用户名: 密码: 验证码:
数控机床可靠性试验设计及评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可靠性试验是获取故障信息、进行可靠性分析、评价、实施可靠性增长等可靠性研究的重要基础,可靠性试验方案合理与否必将影响后续可靠性工作的顺利进行。因此,进行数控机床可靠性试验和评价技术的研究对于快速、准确确定数控机床可靠性薄弱环节、评定其可靠性水平及选择合理措施实施可靠性增长具有重要的理论意义和实际意义。
     本文在现有可靠性试验研究的基础上,结合数控机床的特点,分别从定时截尾试验、定数截尾试验、序贯试验和基于贝叶斯理论的试验四个方面,并综合考虑生产方风险、使用方风险、鉴别比、MTBF预计值等信息进行可靠性试验方案设计,对于不同试验方案提出相应的数据分析和可靠性评估方法。
     论文首先针对数控机床服从威布尔分布的特点,将威布尔分布通过参数变换转化为指数分布模式,结合指数分布决策风险方程组,确定数控机床定时截尾试验方案和定数截尾试验并在厂家实施。考虑截尾时间对评估结果的影响,论文采用“故障总时间法”对故障数据进行处理;采用“取中逐步推移检验法”进行异常数据检验;采用“残存比率法”求解经验分布函数;根据故障数据的趋势,建立可靠性模型,根据可靠性模型中的形状参数与定时截尾、定数截尾试验方案设计时选取的形状参数进行对比,验证方案的设计是否合理,进而评价其可靠性水平。
     其次根据数控机床故障发生个数的概率在威布尔分布下的描述,结合传统序贯试验方案设计方法,确定数控机床的序贯试验方案。由于序贯试验中故障点可能会处于继续试验区而迟迟不能做出判决,通过增加截尾故障数和截尾试验时间的方式,并调整接收线和拒收线以适应决策风险的约束,对数控机床设计出截尾序贯试验方案。由于序贯试验可能出现早早结束试验的情况,会导致故障信息不足而无法准确评估可靠性真值,因此本文基于序贯思想,采用动态截尾试验的方法,对故障数据进行实时的动态采集、动态评估,当可靠性评价指标值的变化处于允许误差的范围内,停止试验。
     最后,根据数控机床故障率的先验信息,将贝叶斯理论引入到可靠性试验研究中,经贝叶斯的后验风险确定基于贝叶斯理论的定时截尾试验方案。将第2章定时截尾试验中采集到的故障数据应用于贝叶斯试验方案中,由于贝叶斯试验方案的试验时间较短使故障数据呈现小样本类型的特点,采用参数偏差修正方法对该故障数据建立的可靠性模型进行修正和验证,进而评价出可靠性水平。
     定时或定数截尾试验不仅能做出判决,还能够在试验中得到足够的故障信息,从而可准确评估可靠性指标值。此外,定时截尾试验方案在试验前已确定试验时间及试验台数,便于控制试验的进程,以实现对试验费用和资源的预估;定数截尾试验方案在试验前能确定试验的最大故障数,从而得到足够的故障数据,为故障分析的工作提供基础信息。截尾序贯试验相对于定时和定数截尾试验的平均试验时间短,在只需判决数控机床的可靠性水平是否合格,并不需要评估其指标的情况下,选择截尾序贯试验更为适宜。在厂家急需做出判决,又不愿提高决策风险的情况下,若能够得到准确的故障率先验信息,可采用基于贝叶斯的定时截尾试验方案。
Reliability test is an important foundation for reliability study that includes obtaining fault information, conducting reliability analysis and evaluation, and implementing reliability improvement. Reliability experimental designs, whether reasonable or not, will greatly affect the smoothness of follow-up reliability work. Therefore, research on reliability tests and evaluation techniques of CNC machine tools has important theoretical and practical significance for promptly and accurately determining the weak links of CNC machine tools, assessing their reliability levels, and selecting reasonable measures to implement reliability improvement.
     Based on the results available on reliability test research and the characteristics of CNC machine tools, this paper studies reliability test designs in the following four areas: fixed-time censoring scheme, fixed-number of failures censoring scheme, sequential progressive experiments, and Bayesian reliability tests. Considering manufacturer-side risks, user-side risks, identification ratio, MTBF expectation value, and other information, we conduct reliability experimental designs and propose data analysis and reliability assessment methods for different testing designs.
     In this paper, based on the characteristics of CNC machine tools’life following the Weibull distribution, we first transfer the Weibull distribution to the exponential distribution through a parameter transformation, combine with the exponential distribution decision-making risk equations, determine the fixed-time censoringand fixed-number test designs for CNC machine tools, and implement the designs in the manufacturers. By considering the impact of truncated time on assessment results, the paper analyzes the fault data using the total failure time method, conducts abnormal data testing using the "average and gradually take over test method" , solves empirical distribution functions based on the "residual ratio method", builds reliability models according to the trend in the fault data, verifies whether the proposed designs are reasonable or not and assesses their reliability levels by comparing the estimated shape parameter in the reliability models with the shape parameters selected initially in the fixed-time design and in the fixed-number design.
     Second, based on the probability of number for CNC machine tool failures under the Weibull distribution and combining with the traditional sequential experimental design approach, we determine sequential experimental designs for the CNC machine tools. As a decisionin a sequential experimental design may be delayed for long time because the failure points may still be in the testing period, we design truncated sequential experiments for CNC machine tools by increasing truncated failure number and truncated testing time, and modify the acceptation line and rejection line to meet the constraints of decision-making risks. Since a sequential test may be ended too early and result in insufficient failure information for assessing the true reliability value accurately, in this paper, we use the dynamic censoring method for reliability assessment of CNC machine tools based on the idea of sequential experiments, dynamically collect and assess fault data, and stop the experiment when the change of the reliability assessment index is within the tolerable error range.
     Third, based on the prior information for the CNC machine tool failure rate, we introduce the Bayesian theory into the reliability test research and determine Bayesian fixed-time censoring experimental designs by calculating the Bayesian posterior risks. The fault data collected in the fixed-time censoring experiment in chapter 2 will be applied to the Bayesian experimental design. Since the testing time of a Bayesian experimental design is relatively shorter and results in smaller number of fault data points, we adopt the parameters bias correction method to modify and verify the reliability model built based on the fault data, and further evaluate the reliability level.
     Fixed-time censoring and fixed-number censoring experiments are able to make the right decision, obtain enough fault data information in the experiment, and accurately assess the reliability index. In addition, fixed-time censoring scheme determines the total test time and number of machine tools before the experiment, which is easy to control the trial process and estimate the cost and resources of the experiment; fixed-number censoring experiment determines the maximum number of failures before the experiment, which gathers enough failure information and provides a reasonable basis for the failure analysis. The average test time of a truncated sequential test is shorter than that of fixed-time censoring and fixed-number censoring experiments. When we only need to decide whether the reliability level of CNC machine tools is satisfied or not and do not need to assess the reliability index, selecting the truncated sequential experimental design is more appropriate. If the manufacturers need to make judgments urgently and do not want to increase the decision risks, fixed-time censoring experimental designs based on the Bayesian method should be selected if prior information of the failure rate could be obtained accurately.
引文
[1]贾亚洲.提高机床可靠性增强企业竞争力[J].数控机床市场, 2009(1): 52-54.
    [2]冯建平.数控机床发展新趋势[J].现代制造, 2007,(11). 12-13.
    [3]章富元,方江龙,汤季安.对我国数控技术发展的思考[J].中国机械工程, 2001(5): 15-17.
    [4]江仁洁,何建新.我国数控机床的现状及发展趋势[J].湖南农机, 2007(30): 140-141.
    [5]赵建英.数控机床可靠性的评定与提高途径[J].科技情报开发与经济. 2009, 19(11): 143-145.
    [6]盛伯浩.数控机床的现状与发展[J].数控机床市场, 2006,(1): 40-43.
    [7] L.R.Marvin, M.W.W illie. Applied Reliability Engineering [M]. 3rd ed. Maryland: Beacon Printin, 2002.
    [8] Aron Brall. Institutionalizing Reliability and Maintainability in the Industrial/ Commercial Organization [C]. 2001 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium: 129-132.
    [9] Zhang Ying-zhi, Zheng Rui, Shen Gui-xiang, et al. Reliability Analysis for CNC Machine Tool Based on Failure Interaction[C]. Communications in Computer and Information Science, 2011,(134): 489-496.
    [10] Alessandro Birolini.Reliability Engineering: Theory and Practice[M]. Springer, 2010.
    [11]郭永基.可靠性工程原理[M],北京:清华大学出版社, 2002(1).
    [12]贾亚洲.提高数控机床可靠性乃重中之重[N].中国工业报, 2009-10-26(B01).
    [13] T. Freiheit, H.S.Jack. Impact of machining parameters on machine reliability and system productivity[J]. Journal of Manufacturing Science and Engineering: Transactions of the ASME, 2002, 124(2):296-304.
    [14] Dennis Reidsma, Jean Carletta. Reliability Measurement without Limits[J]. Computational Linguistics, 2008, 34(3): 319-326.
    [15] Yu Miao, Liu Sheng-long, Zhu Li-xi, Xia Yong-qiang. Research on reliability test for automobile engine ECU[J]. Neiranji Gongcheng/ Chinese Internal CombustionEngine Engineering. 2010, 31(3): 90-94.
    [16] Sheng Chen-xing, Yan Xin-ping, Xu Tai-fu. Study of wear evaluation in reliability test of diesel engine based on oil analysis[J]. Mocaxue Xuebao . 2008, 28(6): 556-561.
    [17] Zhang Xiang-po, Shang Jian-zhong, Wang Zhuo. Study on simulation reliability test of machining center[J]. Applied Mechanics and Materials, 2010.10.25: 360-364.
    [18]邬俊奇.数控机床可靠性时间模型与维修性指标评估[D].长春:吉林大学, 2005.
    [19] Lynwood M. Rabon mechanical systems reliability testing. 1981Annual Reliability and Maintainability Symposium, Philadelphia, Pennsylvania USA, 1981. 278-282.
    [20] GuoShu Yi, Qi Yong Qi.Study on Reliability Tests to a Few Samples of Mechanical System[J]. Applied Mechanics and Materials, 2010, 42: 339-342.
    [21] Li Hongguang, Ding Wensi.Application with Theory of Vibration Equivalence on Reliability Test Bed of Train Brake System[J]. Applied Mechanics and Materials, 2010, 34-35: 1978-1982.
    [22] Zhang XiangPo, Shang JianZhong, Wang Zhuo.Study on Simulation Reliability Test of Machining Center[J]. Applied Mechanics and Materials, 2010, 34-35: 360-364.
    [23] Zhang Xiang Po,Yu Nai Hui,Shang Jian Zhong , Wang Zhuo Reliability Test Design for Five-Axis Machining Center[J]. Applied Mechanics and Materials, 2010, 44-47: 834-838.
    [24] Lev M.Klyatis. The Strategy of Accelerated Reliability Testing Development for Car Components[J]. SAE, 2000(01): 1195.
    [25]喻天翔,宋笔锋,万方义,冯蕴雯.机械可靠性试验技术研究现状和展望[M].机械强度. 2007, 29(2): 256-263.
    [26]陈循.机电系统可靠性工程[M].科学出版社, 2010. 11.
    [27]李根成.定时截尾可靠性鉴定试验方案的参数选择及分析[J].战术导弹技术, 2003, 3(2): 25-29.
    [28]郭奎,任占勇. GJB899-90定时截尾试验采取纠正措施下产品可靠性评估探讨[J].航空标准化与质量, 2006. 01: 42-44.
    [29]国防科学技术工业委员会. GJB 899-90可靠性鉴定和验收试验[S]//北京:中国标准出版社, 1990.
    [30]李海波,张正平,胡彦平,李宪珊.可靠性统计试验方案及其选取[J].强度与环境, 2010, 37(4): 54-59.
    [31] Soufiane Gasmi,Maher Berzig. Parameters Estimation of the Modified Weibull Distribution Based on Type I Censored Samples[J]. Applied Mathematical Sciences, 2011, 5(59): 2899-2917.
    [32] Lu Wanbo, Tsai Tzong-Ru. Simulated Life Test Plans with Type-I Interval Censoring for the Gamma Lifetime Model[C]. Innovative Computing, Information and Control, 2007: 243-246.
    [33] Wald,A. Sequential analysis[J]. John Wiley. 1947.
    [34] Edit Gombay.Sequential change-point detection with likelihood ratios[J]. Statistics & Probability Letters, 2000, 49: 195-204.
    [35] Kenneth D.Jarman, L.Eric.Smith, Deboran K.Carlson.Sequential Probability Ratio Test for Long-Term Radiation Monitoring[J]. IEEE Transactions on nuclear science, 2004, 51(4): 1662-1666.
    [36] G. Zachary, Stoumbosa, R.Marion, Jr.Reynolds.The SPRT control chart for the process meanwith samples starting at fixed times[J]. Nonlinear Analysis: Real World Applications, 2001, 2: 1-34.
    [37] K.D.Jarman, L.E.Smith, D.K.Carlson. Sequential probability ratio test for long-term radiation monitoring[J]. Nuclear Science,IEEE Transanctions, 2004, 51(4): 1662-1666.
    [38] E. Piatyszeka, P. Voigniera, D. Graillot.Fault detection on a sewer network by a combination of a Kalman filter and a binary sequential probability ratio test[J]. Journal of Hydrology 2000, 230: 258-268.
    [39] Marano,S., Matta,V., Willett,P., et al.. SPRTs in sensor networks with mobile agents[J]. Signal Processing Advances in Wireless Communications, 2005, 920-924.
    [40] Lorden G.2-SPRT’S and the modified Kiefer-Weiss problem of minimizing and expecte sample size[J]. Ann.Statist, 1976(4): 281-291.
    [41]陈家鼎.一类渐近最优的序贯检验[R].北京大学技术报告, 1992.
    [42]陈家鼎, Fred J. Hickernell.对复杂假设的一类渐近最优的序贯检验[J].中国科学, 1994, 24A(4): 673-683.
    [43]陈家鼎,房钟祥.任意序贯样本下指数分布均值的置信限[J].中国科学, 2005, 35A(9): 997-1007.
    [44] Gu G., Lai T.L.. Weak Convergence of Time Sequential Censered Rank statistics with application to Sequential Testing in Clinical Trails[J]. The Annals of Statistics, 1991, 18(3): 1403-1433.
    [45]陈家鼎,戴中维.在时间序贯检验下指数分布均值的置信限[J].数理统计与应用概率, 1996, 11(2), 89-99.
    [46]花虹.概率比检验中的时间序贯方法[J].统计大学学报, 1999, 27(6): 704-707.
    [47]魏立力.集合分布时间序贯检验的贝叶斯推断[J].应用数学学报, 1999, 22(1): 54-70.
    [48]陈家鼎.一类截尾序贯检验的渐近最优性[J].中国科学A辑, 1990(08): 792-802.
    [49] Vidal P.L, Branco M.D., Arellano-Valle R.B. Bayesian sensitivity analysis and model comparison for skew elliptical models[J]. Journal of Statistical Planning and Inference, 2006, Vo1.136(10): 3435-3457.
    [50] Mahadevan S., Rebba R. Validation of reliability computational models using Bayes networks[J]. Reliability Engineering & System Safety, 2005, Vo1. 87(2): 223-232.
    [51] Guida M., Pulcini G. Bayesian analysis of repairable systems showing a bounded failure intensity[J]. Reliability Engineering & System Safety, 2006, Vo1. 91(7): 828-838.
    [52] Philippe W., Lionel J. Complex system reliability modeling with Dynamic Object Oriented Bayesian Networks (DOOBN)[J], Reliability Engineering & System Safety, 2006, Vol. 91(2): 149-162.
    [53] Guida M, Pulcini G. Bayesian reliability assessment of repairable systems during multi-stage development programs[J]. IIE Transactions. 2005, 37 ( 11 ) , 1071-1081.
    [54]徐晓岭,王蓉华. Weibull异常数据检验[J].数理统计与应用概率, 1996, 1(12): 171-178.
    [55]唐丽.统计数据异常值诊断方法及应用——基于回归模型与残差分布视角[D].浙江工商大学硕士学位论文, 2011.
    [56] Beckman R. J.,R. D. Cook.Outliers[J]. Technometrics, 1983(25): 119-149.
    [57] Fung K Y,Paul S R.Comparisions of outlier detection procedures in Weibull or Extreme Value Distribution[J]. Commun Statist-SImula Compula, 1985, 14(4): 895-917.
    [58]朱璟. I型极小值分布多个异常值的检验[J].宜春学院学报, 2008(4):6-8
    [59]朱宏. I型极值分布样本多个异常值的检验[J].电子科技大学学报, 1994, 23(23): 323-327.
    [60]陈振民. G((x-μ)/σ)型分布样本中异常值的统计检验[J].上海师范大学学报:自然科学学报, 1987, (3): 13-17.
    [61]费鹤良,陆向薇等.极值分布和威布尔分布异常数据的检验方法[J].应用数学学报, 1998, 21(4): 549-559.
    [62]陈川杨,朱憬.双参数指数分布异常值检验[J].内江师范学院学报, 2008, 23(6): 28-30.
    [63]李云飞.指数分布的多个异常数据的检验[J].内江师范学院学报, 2008, 23(4)17-19.
    [64] Blalkrishann N, Cohen A C, Order Statistics and Inference [M]. Estimation Methods. Academic Press , 1991.
    [65]彭求实.指数型寿命数据中异常值的检验[J].数理统计与管理, 2006.(7).
    [66] Tand N S, et al, Testing for k upper and s lower outliers in an exponential sample [J]. Mathematical Statistics and Applied Probability, 1998, 13(3): 228-229.
    [67] Tand N S, et al, Unmasking test for multiple outliers in an exponential sample[J]. Chinese Journal of Applied Probability and Statistics, 1997, 13(4):384-386.
    [68] Bocchi W J. Predicting mechanical reliability[].1981 Annual Reliability and Maintainability Symposium, Philadelphin, Pennsylvania USA, 1981: 33-37.
    [69] D. N. P. Murthy, M. Xie, R Y Jiang. Weibull Models[J]. New York: Wiley, 2003.
    [70] Sadlon Richard J. Mechanical applications in reliability engineering.NASA Technical Reports, AD~ A363860, 1993.
    [71] H. Pham, C.D. Lai. On Recent Generalizations of the Weibull Distribution[J]. IEEE Trans. Reliability, 2007, 56(9): 454-458.
    [72] D.N.P. Murthy, Michael Bulmer, John A. Eccleston. Weibull model selection for reliability modeling[J]. Reliability Engineering & system Safety, 2004, 86(4): 257-267.
    [73] Xia Zhao-peng, Yu Jian-yong, Liu Li-Fang. Studying the Mechanical Properties of Jute/Cotton Blended Yarns Using the Weibull Model[J]. Journal of Donghua University(English Edition), 2009, 26(4): 393-396.
    [74] Ashutosh Gupta, Bhaswati Mukherjee, S.K.Upadhyay. Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation[J]. Reliability Engineering and System Safety, 2008, 93: 1434-1443.
    [75] Guo Hai-tao, Simon Watson,Peter Tavner, et al.. Reliability anylysis for wind turbines with incomplete failure data collected from after the data of initial installation[J]. Reliability Engineering and System Safety, 2009(94): 1057-1063.
    [76]蒋仁言.威布尔模型族:特性、参数估计和应用[M].科学出版社, 1998.
    [77] Wang Z, Yang J, Wang G,Zhang G. Application of three-parameter Weibull mixture model for reliability assessment of NC machine tools: a case study[J]. Journal of Mechanical Engineering Science, 2011, 225(9).
    [78] A. M. Sarhan , M. Zaindin.Modified Weibull distribution[J]. Applied Sciences, 2009, 11: 123-136.
    [79] W. Kahle.Estimation of the parameters of the Weibull distribution for censored samples[J]. Metrika, 1996, 44:27-40.
    [80] Avijit Joarder, Hare Krishna, Debasis Kundu. Inferences on Weibull parameters with conventional type-I censoring[M]. Computational Statistics and Data Analysis, 2011, 55(1): 1-11.
    [81]胡恩平,罗兴伯,刘国庆.三参数分布几种常见的参数估计方法[M].沈阳工业学院学报, 2000, 19(3): 88-94.
    [82]严晓东,马翔,郑荣跃,吴亮.三参数分布参数估计方法比较[J].宁波大学学报理工版, 2005, 18(3): 301-305.
    [83] Yu Nai Hui, Zhang Zhi Xiong, Wang Zhuo, Zhang Xiang Po. Weibull-Distribution- Based Method of Bayesian Reliability Evaluation forMachining Center[J]. Advanced Materials Research, 2011, 317-319:1949-1953.
    [84] Jiang S., Kececioglu D. Graphical representation of two Mixed-Weibull distributions[J]. IEEE Trans. Reliability, 1992(41):241-247.
    [85] Jiang S., Kececioglu D. Maximum likelihood estimation (MLE) from censored data for the Mixed-Weibull distributions[J]. IEEE Trans. Reliability, 1992(41): 248-255.
    [86] Kececioglu D. Mixed-Weibull parameters estimation for Burn-In data using the Bayesian approach[J]. Microelectronics and Reliability, 1994(38):41-47.
    [87]张锡清.混合三参数威布尔分布的参数估计[J].哈尔滨电工学院学报, 1996, 19(1):1-7.
    [88]赵继俊,邹经湘,张锡清.混合威布尔分布的参数优化估计[J].机械科学与技术,2001,20(1): 14-16
    [89]杨明,毕涌,雷英杰.混合分布参数估计的算法[J].华北工学院学报, 2003, 24(4): 353-356.
    [90] Nagode M, Fajdiga M. An improved algorithm for parameter estimation suitable for mixed Weibull distribution[J]. International Journal of Fatigue 2000, 22(1).
    [91]宛艳萍,金少华,陆俭国.混合威布尔分布参数估计的新算法[J].河北工业大学学报, 2002, 31(5): 41-43.
    [92] S.Y. Jiang, D. Kececioglu. Graphical representation of two mixed Weibull distribution[J]. IEEE Trans.Reliability., 1992,41(6): 241-247.
    [93] R.Y. Jiang, D.N.P. Murthy. Modeling Failure-Data by mixture of 2 Weibull Distribution: A Graphical Approach[C]. IEEE Trans. Reliability, 1995, 44(9): 477-488.
    [94] T. Bucar, M. Nagode, M. Fajdiga. Reliability approximation using finite Weibull mixture distributions[J].Reliability Engineering & system Safety, 2004, 87(6): 241-251.
    [95] Yu Nai-Hui, Zhang Zhi-Xiong, Wang Zhuo, Zhang Xiang-Po. Weibull- Distribution-Based Method of Bayesian Reliability Evaluation for Machining Center[J]. Advanced Materials Research, 2011(8): 317– 319.
    [96] L. Attardi, M. Guida, G. Pulcini. A mixed-Weibull regression model for the analysis of automotive warranty data[J]. Reliability Engineering & system Safety,2005, 87(2): 265-273.
    [97]茆诗松,汤银才,王玲玲.可靠性统计[M].北京:高等教育出版社: 2008(10): 277-279.
    [98]朱起悦. MTBF预计值用于定时截尾试验方案的选择[J].电子产品可靠性与环境试验, 2002, 10(5): 55-57.
    [99]中国人民解放军总装备部电子信息基础部标准化研究中心. GJB 899A-2009可靠性鉴定和验收试验[S]//中国人民解放军总装备部批准.北京:中国标准出版社, 2009.
    [100]周源泉.质量可靠性增长与评定方法[M].北京:北京航空航天大学出版社, 1998.
    [101] Ascher,H., Feingold,H. Repaioab Systems Reliability[M]. Dekkev, 1984.
    [102]李祚东. Weibull分布可靠性试验与评估[J].质量与可靠性, 2003(3): 26-27.
    [103]周源泉,沈凤贤.可修系统的可靠性验收方案[J].质量与可靠性, 2011(151): 10-12.
    [104]王秉刚.汽车可靠性工程方法[M].机械工工业出版社, 1991, 11: 47-49.
    [105]彭丽. Weibull分布场合双向异常值的检验[D].华中师范大学硕士论文, 2006.
    [106]郑天丕,方珍.使用威布尔函数的一点体会[J].机电元件, 2001(6): 38-46.
    [107]郑锐.基于可靠性分析的数控机床维修策略研究[D].吉林大学硕士论文, 2011.06.
    [108]王超,王金.机械可靠性工程[M].北京:冶金工业出版社, 1992.
    [109]雷英杰等. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社. 2005.4.
    [110] Ling Dan, Huang Hong-Zhong, Liu Yu. A Method for Parameter Estimation of Mixed Weibull Distribution[C]. 2009 - Annual Reliability and Maintainability Symposium, 2009: 129-133.
    [111]周正伐.可靠性工程基础[M].中国宇航出版社(第2版): 2009.05.
    [112]陈文华,柴新,盛军鑫,魏文,卢献彪. Weibull寿命型产品可靠性定数截尾验证试验方法[J].浙江大学学报, 2001, 35(2): 128-131.
    [113]杨为民,屠庆慈,贺国芳.处理现场可靠性数据的一种方法-残存比率法[J].航空标准化与质量, 1983(06): 21-25.
    [114]史景钊,张峰,陈新昌.基于Matlab的随机截尾数据下的Weibull分布参数估计[J].河南科学, 2010, 28(5): 584-587.
    [115] Herd G R. Estimation of reliability from incomplete data[C]. Proceedings of the sixth international symposium on reliability and quality control. New York: John Wiley & Sons Inc, 1960.
    [116]徐以锋,翁永刚,王明星,刘志勇,宋天福.威布尔分布三参数的拟合特性[J].郑州:郑州大学学报(理学版), 2003(3): 30-34.
    [117]杨志忠,刘瑞元.三参数Weibull分布参数估计求法改进[J].工程数学学报, 2004, 21(2): 281-284.
    [118]中国机床工具工业协会数控系统分会CTMT2001巡礼.世界制造技术与装备市场, 2001(5): 13-17.
    [119] Michael G. Pecht.可靠性工程基础[M].电子工业出版社, 2011.5.
    [120]戴树森等.可靠性试验及其统计分析(下册)[M].北京:国防工业出版社, 1983.1.
    [121]高大化,马月娜,郭波.可靠性寿命试验的动态截尾方法[J].电子产品可靠性与环境试验, 2004(4): 36-39.
    [122]张志华,姜礼平.指数型产品失效率鉴定试验的Bayes方案[J].应用概率统计, 2000, 16(1): 66-70.
    [123] Paulino C.D., Silva G., Achcar J.A. Bayesian analysis of correlated misclassified binary data[J]. Computational Statistics & Data Analysis, 2005, Vo1. 49(4): 1120-113.
    [124] Strickland C.M., Catherine S.F., Martin G.M. Bayesian analysis of the stochastic conditional duration model[J]. Computational Statistics & Data Analysis, 2006, 50(9): 2247-2267.
    [125] Joseph G. Ibrahim, Chen Minghui. Bayesian survival analysis[M]. New York: Springer, 2001.
    [126]陈文华,崔杰,潘俊.威布尔分布下失效率的Bayes验证试验方法[J].机械工程学报, 2005, 41(12): 118-121.
    [127] Robert J Campbell, Kaushik Rajashekara, Evaluation of Power Devices for Automotive Hybrid and 42V Based Systems [J]. SAE, 2004(1):1682.
    [128] Nie Ting. Application of Small Sample Analysis in Life Estimation ofAeroengine Components[J]. Journal of Southwest Jiaotong University (English Edition). 2010, 18(4): 285-288.
    [129] Lua Z, Fehna U, Tomarua H, et al.. Reliability of 129I/ I ratios produced from small sample masses[J]. Nuclear Inst ruments and Methods in Physics Research Section B: Beam Interactio ns with Materials and Atoms, 2007, 259(1): 359-364.
    [130] Zhang Jin, Tu Jun-xiang, Chen Zhuo-ning, et al. Quasi-Bayesian software reliability model with small samples[J]. Journal of Shanghai University(English Edition), 2009, 13(14): 301-304.
    [131]曹晋华,程侃.可靠性数学引论(修订版)[M].北京:高等教育出版社, 2006.
    [132] Thoman D.R., L.J. Bain, C.E.Antle. Inferences on the Parameter of the Weibu1l Distribution[J]. Technometrics. 1969(11): 445-460.
    [133]胡甫正.威布尔分布参数极大似然估计的偏差修正[J].电子产品可靠性与环境试验, 1992(1):14-19.
    [134]戴树森.可靠性试验及其统计分折(上册)[M].国防工业出版社, 1983:232.
    [135]刘峰,何真等.机械可靠性数据处理中优选分布类型的探讨[J].机械设计与制造, 1998(6): 3-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700