用户名: 密码: 验证码:
H-V 加筋路堤动力特性的试验及颗粒流分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水平—竖向加筋(H-V加筋)是在传统的水平筋材上布置竖向筋材,除了水平筋材与土体之间的摩擦力外,竖向筋材对土体产生一定的侧阻力,竖筋之间的土体会形成加固体,从而提高了土体的强度与稳定性。以往的静力特性研究已证明了H-V加筋在提高土体强度和限制土体变形方面的效果优于传统水平加筋;为了完善H-V加筋土的研究体系,以推动H-V加筋的实际应用,本文首先采用动三轴试验研究H-V加筋土单元体的基本动力特性,并结合颗粒流数值模拟进行细观分析;再通过动载模型试验对循环荷载下H-V加筋路堤的动力响应进行初步研究,并利用颗粒流模拟对试验结果进行验证和分析,论文主要研究工作如下:
     通过动三轴试验研究了H-V加筋重塑黏土在均压不固结不排水振动下的动弹性模量和阻尼比特性以及H-V加筋饱和砂在偏压固结不排水振动下动弹性模量和阻尼比的变化规律。试验结果表明:不论是重塑黏土,还是饱和砂,H-V加筋较水平加筋更有效地提高了土体的动弹性模量,且在研究的四种竖筋高度5、10、15、20mm中,随着竖筋高度的增加,提高的幅度也随之增加(竖筋高度为20mm的工况除外)。阻尼比随竖筋高度的变化规律不够显著,但仍可以看出部分H-V加筋土的阻尼比小于水平加筋土。
     通过颗粒流PFC~(2D)软件对H-V加筋饱和砂动模量试验进行了数值模拟,采用的Hertz-Mindlin接触模型能够较好地模拟土体的非线性和滞后性。随着动应力幅值的增加,纯砂和加筋砂的孔隙率随之增大,配位数随之减小,体现了土体刚度的软化,强度的减弱;超孔隙水压力的增加宏观表现为有效应力的减少,强度的衰减,且相同动应力幅值下,H-V加筋比水平加筋更好地限制了超孔隙水压力的增长。
     通过缩小比例的模型试验研究了循环条形荷载下H-V加筋路堤的累积沉降和侧向变形特性。无筋和加筋路堤的累积沉降随着振次的增加而增加,且动载幅值越大,相同振次的沉降也越大。相同条件下,H-V加筋比水平加筋更有效地限制了路堤的累积沉降和侧向变形。同时,采用连续分级加载振动试验证明了H-V加筋路堤比水平加筋能够承受更大的动载幅值。此外,研究了周期荷载后路堤的静载承载力变化,在周期动载幅值小于无筋路堤所能承受动载临界值的前提下,振动后路堤的静载承载力有了较大的提高,加筋路堤提高的幅度较为显著;且相同振次下,初始施加的动载幅值越大,静载承载力也就越大;相同动载幅值下,静载承载力随着振动次数的增加而增大。
     通过PFC~(2D)模型对循环荷载下H-V加筋路堤的动模型试验进行模拟,定性地验证了试验结果,并从颗粒位移场和接触力分布两个细观角度分析了H-V加筋的作用机理,H-V加筋能够增加土体的密实度,均匀传递上部荷载,从而减小了坡顶的沉降和边坡的侧向位移。另外,分析了频率对路堤累积沉降的影响,在研究的四种频率1、2、5、10Hz中,无筋和加筋路堤的累积沉降随着频率的增加而减小,且较大频率之间的沉降差异较小;同一频率下,H-V加筋限制沉降的效果优于水平加筋,但随着频率的增加,H-V加筋相对水平加筋限制沉降的优势也有所减弱。
Horizontal-vertical inclusion (H-V inclusion) is a new type reinforcementwhich consists of conventional horizontal inclusion and vertical elementsinstalled on the horizontal inclusion at spacing. Besides the friction betweenhorizontal inclusion and soil, the vertical inclusions provide passive resistancesagainst shearing and form enhanced areas (the soil enclosed within two verticalreinforcing elements) to increase the strength and stability of reinforced soil.The former researches on the static property of soil reinforced with H-Vinclusions have proved that H-V inclusions can improve the soil strength andrestrict the soil deformation more effectively than conventional horizontalinclusions. In order to enrich the researching system of H-V inclusions so as tofacilitate the application of H-V inclusions, preliminary researches wereperformed on the dynamic properties of soil reinforced with H-V inclusions andthe dynamic response of reinforced embankment through three main methodsincluding dynamic triaxial tests, model tests under cyclic loadings and PFCsimulation. The main works in this dissertation were as follows:
     Through dynamic triaxial tests, the dynamic modulus and damping ratio ofreconstituted clay reinforced with H-V inclusions were analyzed under theisotropic confining pressure, which were unconsolidated-undrained dynamictriaxial tests. And that, the dynamic modulus and damping ratio of saturatedsand reinforced with H-V inclusions were studied through anisotropicconsolidated-undrained dynamic triaxial tests. It is shown that not only in thecase of reconstituted clay, but also in the saturated sand, the H-V inclusionsimprove the soil dynamic modulus more effectively compared to the horizontalinclusions and in the varied height of vertical inclusions (5,10,15,20mm), thedynamic modulus increases with the height of vertical inclusions increasing,despite the case of20mm high vertical inclusion. The damping ratio is insensitive to the height of vertical inclusions, however, it should be noted thatthe damping ratio of some soil reinforced with H-V inclusions was smaller thanthat of soil reinforced with H inclusions.
     The dynamic triaxial tests of saturated sand reinforced with H-V inclusionswere simulated through the particle flow code software (PFC~(2D)). It is found thatthe inherent contact model (Hertz-Mindlin contact model) can reflect thenonlinear and hysteretic property of soil well. As the amplitude of dynamicstress increases, the porosities of unreinforced sand and reinforced sandincreases and the coordination number (average number of contacts per ball)decreases; it means the degradation of stiffness of saturated sand. Meanwhile,the excess pore pressure of saturated sand increases with the amplitude ofdynamic stress increasing; it shows the decrease of effective stress of saturatedsand. In the same amplitude of dynamic stress, the H-V inclusions moreeffectively restrict the increase of excess pore pressure compared to the Hinclusions.
     By the scale-down model tests, the accumulated settlements and lateraldisplacement of embankment reinforced with H-V inclusions were studied underthe cyclic loading acting on a strip foundation. The accumulated settlements ofboth unreinforced and reinforced embankment increase with the number ofvibration increases. The bigger the amplitude of dynamic stress, the greater isthe settlement. In the same condition, the H inclusions restrict the accumulatedsettlements and lateral displacements of embankment, the H-V inclusionsperform better than the H inclusions. Moreover, the tests of continuously appliedloadings with increasing amplitudes were performed to prove that theembankment reinforced with H-V inclusions can bear greater amplitude ofdynamic loading. In addition, the bearing capacity of the embankment undermonotonic loading after some periodical vibrations was studied. The resultsshow that: when the amplitude of dynamic stress is smaller than the threshold dynamic stress the unreinforced embankment can bear, the bearing capacitiesunder monotonic loading of both unreinforced and reinforced embankment wereimproved after periodical vibrations, it is obviously observed in the reinforcedcases. In the same number of vibration, the bigger the amplitude of initialapplied cyclic loading, the greater is the bearing capacity under monotonicloading; the bearing capacity of the embankment increases with the number ofvibration increasing under the same amplitude of cyclic loading.
     The simulation results based on PFC~(2D)verified the conclusions obtained fromthe dynamic model tests and the reinforcing mechanism of H-V inclusions wasanalyzed through the distributions of displacement vectors and contact forces ina microscopic view. The analysis shows that the H-V inclusions can improve thesoil compactness and uniformly transmit the upper loading so as to minimize thesettlement and lateral deformation of the embankment reinforced with H-Vinclusions. What is more, the effect of the frequency of cyclic loading on thesettlements of the embankments was discussed in the simulation results. In thefour frequencies of1,2,5and10Hz, the settlements of unreinforced andreinforce embankments decrease as the frequency increases, and the settlementsof the embankment under the greater frequencies have small differences. Underthe same frequency of cyclic loading, the restriction effect of H-V inclusions onthe settlement is better than that of H inclusions, however, as the frequencyincreases, the advantage of restriction effect of H-V inclusions over H inclusionsweakens.
引文
【1】.《土工合成材料工程应用手册》编写委员会.土工合成材料工程应用手册[M].北京:中国建筑工业出版社,2000.
    【2】.刘宗耀.近代土工合成材料的发展[J].岩土工程学报,1988,10(2):87-96.
    【3】. Gray, D.H., Ohashi, H., Mechanics of fiber reinforcement in sand [J]. Journal ofGeotechnical Engineering-ASCE, Vol.109, No.3,1983, pp.335~351.
    【4】.李广信,陈轮,郑继勤,介玉新.纤维加筋粘性土的试验研究[J].水利学报,(6):31-36.
    【5】.介玉新李广信纤维加筋粘性土边坡的模型试验和计算分析[J].清华大学学报(自然科学版),1999,39(11):25-28
    【6】. Santoni, R.L., Tingle, J.S., Webster, S., Engineering properties of sand fiber mixturesfor road construction [J]. Journal of Geotechnical and Geoenvironmental Engineering,Vol.127, No.3,2001, pp.258~268.
    【7】.包承纲,丁金华.纤维加筋土的研究和工程应用[J].土工基础,2012,26(1):80-83.
    【8】. Al-Refeai, T.O., Behavior of granular soils reinforced with discrete randomly orientedinclusions [J]. Geotextiles and Geomembranes, Vol.10, No.4,1991, pp.319~333.
    【9】. Foose, G.J., Benson, G.H., and Bosscher, P.J., Sand reinforced with shredded wastetires [J]. Journal of Geotechnical Engineering, Vol.122, No.9,1996, pp.760~767.
    【10】. Lee, J.H., Salgado, R., Bernal, A., and Lovell, C.W., Shredded tires and rubber-sand aslightweight backfill [J]. Journal of Geotechnical and Geoenvironmental Engineering,Vol.125, No.2,1999, pp.132~141.
    【11】. Hataf, N., and Rahmi, M.M., Experimental investigation of bearing capacity of sandreinforced with randomly distributed tire shreds [J]. Construction and BuildingMaterials, Vol.20, No.10,2005, pp.910~916.
    【12】. Operstein, V., and Frydman, S., The stability of soil slopes stabilized with vegetation[J]. Proceedings of the ICE-Ground Improvement, Vol.6, No.4,2002, pp.163~168.
    【13】.陈昌富,刘怀星,李亚平.草根加筋土的护坡机制及强度准则试验研究[J].中南公路工程,2006,31(2):14-17.
    【14】.陈昌富,刘怀星,李亚平.草根加筋土的室内三轴试验研究[J].岩土力学,2007,28(10):2041-2045.
    【15】.魏丽,柴寿喜,蔡宏洲.麦秸秆防腐评价及加筋滨海盐渍土的补强机制[J].工程勘察,2009,(1):5-7.
    【16】.柴寿喜,王沛,王晓燕.麦秸秆布筋区域与截面形状下的加筋土抗剪强度[J].岩土力学,2013,34(1):123-127.
    【17】. Latha, G.M., Somwanshi, A., Effect of reinforcement form on the bearing capacity ofsquare footings on sand [J]. Geotextiles and Geomembranes, Vol.27,2009, pp.409~422.
    【18】. Mosallanezhad, M., Hataf, N., and Ghahramani, A., Experimental study of bearingcapacity of granular soils, reinforced with innovative grid-anchor system [J].Geotechnical and Geological Engineering, Vol.26,2008, pp.299~231.
    【19】. Alamshahi, S.and Hataf, N., Bearing capacity of strip footings on sand slopesreinforced with geogrid and grid-anchor [J]. Geotextiles and Geomembranes, Vol.27,2009, pp.217~226.
    【20】. Horpibulsuk, S., and Niramitkornburee, A., Pullout resistance of bearing reinforcementembedded in sand [J]. Soils and Foundations, Vol.50, No.2,2010, pp.215~226.
    【21】. Suksiripattanapong, C., Horpibulsuk, S., Chinkulkijniwat, A., and Chai, J.C., Pulloutresistance of bearing reinforcement embedded in coarse-grained soils [J]. Geotextilesand Geomembranes, Vol.36,2013, pp.44~54.
    【22】. Horpibulsuk, S., Suksiripattanapong, C., Niramitkornburee, A., Chinkulkijniwat, A.,and Tangsutthinon, T., Performance of an earth wall stabilized with bearingreinforcements [J]. Geotextiles and Geomembranes, Vol.29,2011, pp.514~524.
    【23】. El Sawwaf, M., and Nazir, A., The effect of soil reinforcement on pullout resistance ofan existing vertical anchor plate in sand [J]. Computers and Geotechnics, Vol.33,2006pp.167~176.
    【24】.张孟喜.立体加筋土[P].中国: ZL200520043841.7,2009.
    【25】. Zhang, M.X., Javadi, A.A., and Min, X., Triaxial tests of sand reinforced with3Dinclusions [J]. Geotextiles and Geomembrances, Vol.24, No.4,2006, pp.201~209.
    【26】. Zhang, M.X., Zhang, S.L., Huang, J., and Javadi, A.A., Ultimate pullout forces oforthogonally horizontal-vertical geosynthetic reinforcement [C]. Proceedings of the5thInternational Symposium on Earth Reinforcement (IS Kyushu07), Fukuoka, Japan,2007, pp.289~292.
    【27】. Zhang, M.X., Zhou, H., and Javadi, A.A., Experimental and theoretical investigation ofstrength of soil reinforced with multi-layer horizontal–vertical orthogonal elements [J].Geotextiles and Geomembranes, Vol.26, No.1,2008, pp.1~13.
    【28】. Zhang, M.X. and Zhou, H., Model test on sand retaining wall reinforced withdenti-strip inclusions [J]. Science in China Series E: Technological Sciences, Vol.51,No.12, pp.2269~2279.
    【29】.张孟喜,张贤波,段晶晶. H-V加筋黏性土的强度与变形特性[J].岩土力学,2009,30(6):1563-1568.
    【30】.张孟喜,张石磊,黄瑾.低超载下条带式带齿加筋界面特性[J].岩土工程学报,2007,29(11):1623-1629.
    【31】.张孟喜,黄超.刚性条带式带齿加筋土的极限拉拔力模型[J].岩土工程学报,2009,31(9):1336-1344.
    【32】.张孟喜,赵飞,侯娟.条形荷载下H-V加筋砂土地基模型试验研究[J].土木工程学报,2008,41(2):94-99.
    【33】.张孟喜,张石磊. H-V加筋土性状的颗粒流细观模拟[J].岩土工程学报,2008,30(5):625-631.
    【34】.赵岗飞.网格状带齿加筋体强度、筋-土界面特性及其应用研究[D].上海:上海大学,2011.
    【35】.周健,白冰,徐建平.土动力学理论与计算[M].北京:中国建筑工业出版社,2001.
    【36】.谢定义.土动力学[M].西安:西安交通大学出版社出版,1988.
    【37】.南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社,2003.
    【38】.陈国兴,谢君斐,张克绪.土的动模量和阻尼比的经验估计[J].地震工程与工程振动,1995,15(1):73-84.
    【39】.祝龙根,吴晓峰.低幅剪应变条件下砂土的动力特性的研究[J].大坝观测与土工测试,1988,12(1):27-33.
    【40】.伊德里斯I M.地震工程和土动力问题译文集[M].北京:地震出版社,1985.
    【41】. Vucetic, M., Dobby, R., Effect of soil plasticity on cyclic response [J]. Journal ofGeotechnical Engineering, ASCE, Vol.7, No.1,1991, pp.89~107.
    【42】.何昌荣.动模量和阻尼的动三轴试验研究[J].岩土工程学报,1997,19(2):39-48.
    【43】.袁晓铭,孙锐,孙静等.常规土类动剪切模量比和阻尼比试验研究[J].地震工程和工程振动,2000,20(4):133-139.
    【44】. Monismith, C.L., Ogawa, N., Freeme, C.R., Permanent deformation characteristics ofsubgrade soils due to repeated loading [R]. Transportation Research Record,1975.
    【45】. Idriss, I.M., Singh, R.D., Dobry, R., Nonlinear behavior of soft clays during cyclicloading [J]. Journal of Geotechnical Enginering, Vol.104, No.12,1978, pp.1427~1447.
    【46】. Yasuhara, K., Hyde, A.F.L., Toyota, N., and Murakami, S., Cyclic stifness of plastic siltwith an initial drained shear stress[C]. Proc. Geotechnique Symp on Pre-failureDeformation of Geomaterials. London: Thomas Te1ford Ltd.,1998, pp.373~382.
    【47】.柴华友,崔玉军,卢应发.循环荷载下黄土特性模拟[J].岩石力学与工程学报,2005,24(23):4272-4281.
    【48】.王军,蔡袁强,徐长节等.循环荷载作用下饱和软黏土应变软化模型研究[J].岩石力学与工程学报,2007,26(8):1713-1719.
    【49】.陈颖平,黄博,陈云敏.循环荷载作用下软黏土不排水累积变形特性[J].岩土工程学报,2008,30(5):764-768.
    【50】. Maher, M.H., Woods, R.D., Dynamic response of sand reinforced with randomlydistributed fibers [J]. Journal of Geotechnical Engineering, Vol.116, No.7,1990, pp.1116~1131.
    【51】. Krishnaswamy, N.R., Thomas, N., Liquefaction potential of reinforced sand [J].Geotextiles and Geomembranes, Vol.13,1994, pp.23~41.
    【52】. Vercueil. D., Billet, P., Cordary, D., Study of the liquefaction resistance of saturatedsand reinforced with geosynthetics [J]. Soil Dynamics and Earthquake Engineering,Vol.16,1997, pp.417-425.
    【53】.邓荣基,梁波,杨有海.粉煤灰与加筋粉煤灰的动力强度特性[J].铁道学报,1997,19(2):80-85.
    【54】.张小江,周克骥,周景星.纤维加筋土的动力特性试验研究[J].岩土工程学报,1998,20(3):45-49.
    【55】.梁波,杨有海,孙遇祺.加筋粉煤灰的静动强度指标试验与研究[J].实验力学,1998,13(1):85-91.
    【56】. Boominathan, A., Hari, S., Liquefaction strength of fly ash reinforced with randomlydistributed fibers [J]. Soil Dynamics and Earthquake Engineering, Vol.22,2002, pp.1027~1033.
    【57】.李文旭,王宁,韩志型等.土工格栅加筋黏性土动力性能的试验研究[J].工业建筑,2011,41(7):66-69,113.
    【58】.卢萍,王宁,韩志型,等.交通荷载作用下加筋粘性土强度的影响因素试验研究[J].建筑科学,2013,29(3):81-83.
    【59】.孙晋.加筋土动力特性试验研究[D].太原:太原理工大学,2007.
    【60】.杨燕,柏署,张军.加筋土的动三轴试验研究[J].路基工程,2009,(5):178-179.
    【61】.杨帅东,余湘娟,李玉起,等.加筋土动弹性模量的动三轴试验研究[J].世界地震工程,2010,26(增):65-69.
    【62】.谢婉丽,薛建功,常波.加筋土动力特性的三轴试验研究[J].灾害学,2008,23(增刊):120-125.
    【63】.楼增焕,陈建峰.交通循环荷载下加筋灰土的动力特性初探[J].工程地质学报,2008,16(增):436-439.
    【64】.邹德高,毕静,徐斌,等.加筋砂砾料残余变形特性研究[J].水力发电学报,2009,28(5):158-162.
    【65】.刘汉龙,林永亮,凌华,等.加筋堆石料的动残余变形特性试验研究[J].岩土工程学报,2010,32(9):1418-1421.
    【66】.张兴强,梁艳平,梁英慧.交通荷载作用下软土地基的土工格栅加筋效应分析[J].中国公路学报,2009,22(2):1-5.
    【67】. Rowe, R.K., Numerical modelling of reinforced embankment constructed on weakfoundations[C]. Proc.2nd Int. Symposium on Numerical Models in Geomechanics.Ghent: M.Jackson&Son Ltd.,1986, pp.543~551.
    【68】. Selvadurai, A.P.S., Gnanendran, C.T., An experimental study of a footing located on asloped fill: influence of a soil reinforcement layer [J]. Canadian Geotechnical Journal,Vol.26, No.3,1989, pp.467~473.
    【69】. Huang, C., Tatsuoka, F., Sato, Y., Failure mechanisms of reinforced sand slopes loadedwith a footing [J]. Soils and Foundations, Vol.24, No.2,1994,27~40.
    【70】. Yoo, C., Laboratory investigation of bearing capacity behavior of strip footing ongeogrid-reinforced sand slop [J]. Geotextiles and Geomembranes, Vol.19, No.5,2001,pp.279~298.
    【71】. El-Naggar, M.E., Kennedy, J.B., New design method for reinforced slopedembankments [J]. Engineering Structures, Vol.19, No.1,1997, pp.28~36.
    【72】. Bathurst R J,陶连金.加筋边坡在坡顶荷载作用下的极限承载能力[J].岩土工程学报.2004,26(2):194-197.
    【73】.刘春虹,肖朝昀,王建华,等.土工织物加固软土路堤的有限元分析[J].岩土力学.2004,25(s2):325-328.
    【74】.杨庆,季大雪,栾茂田,等.土工格栅加筋路堤边坡结构性能模型试验研究[J].岩土力学,2005,26(8):1243-1246,1252.
    【75】. Zhang, L., Zhao, M.H., Shi, C.J., and Zhao, H., Bearing capacity of geocellreinforcement in embankment engineering [J]. Geotextiles and Geomembranes, Vol.28,2010, pp.475~482.
    【76】. Mandal, J.N., Labhane, L., A procedure for the design and analysis of geosyntheticreinforced soil slopes [J]. Geotechnical and Geological Engineering, Vol.10, No.4,1992, pp.291~319
    【77】. Lesniewska, D., RES-a numerical program for reinforced-soil slopes based on therigid-plastic theoretical model [J]. Geotextiles and Geomembranes, Vol.12, No.5,1993, pp.435~439.
    【78】. Zhao, A., Limit analysis of geosynthetic-reinforced soil slopes [J]. GeosyntheticsInternational, Vol.3, No.6,1996, pp.721~740.
    【79】. Zornberg, J.G., Sitar, N., Mitchell, J.K., Limit equilibrium as basis for design ofgeosynthetic reinforced slopes [J]. Journal of Geotechnical and GeoenvironmentalEngineering, Vol.124, No.8,1998, pp.684~698.
    【80】.邓卫东.土工织物加筋路堤的稳定计算方法综述[J].国外公路,1994,(1):35-37.
    【81】. Borges, J.L., Cardoso, A.S., Structural behavior and parametric study of reinforcedembankments on soft clays [J]. Computers and Geotechnics, Vol.28, No.3,2001, pp.209~233.
    【82】.朱湘,黄晓明,邓学均.加筋路堤圆弧滑动稳定性验算公式的改进[J].东南大学学报,1999,29(5):119-125.
    【83】.陈建峰,石振明,孙红.加筋路堤稳定性综合分析方法[J].岩土力学.2004,25(s2):433-436.
    【84】.杨庆刚,黄晓明,柴建峰.土工格栅路堤加筋效果的影响因素分析[J].工程地质学报,2006,14(1):131-137.
    【85】.李志勇.陡坡路堤土工格栅加筋机制与合理铺设参数研究[J].岩土力学,2008,29(4):925-930,936.
    【86】.胡幼常,张苡铭,林汉清,等.土工格栅加筋路堤影响因素研究[J].武汉理工大学学报(交通科学与工程版),2008,32(2):206-209.
    【87】.曲新杰,时伟,朱德盛,等.基于ABAQUS有限元的土工格栅加筋路堤边坡稳定性研究[J].青岛理工大学学报,2013,34(1):20-23,54.
    【88】. Jiang, G.L., Magnan, J.P.. Stability analysis of embankments: comparison of limitanalysis with methods of slices [J].Geotechnique, Vol.47, No.4,1997, pp.857~872.
    【89】. Griffiths, D.V., Lane, P.A., Slope stability analysis by finite elements [J]. Geotechnique,Vol.49, No.3,1999, pp.387~403.
    【90】.连镇营,韩国城,孔宪京.强度折减有限元法开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407-411.
    【91】.张鲁渝,郑颖人,赵尚毅,等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,(1):21-27.
    【92】.高文华, Richard J. Bathurst.条形荷载作用下加筋土边坡稳定性分析[J].岩石力学与工程学报,2007,26(2):374-380.
    【93】.陈力华,靳晓光.有限元强度折减法中边坡三种失效判据的适用性研究[J].土木工程学报,2012,45(9):136-146.
    【94】.吕立强.加筋土高路堤的静力变形计算分析与动力模型试验研究[D].西安:西安理工大学,2003.
    【95】.孔宪京,李永胜,邹德高,等.加筋边坡振动台模型试验研究[J].水力发电学报,2009,28(5):152-157.
    【96】.王丽萍,张嘎,张建民,等.土钉加固黏性土坡动力离心模型试验研究[J].岩石力学与工程学报,2009,28(6):1226-1230.
    【97】.刘飞禹.交通荷载作用下软土地基动力特性及加筋道路动力响应研究[D].杭州:浙江大学,2007.
    【98】.刘飞禹,蔡袁强,徐长节,王军.交通荷载作用下软基加筋道路变形机制研究[J].岩土力学,2009,30(1):129-134.
    【99】.王仕传,凌建明.交通荷载作用下加筋土路基残余变形减小的机理分析[J].土木工程学报,2011,44(1):115-120.
    【100】. Tafreshi, S. N., and Dawson, A.R., Behaviour of footings on reinforced sand subjectedto repeated loading–Comparing use of3D and planar geotextile [J]. Geotextiles andGeomembranes, Vol.28, No.5,2010, pp.434~447.
    【101】. El Sawwaf, M.A., and Nazir, A.K., Cyclic settlement behavior of strip footings restingon reinforced layered sand slope [J]. Journal of Advanced research, Vol.3, No.4,2012,pp.315~324.
    【102】.杨燕.加筋路基在重复车辆荷载作用下的变形性状研究[D].长沙:长沙理工大学,2007.
    【103】.南京水利科学研究院.土工试验规程[S].北京:中国水利水电出版社,1999.
    【104】.卢廷浩.土力学[M].南京:河海大学出版社,2002.
    【105】.交通部公路科学研究院.公路土工试验规程[S].北京:人民交通出版社,2007.
    【106】.张志权,王志勇.最大干密度和最优含水率的准确性探讨[J].长安大学学报(建筑与环境科学版),2004,21(2):7-10.
    【107】.杨锡武,欧阳仲春.不同筋材的加筋土的本构关系研究[J].工程力学,2000,(增刊):492-497.
    【108】.许桂林,黄向京,杨果林,等.土工格栅加筋红砂岩大三轴试验研究[J].公路工程,2010,35(2):10-13,27.
    【109】.张孟喜,陈高峰,朱引,等. H-V加筋饱和砂土性状的三轴试验研究[J].岩土力学,2010,31(5):1345-1351.
    【110】.中华人民共和国机械工业部.地基动力特性测试规范[S].北京:中国计划出版社,1998.
    【111】.李松林.动三轴试验的原理和方法[M].北京:地质出版社,1990.
    【112】.廖红建,肖正华,刘健.动载下饱和重塑黄土的骨干曲线变化研究[J].岩土力学,2011,32(2):375-379.
    【113】. Hardin, B., Drnevich, V., Shear modulus and damping in soils:measurement andparameter effects [J]. Journal of the Soil Mechanics and Foundation EngineeringDivision, Vol.98, No.6,1972, pp.603~624.
    【114】.聂影.复杂应力条件下饱和重塑黏土动力特性试验研究[D].大连:大连理工大学,2008.
    【115】.刘洋.土体的动模量和阻尼比的试验技术研究[D].大连:大连理工大学,2006.
    【116】.魏茂杰,林木春.一种确定土的等效阻尼比的新方法[J].水利水电技术,1993,(8):50-53.
    【117】.陈伟,孔令伟,朱建群.一种土的阻尼比近似计算方法[J].岩土力学,2007,28(增):789-791.
    【118】.骆亚生,田堪良.非饱和黄土的动剪模量与阻尼比[J].水利学报,2005,36(7):1-7.
    【119】.周立波,王旭,王伟华等.室内土工试验中试样饱和方法研究[J].西部探矿工程,2007(11):36-38.
    【120】.张翀,舒赣平.颗粒形状对颗粒流模拟双轴压缩试验的影响研究[J].岩土工程学报,2009,31(8):1281-1286.
    【121】.周健,池永,池毓蔚,等.颗粒流方法及PFC2D程序[J].岩土力学,2000,21(3):271-274.
    【122】.邹桐. H-V加筋土挡墙的数值仿真及机理研究[D].上海:上海大学,2012.
    【123】. Kazempoor, S., Noorzad, A., Mahboubi, A.&Mirghasemi, A., Numerical modelling ofsmooth geomembrane-soil interaction shear behaviour by distinct element method [C].Proceeding of the4thAsian Regional Conference on Geosynthetics, Shanghai, China,2008, pp.575~578.
    【124】.周健,王家全,孔祥利,等.砂土颗粒与土工合成材料接触界面细观研究[J].岩土工程学报,2010,32(1):61-67.
    【125】. Vinod, J.S., Nagaraja, S., Sitharam, T.G.&Dinesh, S.V., Numerical Simulation ofreinforced granular soils using DEM [C]. Geo-Frontiers2011: Advances inGeotechnical Engineering. ASCE,2011, pp.4242~4251.
    【126】.陈建峰,李辉利,柳军修,等.土工格栅与砂土的细观界面特性研究[J].岩土力学,2011,32(增1):66-71.
    【127】.周淮,张孟喜.水平-竖向加筋土挡墙作用机理的离散元数值模拟[J].上海交通大学学报,2012,46(10):1548-1552,1557.
    【128】.袁贵涛.高频反复剪切作用下土体与结构物接触面的颗粒离散元分析[D].北京:北京交通大学,2012.
    【129】. Itasca Consulting Group, Inc. PFC2Dtheory and background. Minneapolis: Minnesota,1999.
    【130】.杨冰.边坡动力破坏过程及塌落范围的颗粒力学模拟[D].北京:清华大学,2011.
    【131】.周健,池毓蔚,池永,等.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000,22(6):701-704.
    【132】.周健,史旦达,贾敏才,等.砂土单调剪切力学性状的颗粒流模拟[J].同济大学学报(自然科学版),2007,35(10):1299-1304.
    【133】.刘汉龙,高德清,陈育民,等.筑坝反滤料动模量和阻尼比试验的颗粒流模拟[J].防灾减灾工程学报,2009,29(4):361-367.
    【134】.杨贵,刘汉龙,高德清.加载频率对反滤料动变形特性影响的试验及细观数值模拟研究[J].岩土力学,2011,32(增1):419-423.
    【135】.张石磊. H-V加筋路堤稳定性分析及机理研究[D].上海:上海大学,2010.
    【136】.袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998.
    【137】.中交第一公路勘察设计研究院.公路路线设计规范[S].北京:人民交通出版社,2006.
    【138】. Hyodo, M., Yasuhara, K., Analytical procedure for evaluating pore-water pressure anddeformation of saturated clay ground subjected to traffic loads [C]. Proceedings of the6th International Conference on Numerical Methods in Geomechanics. Rotterdam,Balkema,1988, pp.653~658.
    【139】.刘中伟,交通荷载作用下结构性软土变形预测模型研究[D].天津:天津大学,2008.
    【140】.凌建明,王伟,邬洪波.行车荷载作用下湿软路基残余变形的研究[J].同济大学学报,2002,30(11):315-320.
    【141】. Saad B, Mitri H, Poorooshasb H. Three-dimensional dynamic analysis of flexibleconventional pavement foundation [J]. Journal of Transportation Engineering.2005,131(6):460~469.
    【142】.贺冠军.交通荷载对低路堤下软土地基沉降影响的室内试验与研究[D].南京:河海大学,2005
    【143】. Hanazato, T., Ugai, K., Mori, M., and Sakaguchi, R., Three-dimensional analysis oftraffic-induced ground vibrations [J]. Journal of geotechnical engineering, Vol.117, No.8,1991, pp.1133~1151.
    【144】. Terrel, R. L., Awad, I. S., and Foss, L. R., Techniques for characterizing bituminousmaterials using a versatile triaxial testing system [C]. Fatigue and Dynamic Testing ofBituminous Mixtures, ASTM STP561ASTM special technical publication,1974, pp.47~66.
    【145】.陈国兴,樊良本,陈甦等.土质学与土力学[M].北京:中国水利水电出版社,2006.
    【146】.周健,贾敏才,等.土工细观模型试验与数值模拟[M].北京:科学出版社,2008.
    【147】.周健,王家全,曾远,等.土坡稳定分析的颗粒流模拟[J].岩土力学,2009,30(1):86-90.
    【148】.廖彪,刘忠,贺续文.基于颗粒流的强度折减法分析匀质土坡稳定性[J].路基工程,2011,(1):131-133,137.
    【149】.王宇,李晓,王声星,等.滑坡渐进破坏运动过程的颗粒流仿真模拟[J].长江科学院院报,2012,29(12):46-52.
    【150】.李新坡,何思明.节理岩质边坡破坏过程的PFC2D数值模拟分析[J].四川大学学报(工程科学版),2010,42(增):70-75.
    【151】.张建民,王稳祥.振动频率对饱和砂土动力特性的影响[J].岩土工程学报,1990,12(1):89-97.
    【152】.白冰,周健.周期荷载作用下黏性土变形及强度特性述评fJ].岩土力学,1999,20(3):84-90.
    【153】.王建荣,张振中,王峻,等.振动频率对原状黄土动本构关系的影响[J].西北地震学报,1999,21(3):310-314
    【154】.王汝恒,贾彬,邓安福,等.砂卵石土动力特性的动三轴试验研究[J].岩石力学与工程学报,2006,25(增2):4059-4064.
    【155】.张茹,涂扬举,费文平.振动频率对饱和黏性土动力特性的影响[J].岩土力学,2006,27(5):699-704.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700