量降低3.34%,乙醇产量提高1.96%。
Since the industrial revolution, the development of international economic growth has not been able to deviate from the development of energy any longer.The fossil fuel is the mainstream of energy supply,the backbone of economic growth all along. With the development of technology,the progess of industry and the expansion of the world's population,however, the demand for energy sources has become more and more pressing.In addition,the fossil fuel is a kind of unrenewable fuel,which will result in the environmental pollution in a sense therefore,it will be a main point for human to find out a renewable fuel. Bio-renewable energy sources have been paid great attention; thereinto, the fuel ethanol,a bio-renewable fuel,is especially important because of its advantages. As the eukaryotic model organism, Saccharomyces cerevisiae has been diffusely used in the ethanol fermentation in these days.
     Glycerol is one of the main by-products in alcohol metabolism in Saccharomyces cerevisiae. There are two genes (HOR2, RHR2) that encode isoforms of glycerol 3-phosphatase involved in Glycerol metabolism in Saccharomyces cerevisiae. HOR2p is mainly involved in the Cellular Responses to osmotic stress,while RHR2p mainly involved in the Cellular Responses to anerobic.Therefore,the deletion of HOR2 or RHR2 (here,we take HOR2) can interrupt or partially interrupt the Glycerol metabolism with the result that the glycerol is decreased.At last,there are more carbon sources which are transferred into alcohol,as will help to study the molecular regulatory mechanism of Saccharomyces cerevisiae.
     By making use of the same long oligonucleotides with 22 or 19 3'nucleotides complementary to sequences in the templates pUG6 and 45 5'nucleotides which annealed to sites upstream or downstream of the genomic target sequence that would be deleted,the gene disruption cassette is created with PCR.After that,the gene disruption cassette is transformed to the cells of Saccharomyces cerevisiae YS2. Then,the positive transformants are confirmed with PCR in order to correct the integration of the cassette and concurrent deletion of the chromosomal target sequence.As long as it is correctly integrated into the genome of YS2, the marker can be efficiently redeemed after transformating the pSH65 to YS2 and inducing the Cre expression with a Cre/loxP-mediated marker removal procedure with the result that the marker gene is removed and a single loxP site is left behind at the chromosomal locus.By repeating the above procedure the diploid mutant YS2-HOR2 is generated, which could enhance the output of ethanol with 1.96% and decrease the output of glycerol with 3.34% by shaking culture in flask compared with the original strain YS2
引文
[1]谌书楠.生物燃料未来的能源之星[J].中国高新区.2008,9:97-99.
    [2]徐红志.核能:清洁、安全、高效的能源解决之道[J].UPS应用.2008,12:18-22.
    [3]朱锡锋.生物质热解原理与技术[J].合肥:中国科学技术大学出版社.2006:23.
    [4]陈曦,韩志群,孔繁华,等.生物质能源的开发和利用[J].化学进展.2007,19(7/8):1091-1097.
    [5]钱景明.生物能源,解决能源问题的新途径[J].中国三峡建设.2008,5:46-47.
    [6]肖亮,宋国华.生物质能发展现状及前景分析[J].中国环境管理干部学院学报.2008,4:36-37.
    [7]雷国光.用纤维质原料生产燃料乙醇是我国再生能源发展的方向[J].四川食品与发酵.2007,43(135):39-42.
    [8]张金丽,孙鹤.生物能源—燃料乙醇研究现状及商业化应用[J].云南农村经济.2005,(5):11-13.
    [9]Prasad S, Singh A, Joshi H C. Ethanol as an alternative fuel from agricultural, industrial and urban residues[J]. Resources, Conservation and Recycling.2007,50(1): 1-39.
    [10]Rossignol T, Dulau L, Julien A, et al. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast.2003,20(16):1369-1385.
    [11]徐惠娟,王世锋,龙敏南.燃料酒精生产的研究进展.厦门大学学报.2006,45(5):37-42.
    [12]Dujon B. The yeast genome project:what did we learn?[J]. Trends Genet 1996, 12(7):263-270.
    [13]Kiransree N S M, Rao L V. Characterisation of ther-Motolerant, ethanol tolerant fermentative Saccharomyces cerevisiae for ethanol production[J]. Bioprocess and Bio-systems Engineering.2000,22(3):243-246.
    [14]汪志君,高庆,方维明,等.紫外诱变筛选低高级醇和双乙酰含量的含量的啤酒酵母[J].中国酿造.2005,1:13-17.
    [15]肖冬光,韩涛,李家飚.低产杂醇油啤酒酵母菌株的选育[J].酿酒科技.2005,4: 31-33.
    [16]刘建军,姜香燕,赵祥顺,等.高产酒精酵母菌种的选育[J].酿酒.2003,30(1):57-59.
    [17]Advances in Protoplast Research Procedings of the 5th international Protoplast symposium [R]. Szeged Hungary Budapest. July 9-14,1979.
    [18]Kao K N, Michayluk M R A. Mothod for high frequency intergeneric fusion of plant protoplasts [J]. Planta.1974,115:355-367.
    [19]Sipiczki M, Ferenczy L. Protoplast fusion of Schizosaccharomyces pombe Auxotrophic mutants of identical mating-type[J]. Mol Gen Genet.1977,151(1): 77-81.
    [20]Bortol A, Nudel C, Fraile, et al. Isolation of yeast with killer actitivity and its breeding with an industrial baking strain by protoplast fusion[J]. Applied Microbiology and Biotechnolog.1986,24:414-416.
    [21]Adela Bortol. Industrial yeast strain improvement:construction of strains having the killer character and capable of utilizing starch[J]. Applied Microbiology and Biotechnology.1988,28:577-579.
    [22]王岳五,宇学锋,汪和睦,等.电诱导酵母属与短梗霉属属间融合的研究[J].真菌学报.1990,9(1):56-63.
    [23]钟桂芳,刘萍,郭雪娜,等.酵母属间融合构建高温发酵木糖生产乙醇优良菌株[J].食品与发酵工业.2004,30(2):38-42.
    [24]Chi zhenming. Construction of tetraploid cells protoplast fusion and heat treatment in ethanol tolerant yeast [J]. Annual Reports of IC Biotech.1991,14(2):135-145.
    [25]Toivari M H, Aristidou A, Ruohonen L, et al. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae:importance of xylulokinase (XKS1) and oxygen availability [J]. Metab Eng.2001,3(3):236-249.
    [26]Toksoy Oner E, Oliver, S G, Kirdar, B. Production of ethanol from starch by respiration-deficient recombinant Saccharomyces cerevisiae[J]. Appl Environ Microbiol.2005,71(10):6443-6445.
    [27]Ulgen K O, Saygili B, Onsan Z I, Kirdar B. Bioconversion of starch into ethanol by a recombinant Saccharomyces cerevisiae strain YPG-AB[J]. Process Biochemistry. 2002,37(10):1157-1168.
    [28]Shigechi H, Koh J, Fujita Y, et al. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase[J]. Appl Environ Microbiol.2004,70(8): 5037-5040.
    [29]Kajiwara S, Aritomi T, Suga K, et al. Overexpression of the OLE1 gene enhances ethanol fermentation by Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol. 2000,53(5):568-574.
    [30]Valadi H, Larsson C, Gustafsson L. Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology.1998,50(4):434-439.
    [31]陈其军,肖玉梅,王学臣,周海梦.植物功能组研究中的基因敲除技术[J].植物生理学通讯.2004,40(1):121-126.
    [32]万海英,汤华.基因敲除技术现状及应用[J].医学分子生物学杂志.2007,4(1):86-90.
    [33]李今熠,陈健铭,彭振坤.几种常用的基因敲除技术[J].武夷科学.2007,23(12):187-189.
    [34]孟凡立,张卫国,陈庆山.插入突变在功能基因组学研究中的应用[J].生物信息学.2006,3(4):38-39.
    [35]Grewal S I, Moazed D. Heterochromatin and epigenetic control of gene expression[J]. Science (New York, N.Y).2003,301(5634):798-802.
    [36]Rappleye C A, Engle J T, Goldman W E. RNA interference in Histoplasma capsulatum demonstrates a role for alpha-(1,3)-glucan in virulence[J]. Mol Microbiol. 2004,53(1):153-165.
    [37]Volpe T A, Kidner C, Hall I M, et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi[J]. Science (New York, N.Y).2002, 297(5588):1833-1837.
    [38]Martienssen R A. Maintenance of heterochromatin by RNA interference of tandem repeats[J]. Nat Genet.2003,35(3):213-214.
    [39]Beverley S M. Protozomics:trypanosomatid parasite genetics comes of age[J]. Nature reviews.2003,4(1):11-19.
    [40]Jenuwein T. Molecular biology. An RNA-guided pathway for the epigenome[J]. Science (New York, N.Y).2002,297(5590):2215-2218.
    [41]尹秀山,张令强,贺福初.RNAi技术在转基因动物中的应用[J].遗传.2006,28(3):251-256.
    [42]李湘萍,徐慰倬,李宁.动物基因敲除研究的现状与展望[J].遗传.2003,25(1):81-88.
    [43]Gu H, Marth J D, Orban P C, et al. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting[J]. Science.1994, 265(5168):103-106.
    [44]Aoyama M, Agari K, Sun-Wada G H, et al. Simple and straightforward construction of a mouse gene targeting vector using in vitro transposition reactions[J]. Nucleic Acids Res.2005,33(5):e52.
    [45]Belteki G, Haigh J, Kabacs N, et al. Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline indnction[J]. Nucleic Acids Res.2005,33(5):e51.
    [46]Di Primio C, Galli A, Cervelli T, et al. Potentiation of gene targeting in human cells by expression of Saccharomyces cerevisiae Rad52[J]. Nucleic Acids Res.2005,33(14): 4639-4648.
    [47]Gueldener U, Heinisch J, Koehler G J, et al. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast[J]. Nucleic Acids Res. 2002,30(6):e23.
    [48]宋浩雷,郭晓贤,杨月梅,等.酿酒酵母ADH3基因的敲除[J].工业微生物.2006,36(4):28-31.
    [49]Ronnow B, Kielland-Bvandt M C. Yeast,1993,9(10):1121-113o.
    [50]Remize F, Banlavon L, qL S. Metab Eng,2001,3(4):301-312.
    [51]Amell R, Granath K, Hohmann S, et al. ENBO J,1997,16(9):2179-2187.
    [52]Lalsson K, Ansed R, Eriksson P, et al. MolMicrobiol,1993,10:1101=1111.
    [53]Bentley P, Dckinsoll FM, Jonesl. G Biochem J,1973,135:853-859.
    [54]Eagley M, Brown A D. J Gen Microbiol,1983,129:3453-3464.
    [55]BlombergA, AdlerL. J Bacteriol,1989,171:1087-1092.
    [56]AndreL, HemmingA, AdlerL. FEBS Lett,1991,286:13-17.
    [57]Nevoigt E, Stahl U. Yeast,1996,12:1331-1337.
    [58]Michilick S, RoustanI L, Remise F, et al. Yeast,1997,13:783-792.
    [59]Remize F, Roustan J L, Sablayrolles J, et al. Appl Environ Microbiol,1999, 65(1):143-149
    [60]Martij. R, Jaeobus A, JohanM, et al. Microbiology,1999,145(3):715-727.
    [61]Posas F, Saito H. Scieace,1997,276:1702-1705.
    [62]Posas F, Wurgter-t,lulvhy S M, IVlaeda T. cell,1996,86:865-875.
    [63]Posas F, SaitoH. EbtBO J,1998,17:1385-1394.
    [64]Pahlman AK, Granath K, Hohmann S, et al. The yeast glycerol 3-phosphatases Gpplp and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress[J]. JBiol Chem, 2001,276(5):3555-63.
    [65]Hirayama, T, Maeda, T, Saito, H, and Shinozaki, K. (1995) Mol. Gen. Genet. 249,127-138
    [66]Marquez, J. A., and Serrano, R. (1996) FEBS Lett.382,89-92
    [67]Schuller, G., Brewster, J. L, Alexander, M. R, Gustin, M. C, and Ruis, H. (1994) EMBO J.13,4382-4389
    [68]Varela, J. C. S, Praeckelt, U. M, Meacock, P. A, Planta, R. J, and Mager, W. H. (1995) Mol. Cell Biol.15,6232-6245
    [69]Rep, M., Albertyn, J, Thevelein, J. M., Prior, B. A, and Hohmann, S. (1999) Microbiology 145,715-727
    [70]Norbeck, J, Pahlmann, A. K, Akhtar, N, Blomberg, A, and Adler, L. (1996) J.Biol. Chem. 271,13875-13881
    [71]Rep, M, Krantz, M, Thevelein, J. M, and Hohmann, S. (2000) J. Biol Chem.
    [72]Thevelein, J. M, and de Winde, H. (1999) Mol. Microbiol.33,904-918
    [73]Ruis, H, and Schuller, C. (1995) BioEssays 17,959-965
    [74]Shuller, C, Brewster, J. L, Alexander, M. R, Gustin, M. C, and Ruis, H. (1994) EMBO J.13,4382-4389
    [75]Norbeck, J, and Blomberg, A. (2000) Yeast 16,121-137
    [76]Rep, M, Reiser, V.Gartner, U, Thevelein, J. M, Hohmann, S, Ammerer, G, and Ruis, H. (1999) Mol Cell Biol 19,5474-5485
    [77]Bjorkqvist S, Ansell R, Adler L,et al.Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae [J].Appl Environ Microbiol,1997,63(1):128-132
    [78]郭晓贤.酿酒酵母乙醇脱氢酶Ⅱ基因的敲除[D].福建师范大学硕士学位论文.2007.
    [79]秦丽娜.酿酒酵母乙醇脱氢酶Ⅰ基因的超表达[D].福建师范大学硕士学位论文.2008.
    [80]Cheng H R, Jiang N. Extremely rapid extraction of DNA from bacteria and yeasts[J]. Biotechnol Lett,2006,28(1):55-59.
    [81]Sambrook J, Russell D W. Molecular Cloning:A Laboratory Manual[M]. American:CSHL Press,2001.
    [82]王金晶,秦昶.影印平板法方法的研究与改进[J].洛阳师范学院学报.2005,5(5):113-114.
    [83]Gietz R D, Woods R A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method[J]. Methods Enzymol.2002,350:87-96.
    [84]Lin-Cereghino J, Wong W W, Xiong S, et al. Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris[S]. Biotechniques.2005,38(1):44-48.
    [85]Schiestl R H, Gietz R D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier[J]. Curr Genet.1989,16(5-6):339-346.
    [86]Gustin M C et al.Microbiol Mol Biol Rev:1998,62:1264
    [87]Huang LS et al.Proc Natl Acad Sci USA.2005102:12431
    [88]0'Rourke SM et al.Trends Genet.2002.18:405
    [89]Jin H R,Fang H Y,Zhuge J.By-product formation by a novel glycerol-producing
    yeast,Candida glycerinogenes,.with different 02 supplies.Biotehnol Lett,2003,25:311-314
    [90]Valadi A,Granath K,Gustafsson L,et al.Distinct intracellular localization of Gpdlp and Gpd2p,the two yeast isoforms of NAD dependent glycerol-3-phosphate dehydrogenase,explains their diferent contributions to redox-driven glycerol production.J Biol Chem,2004,279(38):39667-39685
    [91]Rigoulet M, Aguilaniu H,Averet N,et al.Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae.Mol Cell Biochem 2004.256:73-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700