用户名: 密码: 验证码:
自适应雷达波形的仿生处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目标的高分辨一维距离像可以用来进行目标特征提取,对目标识别具有重要意义。传统的成像多采用对线性调频信号进行匹配滤波的方法,这种处理方法受回波波形畸变的影响较大,系统稳健性不高。本研究将仿生学的波形设计和信号处理方法引入到成像雷达的信号检测中,可显著克服传统处理方法存在的上述缺陷。
     本文以蝙蝠的回声定位系统为参考,研究了基于速度选通的一维多尺度高分辨距离像的目标成像方法。自适应波形发射和仿生智能信号处理是该成像系统的两个重要特性,发射波形采用脉内恒频加线性调频(CF+FM)的信号模式,CF窄带信号主要用于获取目标速度,而FM信号用于获取细节信息,并对目标成像,CF获取的速度信息一方面用来对FM信号处理模块进行补偿,另外一方面可以对一维距离像成像进行速度选通,发射波形的自适应性表现在:在搜索阶段,发射长周期脉冲,脉内以CF为主,一旦发现目标,在接近目标的过程中,脉冲重复频率增加,FM成分增多,以便实时获取目标信息和进行精确成像;对FM回波的智能仿生处理以听觉神经为模型,主要包括谱相关和谱变换两个模块,可以实现两个不同尺度的成像精度。谱相关模块包括用于频率编码的“耳蜗滤波器组”,用于半波整流的“内耳毛细胞”,用于低通滤波和峰值检测的“星形细胞”,用于互相关运算的“相合细胞”以及用于通道间信息融合的“神经中枢”等,谱变换模块在谱相关模块的基础上提高测距分辨率,从而建立目标的精确一维距离像。采用这种基于动力学方程的仿生建模处理方法,可显著提高处理系统的稳健性,抗噪声等性能。
     本研究建立了上述仿生处理算法模型,并通过仿真验证了其正确性,同时仿真结果也表明与传统的处理方法相比,该方法具有更高的距离分辨力和更好的灵活性及稳健性。论文最后利用System Generator完成了算法的FPGA硬件描述语言设计,并在Xilinx Virtex-5XCV5LX110上对算法进行了验证,表明了系统的硬件可实现性,实验结果表明,算法可对回波信号实现实时处理。
High-resolution range profiles are used to extract target features for recognition and classification. The traditional method for imaging is using matched filter for LFM (Linear Frequency Modulated) pulse compression. The performance of compression is affected by distortion and Doppler frequency shift of the echo. The method is not robust. In the thesis, a bionic waveform design and signal processing method is introduces into imaging radar signal detection and the performance is further improved against traditional methods.
     A velocity selected imaging method for multi-scale high-resolution range profile is proposed based on bats’echolocation system. Adaptive hybrid waveform and intelligent bionic signal processing are two important characteristics of the system. The emissions are adaptive hybrid waveform containing CF (Constant Frequency) and FM (Frequency Modulated) signals in a single pulse. The CF component is used to get speed information of the target while FM is for fine detection and imaging. The Doppler frequency shift getting from CF processing is used for compensation of FM signal processing and also a speed gate for imaging. The waveform design is adaptive because in searching phase, the pulse period is long with most CF component and gets shorter and shorter with more FM component in tracking phase for real-time imaging; The intelligent bionic signal processing model based on auditory nervous contains two major blocks called spectrogram correlation and spectrogram transformation. These two blocks are used to get low and high resolution range profiles respectively for multi-scale detecting. In the spectrogram correlation block, a cochlear filter bank is adopted for encoding the bats’transmission and multiple echoes, in which the input is divided into several parallel pathways. Each frequency channel consists of an inner hair for half-wave rectification, followed by a stellate cell for low-pass filtering and peak-detection, and then a coincidence cell used as cross-correlator. The outputs of all frequency channels are fused in the auditory nervous centre to get the absolute range of the targets. The spectrogram transformation takes place across all frequency channels to improve range resolution and reconstruct fine range structure of the target.
     Bionic modeling and signal processing method for each block are studied in this thesis. The model is then simulated with MATLAB to check the correctness of the model.and the simulation results imply that the bionic method is more robust and flexible compared with traditional methods with higher resolution. At last the model is realized in FPGA (Field Programmable Gate Arrays). The FPGA hardware description code for this model is developed in Simulink@MATLAB based on System Generator for DSP toolbox and then downloaded to Xilinx Virtex-5XCV5LX110 FPGA. The experiment results improve that it is hardware realizable for the bionic model in a single FPGA chip and real-time processing can be achieved.
引文
[1] Rowe, A. P., One Story of Radar. Cambridge University Press, New York, 1948.
    [2] Skolnik, W. I., Fifty Years of Radar. Proceedings of IEEE, 1985, 73:182-197.
    [3] K. Tomiyasu. Tutorial Review of Synthetic Aperture Radar (SAR) with Application to Imaging of Ocean Surface. Proceedings of IEEE, 1978, 66(5):563-583.
    [4] Skolnik, W. I., Introduction to Radar Systems, Third Edition, 2004:9-10.
    [5] D. Daria, A. Monti, and F. Rocca. Focusing Bistatic Synthetic Aperture Radar Using Dip Move Out. IEEE Trans. on Geoscience and Remote Sensing. 2004, 42(7):1362-1376.
    [6] O. Loffeld, H. Nies, and V. Peters. Models and Useful Relations Bistatic SAR Processing. IEEE Trans. on Geoscience and Remote Sensing. 2004, 42(10):2031-2038.
    [7] Lan G. Cumming, Frank H. Wong. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House, MA, 2005:2-3.
    [8]皮亦鸣等编著.合成孔径雷达成像原理.成都:电子科技大学出版社, 2007.
    [9] Lan G. Cumming, Frank H. Wong著,洪文,胡东辉等译.合成孔径雷达成像——算法与实现.北京:电子工业出版社, 2007.
    [10]胡体玲,李兴国.几种制导用高分辨雷达信号分析,弹箭与制导学报, 2007, 27(3):247-250.
    [11] Chen Peng, Hou Chao-huan, and Ma Xiao-chuan. The Joint Detection to Underwater Moving Target’s LFM Echo Based on Matched Filter and Discrete Fractional Fourier Transform. Journal of Electronics and Information Technology. 2007, 29(10):2305-2308.
    [12] Bennett M., McLauglin S., and Anderson T., Filtering of chirped ultrasound echo signals with the fractional Fourier transform. IEEE Ultrasonics Symposium, 2004, 3:2036-2040.
    [13] Bin-bin, CHENG, Hai ZHANG. Bat echolocation signal processing based on Fractional Fourier Transform. 2008 International Conference on Radar, 2008:460-463.
    [14] Guo Ying, Qiu Tian-Shuang, and Zhang Yan-Li. Novel adaptive time delay estimation method based on the fractional lower order cyclic correlation in impulsive noise environment, Journal on Communication, 2007, 28(3):8-14.
    [15] Peterson, J. Michael; Georgiou, Panayiotis G.; Kyriakakis, Chris. The use of fractional lower-order statistics in acoustical environments. Conference Record of the 37th Asilomar Conference on Signals, Systems and Computers, 2003, 1:781-785.
    [16] Simon Haykin, Cognitive Radar, a way of future. IEEE Signal Processing Magazine, 2006, 23(2):30-40.
    [17] C. Miranda, C. J. Baker, and K. D. Woodbridge, Knowledge-based resource managementfor multifunction radar, IEEE Signal Processing Magazine, 2006, 23(1):66-76.
    [18] R. Joseph, Next Generation Intelligent Radar. 2007 IEEE Radar Conference, 2007, 24(1):7~10.
    [19] Henri Maitre著,孙洪等译,合成孔径雷达图像处理.北京:电子工业出版社, 2005.
    [20] John C. Curlander著,韩传钊等译, Synthetic Aperture Radar: Systems and Signal Processing,北京:电子工业出版社, 2006.
    [21] G. Capraro, A. Farina, H. Griffiths, and M. Wicks, Knowledge-based radar signal and data processing: A tutorial overview, IEEE Signal Processing Magazine, 2006, 23(1):18~29.
    [22] W. L. Melvin and J. R. Guerci, Knowledge-Aided Signal Processing: A New Paradigm for Radar and Other Sensors, IEEE Transactions on Aerospace and Electronic Systems, Special Section on Knowledge-Aided Sensor Signal and Data Processing, 2006, 42(3):983-996.
    [23] Alan, D. G., Hearing in bats: An overview. In: Popper, A. N., Fay, R. R. ed. Hearing by Bats. Springer-Verlag, New York, 1995:1-30.
    [24] Cynthia, F. M. and Shiva, R. S., Neurobiology of echolocation in bats, Current Opinion in Neurobiology, 2003, 13:751-758.
    [25] Wotton, J. M. and Simmons, J. A., Spectral Cues and Perception of the Vertical Position of Targets by the Big Brown Bat, Eptesicus fuscus, J. Acoust. Soc. Am., 2000, 107:1034-1041.
    [26]吴顺君,梅晓春编著.雷达信号处理和数据处理技术.北京:电子工业出版社, 2008.
    [27] Simmons, J. A., Saillant, P. A. and Wotton, J. M., Composition of Biosonar Images for Target Recognition by Echolocating Bats, Neural Networks, 1995, 8:1239-1261.
    [28] Fuzessery, Z. M., Monaural and Binaural Spectral Cues created by the External Ears of the Pallid Bat. Hearing Research, 1996, 95:1-17.
    [29] Schnitzler, H. U, E. Kalko, L. Miller et al., The echolocation and hunting behavior of the bat. J. Comp. Physiol. 1987, 161:267-274.
    [30] J. D. Altringham, Bats: Biology and Behavior. Oxford Univ. Press, New York, 1996.
    [31] G. Neuweiler, The Biology of Bats. Oxford Univ. Press, New York, 2000.
    [32] Simmons, J. A., R. A. Stein, Acoustic imaging in bat sonar: echolocation signals and the evolution of echolocation. J. Comp. Physiol. 1980, 135:61-84.
    [33] Fenton, M., B., Natural history and biosonar signals. In: Popper, A. N., Fay, R. R. ed. Hearing by Bats. Springer-Verlag, New York, 1995.
    [34] Moss C. F., Schnitziler H. U., Behavioral studies of auditory information processing. In: Popper AN, Fay R R ed. Hearing by Bats. New York: Springer-Verlag, 1995: 87-143.
    [35] Wotton, J. M., Haresign, T., Ferragamo, M. J., and Simmons, J. A.: Sound Source Elevation and External Ear Cues Influence the Discrimination of Spectral Notches by the Big BrownBat, Eptesicus fuscus, J. Acoust. Soc. Am. 1996, 100:1764-1776.
    [36] B. Lawrence and J. Simmons, Echolocation in bats: The external ear and perception of the vertical positions of targets, Science, 1982, 218:481-483.
    [37] J. Simmons, M. Ferragamo, P. Saillant. Hearing by Bats: Auditory Dimensions of Acoustic Images in Echolocation, Springer Verlag, 1995:146-190.
    [38] Z. Fuzessery, D. Hartley and J. Wenstrup, Spatial processing within the mustached bat echolocation system: possible mechanisms for optimization, Journal of Comparative Physiology A, 1992, 170:57-71.
    [39] G. Pollak, Time is traded for intensity in the bat's auditory system, Hearing Research, 1988, 36:107-124.
    [40] R. Kuc, Sensorimotor model of bat echolocation and prey capture, Journal of the Acoustical Society of America, 1994, 96:1965-1978.
    [41] J. Simmons, Evidence for perception of fine echo delay and phase by the fm bat: eptesicus fuscus, Journal of Comparative Physiology A, 1993, 172:533-547.
    [42] P. A. Saillant J. A. Simmons, S. P. Dear. A computational model of echo processing and acoustic imaging in frequency-modulated echolocation bats: The spectrogram correlation and transformation receiver, The Journal of the Acoustical Society, 1993, 94(5):2691-2711.
    [43] H. Peremans and J. Hallam, The spectrogram correlation and transformation receiver, revisited, The Journal of the Acoustical Society, 1998, 104(2):1101-1110.
    [44] M. Yano, I. Matsue and J. Tani, Echolocation of multiple targets in 3-D space from a signal Emission, Journal of Biological Physics, 2002, 28:509-525.
    [45] Chiu, Chen; Moss, Cynthia, The role of tragus on echolocating bat, Eptesicus fuscus, Journal of Acoustical Society of America, 2005, 117(4):2468-2468.
    [46] R. Z. Shi, T. K. Horiuchi, A Neuromorphic VLSI Model of Bat Interaural Level Difference Processing for Azimuthal Echolocation, IEEE Transactions on Circuits and Systems, 2007, 54(1):74-88.
    [47] T. K. Horiuchi, Matthew Cheely, A Systems View of a Neuromorphic VLSI Echolocation System, IEEE International Symposium on Circuits and Systems, 2007: 605-608.
    [48] J. Gwan Lim, Soo-Young Lee, and Dong-Soo Kwon, Bats' Auditory Pathway Modeling for Multiple Targets Localization. 16th IEEE International Conference on Robot & Human Interactive Communication, 2007:131-136.
    [49] Clarke C. T. and Qiang L., Bat on an FPGA: A bio-mimetic implementation of a highly parallel signal processing system, Proceedings of Asilomar Conference on Signals, Systems and Computers, 2004, 1:456-460
    [50] Chris Clarke, Lin Qiang, Herbert Peremans and Rolf Muller, An FPGA Based Bio-Mimetic implementation of Neural Signal Processing in Bats, Symposium on Bio-Sonar andBio-Acoustic Systems, Loughborough, UK, 2004, 26: Part 6
    [51] Flight International, UK, [EB/OL], USAF Funded Bat Study Could Produce Better MAVS, http://www.flightglobal.com/articles/2007/07/11/215436/usaf-funded-bat-study-could-produce-better-mavs.html.
    [52] Kaushik Ghose, Sonar Beam Direction and Flight Control in an Echolocation Bat, [Doctor Thesis], Maryland University, 2006.
    [53] Filips Schillebeeckx, Jonas Reijniers, and Herbert Peremans, Probabilistic spectrum based azimuth estimation with a binaural robotic bat head, Fourth International Conference on Autonomic and Autonomous Systems, 2008:142-147.
    [54] Izzatdin Abdul Aziz, Sajee Mahamad, and Mazlina Mehat, Blind Echolocation Using Ultrasonic Sensors, International Symposium on Information Technology, 2008, 4:1-7.
    [55] Mueller R, Mubeezi-Magoola A. J, and Peremans H, Chiroptera-inspired robotic cephaloid (CIRCE): a next generation biomimetic sonar head J. Acoust. Soc. Am., 2002, 112:2335-2340.
    [56] Mueller R. and Peremans H., Handbook of Neural Engineering (IEEE Press Series on Biomedical Engineering: Vol 4. Chapter Biomimetic Integration of Neural and Acoustic Signal Processing), New York, Wiley-IEEE Press, 2006.
    [57] Fontaine Bertrand, Peremans Herbert, and Schrauwen Benjamin, Bat echolocation modelling using spike kernels with Support Vector Regression, Proceedings of European Symposium on Artificial Neural Networks, 2007:367-372.
    [58]王婉莹,邰发道.中国蝙蝠听觉和回声定位研究进展.陕西师范大学学报(自然科学版), 2006, 34:121-127.
    [59]张喜臣.大耳菊头蝠回声定位声波与夏季捕食策略研究[硕士学位论文].长春,东北师范大学环境科学系, 2006.
    [60]王婉莹.普氏蹄蝠、鲁氏菊头蝠、长翼蝠的生态、形态、及耳蜗结构和听觉功能的研究[硕士学位论文].西安,陕西师范大学动物学系, 2007.
    [61] J. A., Simmons, Biosonar acoustic images for target localization and classification by bat, 1997, SPIE, Vol. 3079:7-12.
    [62] Rolf Muller and Boman Kuc, Biosonar-inspired technology: goals, challenges and insights. Bioinsp. Biomim. 2007, 2:S146–S161.
    [63] Timothy K., Horiuchi, "Seeing" in the Dark: Neuromorphic VLSI Modeling of Bat Echolocation, IEEE SIGNAL PROCESSING MAGAZINE, 2005, 22(5):134-139.
    [64] Murat Aytekin, Murat Aytekin, and Jonathan Z. Simon, A Sensorimotor Approach to Sound Localization, Neural Computation, 2008, 20:603-635.
    [65] J. A. Thomas, C. F. Moss, and M. Vater, Echolocation in Bats and Dolphins. Chicago, IL: Univ. of Chicago Press, 2004.
    [66] Jones, G. & Waters, D. A. Moth hearing in response to bat echolocation calls manipulated independently in time and frequency. Proc R Soc Lond B Biol. Sci., 2000, 267:1627-1632
    [67]吴忠信.蝙蝠的回声定位.科学教育月刊, 2006, 276:11-15.
    [68]任晃荪.蝙蝠及其声纳系统.科学月刊, 1984, 178(15):802-806.
    [69] Chen Chiu, Adaptive Echolocation and Flight Behaviors in Free Flying Bats, Eptesicus Fuscus [Doctor Thesis], Maryland University, 2008.
    [70] Murat Aytekin, Sound Localization by Bats, [Doctor Thesis], Maryland University, 2007.
    [71] Zhuang, Q. and Mueller, R., Numerical study of the effect of the noseleaf on biosonar beam forming in a horseshoe bat, Physical Review E, 2007, 76:051902.
    [72] Zhuang, Q. and Mueller, R., Noseleaf Furrows in a Horseshoe Bat Act as Resonance Cavities Shaping the Biosonar Beam, Physical Review Letters, 2006, 97:218701.
    [73] Metzner W. Echolocation behavior in bats. Sci Progress Edinburg.1991.75:453-465.
    [74] Antonino S. Fiorillo, Gianni D’Angelo. Echo Signal Processing with Neural Network in Bat-like Sonars Based on PVDF. IEEE Ultrasonic Symposium, 2002:781-784.
    [75] Simmons, J. A., R. A. Stein, Acoustic imaging in bat sonar: echolocation signals and the evolution of echolocation. J. Comp. Physiol. 1980, 135:61-84.
    [76] James A. Simmons, Prestor A. Saillant, and Steven P. Dear, Through a bat's ear, IEEE Spectrum, 1992, 29(3):46-48.
    [77] Altringham J. D., Echolocation, Bats Biology and Behavior. London: Oxford University Press, 1996:2-30.
    [78] Mueller R., Lu H. and Zhang S., A helical biosonar scanning pattern in the Chinese Noctule, J. Acoust. Soc. Am., 2006, 119:4083-4092.
    [79] Wang X. B. Beam forming by outer Ear Extensions in Bat [Master Thesis], Shandong University, 2008.
    [80] M. Aytekin, E. Grassi, and M. Sahota, The bat head-related transfer function reveals binaural cues for sound localization in azimuth and elevation. J. Acoust. Soc. Am., 2004, 116(6):3594-3605.
    [81] Zhiping Shi, Bat Azimuthal Echolocation Using Interaural Level Differences Modeling and Implementation by a VLSI Based Hardware System, [Doctor Thesis], Department of Electrical and Computer Engineering, Maryland University, 2006.
    [82] M. Aytekin, J. Z. Simon, and C. F. Moss, Sound localization by echolocating bats: Are auditory signals enough? 154th ASA Meeting, New Orleans, LA, 2007, J. Acoust. Soc. Am., 2007, 122(5):2980-2980.
    [83] J.A. Flint, A biomimetic antenna in the shape of a bat's ear, Antenna and Wireless Propagation Letters, 2006, 5:145-147.
    [84] R. Muller and J. C. Hallam, Knowledge mining for biomimetic smart antenna shapes, Robotics and Autonomous Systems, 2005, 50(4):131-145.
    [85] G. Farmer, J. A. Flint, and G. Leonard, Measurement of a Biomimetic Antenna in the Shape of a Bat's Ear. EuCAP'2006, the First European Conference on Antennas and Propagation, 2006:1-6.
    [86] Nobuo Suga, Principles of Auditory Information-processing Derived from Neuroethology, J. exp. Biol., 1989, 146:277-286.
    [87] Moore, B. C. J. (editor). "Hearing", San Diego CA: Academic Press, 1995: 468 pages.
    [88] Y. Salimpour, M.D. Abolhassani and H. Soltanian-Zadeh, Auditory Wavelet Transform, Proceedings of the 3rd European Medical and Biological Engineering Conference, 2005, 11(1):1-4.
    [89] Meddis, R. Simulation of mechanical to neural transduction in the auditory receptor, Journal of the Acoustical Society of America, 79(3), 1986:702-711.
    [90] Meddis, R. Simulation of auditory-neural transduction: Further studies, Journal of the Acoustical Society of America, 1988, 83(3):1056-1063.
    [91] Hewitt, M. J. and Meddis, R., An evaluation of eight computer models of mammalian inner hair cell function, Journal of the Acoustical Society of America, 1991, 90(2):904-917.
    [92] Gimseong K, Dara K, Heary. Passive sound-localization ability of the big brown bat (Eptesicus fuscus).Hearing Research, 1998, 119:37-48.
    [93] Altringham J. D., Echolocation, Bats Biology and Behavior. London: Oxford University Press, 1996:2-30.
    [94] Hodgkin, A.L. and Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in the nerve. Journal of Physiology, 1952, 117:500-544.
    [95] Sergio Barbarossa, Anna Scaglione, Georgios B. Giannakis, Product High-Order Ambiguity Function for Multicomponent Polynomial-Phase Signal Modeling, IEEE Transactions on Signal Processing, 1998, 46(3):691-708.
    [96] Liangchen Zhou, Jianyu Yang, Bin Tang, Fast and Accurate Polynomial-Phase Signal Parameter Estimation. Proceedings of 5th International Conference on Radar, 2006, vol. I:625-628.
    [97] Namias V., The fractional Fourier transform and its application in quantum mechanics. IMA J. of Appl. Math. l980, 25:241-265.
    [98] McBride A C, Kerr F H. On Namias's Fractional Fourier Transform, IMA J. of Appl. Math., 1987, 39:l59-l65.
    [99] Kutay M A, Optimal filtering in fractional Fourier domains, IEEE Trans on Signal Processing, 1997, 45(5):1129-1143.
    [100] Erden M F, Kutay M A, Ozakas H M. Repeated filtering in consecutive fractional Fourier domains and its applications to signal restoration, IEEE Transactions on Signal Processing, 1999, 47(5):1455-1462.
    [101] Almeida L B., The fractional Fourier transform and time-frequency representations, IEEE Transactions on Signal Processing, 1994, 42(11):3084-3091.
    [102] Ozaktas H. M., Arikan O., Digital Computation of the Fractional Fourier Transform, IEEE Transactions on Signal Processing, 1996, 44:2141-2150.
    [103] Soo-Chang Pea, Min-Hung Yeh, A Novel Method for Discrete Fractional Fourier Transform Computation, IEEE International Symposium on Circuits and Systems, 2001, 2(2):585-588.
    [104]周良臣.多项式相位信号的检测与参数估计研究[博士学位论文].成都,电子科技大学, 2007.
    [105] S. Y. Kim, R. Allen, and D. Rowan, The simulation of bat-oriented auditory processing using the experimental data of echolocating signals. Proceedings of Acoustics'08 Paris, 2008:5235-5240.
    [106] Abhijit Karmakar, Arun Kumar, and R. K. Patney, Design of Optimal Wavelet Packet Trees Based on Auditory Perception Criterion, IEEE Signal Processing Letters, 2007, 14(2):240-243.
    [107] Yu Shao and Chip-Hong Chang, A Generalized Time–Frequency Subtraction Method for Robust Speech Enhancement Based on Wavelet Filter Banks Modeling of Human Auditory System, IEEE Transactions on Systems, Man, and Cybernetic, Part B: Cybernetics, 2007, 37(4):877-889
    [108] Y. Salimpour, M. D. Abolhassani, Auditory Wavelet Transform Based On Auditory Wavelet Families, Proceedings of the 28th IEEE EMBS Annual International Conference, 2006:1731-1734.
    [109] Ikuo Matsuo, Junji Tani, and Masafumi Yano, A model of echolocation of multiple targets in 3D space from a single emission, J. Acoust. Soc. Am., 2001, 110(1):607-624.
    [110] Tugnait J K. On time delay estimation with unknown spatially correlated Gaussian noise using fourth order cumulants and cross cumulants. IEEE Transactions on Signal Processing, 1991, 39:1258-1267.
    [111] C. Capus and K. Brown, Short-time fractional Fourier methods for the time-frequency representation of chirp signals, Journal of the Acoustical Society of America, 2003, 113(6): 2304-2314.
    [112] Min-Hung Yeh and Soo-Chang Pei, A Method for the Discrete Fractional Fourier Transform Computation, IEEE Transactions on Signal Processing, 2003, 51(3):889-891
    [113]张宏,方路平,童勤业.海豚等动物神经系统处理多普勒信号的一种可能性方案.物理学报, 2007, 56(12):7339-7345.
    [114] Meunier C., Segev I. Playing the Devil's advocate: is the Hodgkin-Huxley model useful. Trends in. Neurosciences, 2002, 25(11):558-563.
    [115]付强,毫米波导引头智能化信息处理技术研究, [博士学位论文],国防科学技术大学信息与通信工程系, 2004.
    [116]金龙如,冯江.像蝙蝠一样感知.生命科学, 2008, 30:66-69.
    [117] Peremans H. and Muller R., A Comprehensive Robotic Model for Neural & Acoustic Signal Processing in bats, Proceedings of 1st IEEE International EMBS Conference on Neural Engineering, 2003:458-461.
    [118] Rolf Muller and Boman Kuc, Biosonar-inspired technology: goals, challenges and insights. Bioinsp. Biomim. 2007, 2:S146–S161.
    [119]童勤业,钱鸣奇,李绪等,嗅觉神经系统脉冲编码的机理研究,中国科学E辑信息科学, 2006, 36(4):449-466.
    [120]张海浪,计算神经科学在生物声纳中的应用, [硕士学位论文],浙江,浙江大学生物医学工程系, 2007.
    [121] Zhang Hong, Mo Jue, and TONG Qin-ye, How Do the Dolphins Neurons System Echolocate. ACTA BIOPHYSICA SINICA, 2007, 23(6): 455-462.
    [122]张宏,莫珏,童勤业,神经元参数估计的符号动力学方法,中国生物医学工程学报, 2008, 27(5), 700-705

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700