用户名: 密码: 验证码:
城市污泥厌氧发酵产酸条件优化及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污泥产生总量随着国民经济持续快速发展迅速地增加,因此发展经济有效的污泥处理处置技术迫在眉睫。由于污泥中含有较高的有机质,将这些廉价的有机质转化生产高附加值生物化学品,特别是挥发性脂肪酸不失为污泥资源化的一条新途径。这条新途径不仅可使污泥获得减量化、无害化处理,而且也使得污泥中的有机成分能够得到更好利用。
     本论文在确立合适底物污泥及最佳预处理技术的基础上,对厌氧发酵产酸的pH和底物初始C/N控制策略开展了研究,通过结合末端限制性片断长度多样性分子技术和荧光原位杂交技术对发酵产酸过程中的微生物种群结构和促使乙酸累积的微生物学机理进行了解析,并在检测形成挥发性脂肪酸的代谢途径中的关键酶的活性基础上,进一步探讨了促使不同单酸累积的主要代谢途径。主要的研究结果如下:
     (1)直接利用污泥厌氧发酵产酸,发酵结束时蛋白质、碳水化合物和挥发性有机质三者的含量均超过67%。有机质转化率较低,导致挥发性短链脂肪酸的产率难以提高。
     (2)通过考察热-碱、超声波-碱、热-酸和超声波-酸预处理技术对污泥融胞效果的影响,发现两种碱处理方法能够显著改善高固体浓度的污泥有机质融出效率。污泥中有机质和蛋白类物质融出率分别达到60.2%~61.6%和66.8%~67.5%。此外,在热-碱和超声波-碱预处理后,液相中STOC和STN浓度相对于未处理样增加倍数分别为7.62和4.97。两种碱处理技术不仅分解污泥最外层的絮状结构,而且能够破坏微生物的细胞结构,促使污泥颗粒粒径急剧变小,粒径小于17μm的污泥颗粒占总数50%以上。然而在超声波-酸和热-酸作用下,仅有部分的污泥絮状结构分解,污泥的颗粒粒径变化并不明显。
     (3)研究了污泥预处理后对厌氧发酵产酸效率的影响。热-碱和超声波-碱预处理后的污泥厌氧发酵生成的总酸分别比未预处理污泥提高59.1%和68.2%,均显著高于两种酸预处理技术。可溶性蛋白质为两种碱处理污泥中VFAs产生的主要来源。此外,分析固相中有机质的含量在发酵过程中的变化,发现超声波-碱和热-碱预处理阶段未融出的有机质在随后的厌氧发酵过程并未进一步水解酸化。不同于两种碱处理技术,热-酸和超声波-酸预处理后污泥的脂肪酸产率却低于未处理污泥。综合考虑预处理成本和产酸效率,确定热-碱为最佳的预处理技术。
     (4)研究了pH对污泥预处理液中可溶性的蛋白质的沉降影响。结果发现,当pH值从12.0调节到3.0时,可溶性蛋白质的浓度在碱性条件下减小比较缓慢,在酸性条件下则转为迅速。此外,在pH值调节过程中沉降下来的大部分蛋白质在厌氧发酵产酸过程中并未被转化形成VFAs。
     (5)当调控厌氧发酵过程pH在3.0~12.0时,促使液相VFAs分布特征发生变化的原因是由于pH的调控改变了厌氧微生物的种群结构。厌氧发酵过程pH条件不同,优势菌群也不相同。在pH值为12.0时,优势菌为颗粒链菌属(Granulicatella);pH为10.0时则演变为消化链球菌属(Peptostreptococcus);当发酵过程pH降为7.0和5.0时,梭菌属(Clostridium)却成为优势产酸菌;而pH值为3.0时优势菌则为芽孢杆菌属(Bacillus)。
     (6)控制厌氧发酵产酸过程pH为10.0时,通过FISH技术检测发现产氢产乙酸菌的数量及其微少,相对丰度仅为总细菌的0.01%。乙酸的累积主要是消化链球菌属通过氨基酸之间的Stickland反应形成的。pH为10.0的条件不仅能够抑制产甲烷菌的活性,而且能够抑制硫酸盐还原菌的生长。同其它pH值条件下厌氧发酵产酸相比,控制厌氧发酵过程在pH值为10.0,可以显著改善污泥预处理的产酸效率,并维持稳定的酸产量。
     (7)调控发酵底物的初始C/N可实现不同发酵产酸类型。初始C/N在12~44时,形成的是乙酸型发酵类型;当初始C/N在56~69范围内时,可实现丙酸型发酵类型;而当C/N处于156~256时,则形成丁酸型发酵。不同发酵产酸类型的形成是由优势产酸菌群的改变导致的。C/N值在12~69范围内,H2和CO2的增长都较为缓慢,但当C/N值提高到156~256时,二者的产率迅速提高。初始C/N值影响VFAs累积的主要代谢途径。在低C/N值条件下,乙酸的累积主要是通过氨基酸之间的Stickland反应形成,而随着C/N值的增大,导致丙酸和丁酸累积的主要代谢途径转变为糖酵解的丙酮酸途径。
In recent years, the amount of excess sludge produced from municipal and industrial wastewater plants increased very rapidly with the sustainable and fast development of economy in China. The treatment and disposal of sludge have become one of the most important and complex problems. In fact, the main part of sludge is organic biomass, and it can become a source for valuable biochemicals such as volatile fatty acids (VFAs). The bioprocess strategy that results in the production of VFAs not only achieves the objective of controlling pollution and reducing sludge volumes but also efficiently explores the resource of organic substance in sludge.
     It is known that volatile fatty acids are important intermediate compounds in the metabolic pathway of anaerobic digestion. In this dissertation, using excess sludgs from three different sources, the tests were firstly performed to analyze the relationship between VFAs and consumed organic matter, and to investigate the effects of initial carbon-nitrogen-ratio (C/N) on the acidification efficiency of sludges. And then, hydrolysis and acidogenesis of sludge pre-treated with different techniques was analyzed. Based on the results of the study on those pretreatment techniques, control strategies of pH and initial C/N were investigated in order to achieve the maximum and stable production of total VFAs or different types of anaerobic acidogenesis. The microbial community structure and the dominant microbial population was discovered through the analysis of Terminal-Restriction Fragment Length Polymorphism (T-RFLP). Combining the means of fluorescence in situ hybridization analysis with the analysis of T-RFLP, the reason for accumulating acetic acid was further explored. Furthermore, the main metabolic pathway of different individual VFAs was investigated by analyzing the relative abilities of some key enzymes. Main results of this dissertation were shown as follows:
     (1) The main component of sludge including proteins and carbohydrates is enclosed in microbial cells. The autolysis bioprocess of microbial cells was slow, which resulted in the relatively low conversion ratio from proteins and carbohydrates into VFAs. Moreover, the results also showed that acetic acid was the main product in total VFAs during the anaerobic digestion.
     (2) Effects of various pretreatment methods including thermo-acid, thermo-alkaline, ultrasonic-alkaline and ultrasonic-acid on the solubilization of excess sludge were investigated. The results showed that both thermo or ultrasonic -alkaline significantly improved the solubilization of sludge at a high concentration (7.4% of total solid). Solubilization of volatile solids (VS) and total proteins was 60.2%~61.6% and 66.8%~67.5%, respectively. Moreover, STOC and STN concentration increased more than before pretreatment. STOC increased 7.62 times, while STN increased 4.97 times. The ultrasonic- or thermo- alkaline pretreatment significantly decreased the particle size of WAS and account of less than 10μm particles was for 50% and many minute cavities appeared on the surface of particles. They could not only hydrolyze extracellular biopolymer but also destroy some microbial cells. But the thermo- or ultrasonic- acid pretreatment just disintegrated some sludge flocs. On the contrary, the effect of the thermo- or ultrasonic- acid method on the solubilization of WAS was not obvious. They just disintegrated some sludge flocs.
     (3) Effects of these four pretreatment techniques on the subsequent acidification efficiency of excess sludge were further analyzed. The results showed that the acidification efficiency of sludge was improved in the case of the thermo- or ultrasonic- alkaline pretreatment. Compared with the untreated sludge, the concentration of total VFAs increased by 59.1% for the ultrasonic-alkaline pretreatment, and increased by 68.2% for the thermo-alkaline pretreatment at the final fermentation. Soluble protein was the main source for the total VFAs production in the pretreated WAS slurry with the thermo- or ultrasonic- alkaline methods. On the contrary, the yield of total VFAs from the thermo- or ultrasonic- acid pretreated sludge was lower than that from the untreated sludge. Combining the cost of pretreatment with the acidogenic efficiency of sludge, thermo-alkaline was established the optimal pretreatment technique.
     (4) Effects of pH on the sedimentation of soluble proteins from the thermo-alkaline pretreated sludge were investigated. The results showed that the concentration of soluble protein decreased slowly with the decrease of pH from 12.0 to 7.0, but it became fast when pH was adjusted from 7.0 to 3.0. The data strongly implied that the most part of insoluble protein deposited after the pH adjustment was not consumed as the substrate for producing VFAs during the fermentation.
     (5) Bacterial community structure was monitored through T-RFLP at different pHs. The results revealed that the impact of pH on the distribution pattern of VFAs resulted from the varieties of bacterial community structure. The dominant bacterial population varied with the change of pH in the anaerobic process. Granulicatella was the dominant bacterial population at pH 12.0, while Peptostreptococcus dominated at pH 10.0. With the adjustment of pH from 7.0-5.0 to 3.0, the dominant bacterial population evolved from Clostridium to Bacillus.
     (6) Base on the analysis of fluorescence in situ hybridization, the amount of syntrophic acetogenic bacteria was very small and its relative abundance was only 0.01% in total microorganisms when pH was controlled at 10.0. Peptostreptococcus played an main role on the accumulation of acetic acid. The main metabolic pathway for producing acetic acid was the Stickland reaction between different amino acids. Controlling the pH of fermentation process at 10.0, not only the activity of methanogenic archaea but also the growth of sulfate-reducing bacteria was inhibited. The yield of VFAs could be significantly improved and maintained stable by controlling fermentation pH at 10.0.
     (7) Control strategy of initial carbon-nitrogen-ratio (C/N) could implement different types of acid-forming fermentation during the anaerobic acidogenesis. Controlling initial C/N in the range of 12~44, the main product was acetic acids, while propionic and acetic acids became the main products under the conditions of initial C/N varied between 56 and 69. With the increase of initial C/N from 156 to 256, butyric acid-type of fermentation appeared in the fermentation process. The change in the different types of acid-forming fermentation was caused by the changes in the dominant microbial populations, from acetic acid-producing bacterial (Peptostreptococcus) to propionic acid-producing bacterial (Propionibacterium), and then to butyric acid-producing bacterial (Clostridium). At the low initial C/N, the increase of H2 and CO2 was slow, but with the increase of initial C/N from 156 to 256, they increased rapidly. Moreover, the main metabolic pathway resulted in the accumulation of predominant VFAs was changed from the Stickland reaction at low initial C/N to the metabolic pathways of pyruvic acid from glycolysis.
引文
[1]国家环保总局. 2006年中国环境状况公报[M].北京, 2008.
    [2]铁道部专业设计院标准处等.污水处理的基本方法及应用[M].中国铁道出版社, 1982.
    [3]金儒霖,刘永龄.污泥处置[M].北京:中国建筑出版社, 1982.
    [4]吴玉萍,任勇.市政污泥的资源化利用和无害化处理[J] .环境经济杂志, 2006, 28:32-34.
    [5]王忠伟,孙高峰.我国市政污泥环境管理初探[J].环境科学与管理, 2005, 30(4):1-3.
    [6] Canales A, Pareilleux A, Rols J L, Goma G, Huyard A. Decreased sludge production strategy for domestic wastewater treatment[J].Water Sci Tech, 1994, 3097-106.
    [7]赵庆祥.污泥资源化技术[M].北京:化学工业出版社, 2002.
    [8]周少奇.城市污泥处理处置与资源化[M].广州:华南理工大学出版社, 2002.
    [9] Hatziconstantinou G J, Yannakopulos P, Andreadskis A. Primary sludge hydrolysis for biological nutrient removal [J]. Water Sci Tech, 1996, 34(2):417-423.
    [10] Moser-Engeler R, Udert K M, Wild D; Siegrist H. Products from Primary Sludge Fermentation and their Suitability for Nutrient Removal[J]. Water Sci Technol, 1998, 38:265-273.
    [11] Elefsiniotis P, Oldham W K. Influence of pH on the Acid-phase Anaerobic Digestion of Primary Sludge[J]. J Chem Technol Biotechnol, 1994, 60:89-96.
    [12] Elefsiniotis P, Wareham D G, Smith M O. Use of Volatile Fatty Acids from an Acid-phase Digester for Denitrification[J]. J. Biotechnol, 2004, 114:289-297.
    [13] Chen Y G, Jiang S, Yuan H Y, Zhou Q, Gu G W. Hydrolysis and Acidification of Waste Activated Sludge at Different pHs[J]. Water Res, 2006, 41:683-689.
    [14] Yuan H Y, Chen Y G, Zhang, H X, Jiang S, Zhou, Q, Gu, G W. Improved Bioproduction of Short-chain Fatty Acids (SCFAs) from Excess Sludge under Alkaline Conditions[J]. Environ Sci Technol, 2006, 40:2025-2029.
    [15]肖本益,刘俊新. pH对碱处理污泥厌氧发酵产氢的影响[J].科学通报, 2005, 50(24): 2734-2738.
    [16]蔡木林,刘俊新.污泥厌氧发酵产氢的影响因素.环境科学, 2005, 26(2):98-101.
    [17]徐强,张春敏,赵丽君.污泥处理处置技术及装置[M].北京:化学工业出版社. 2003: 7.
    [18] Tchobanoglous G, Burton F L, Waste water Engineering, T reatment, Disposal, Reuse, eds. B. J. Clark & J. M. Morris. McGraw Hill, New York, 1991, 1334 pp.3. Geuzens, P., Zware metalen en organische micropolluenten.
    [19] Weemaes M P J, Verstraete. Evaluation of current wet sludge disintegration techniques[J]. J Chem Technol Biotechnol, 1998, 73, 83-92.
    [20]杭世,陈吉宁等.污泥处理处置的认识误区与控制对策. 2004年国际污泥无害化经验交流会议论文汇编. 2004,1-5.
    [21]中国环境保护产业协会水污染治理委员会编.中国城市污水污泥处理处置问题探讨.北京:2005年中国国际水处理技术高级专家论坛, 2005, 142-146.
    [22]余杰,田宁宁,王凯军,任远.中国城市污水处理厂污泥处理处置问题探讨分析[J].环境工程学报, 2007, 1(1):82-86.
    [23]杨小文,杜英豪.污泥处理与资源化利用方案[J].中国给水排水, 2002, 18(4):31-33.
    [24] Akira Suiuki and Tadshi Nakamura[J]. J chem engin Japan. 1998, 21(3):288-293.
    [25]王晓吡,詹健,康晓荣,黄福昌.中国城市污水厂污泥处理处置技术[J] .江西化工, 2007, 3:24-27.
    [26]张水英,张辉,周军,王佳伟,甘一萍.我国污泥处理处置现状及发展.第二届中国城镇水务发展国际研讨会, 33-35.
    [27] Hudson J A. Sewage sludge incineration: some planning and operating experiences[C]. In IWEM Year BOOK, 1992.
    [28] Lowe P. Developments in sewage sludge incineration In Symp. On Effluent Treatment and waste Disposal[C]. In Stn. Chem. Eng. / university of Leeds, March. 1990.
    [29] De Baere L, Verdonck O, Verstraete W. High rate dry anaerobic composting process for the organic fraction of solid waste[J]s. Biotechnol Bioeng Sym, 1985, 15:321-330.
    [30] Ghosh S, Conrad J R, Klass D L. Anaerobic acidogenesis of wastewater sludge. J Water Pollution Control Fed, 1975, 47:30-45.
    [31] Hitte S J. Anaerobic digestion of solid waste and sewage sludge into methane[J]. Compost Sci, 1976, 17:26-30.
    [32] Sterzinger G. Making biomass energy a contender[J]. Technol Rev, 1995, 98:34-40.
    [33] Suna ?inar, Turgut T O, Aysen E Co-disposal alternatives of various municipal wastewatertreatment-plant sludges with refuse[J]. Adv Envir Res, 2004, 8:8477-482.
    [34] Dichtl N. Thermophilic and mesophilic (two stage) anaerobic digestion. Symposium on innovative technologies for sludge utilization and disposal[M]. Chester, U.K. 1994.
    [35] Goshi S, Conrad J R, Klass D L. Anaerobic acidogenesis of wastewater sludge[J]. J WPCF, 1975, 47(1).
    [36] Miltsd?rffer R. Characteristics of two stage thermophilic/mesophilic sludge digestion considering microbial kinetics. Berichte aus Wassergütewirtschaft und Gesundheitsingenieurwesen[J]. TU München, No. 109. 1991.
    [37] Niehoff H H. Two stage anaerobic sludge stabilization thermophilic/mesophilic with the treatment plant CologneStammheim as example. BTG Seminar on Waste water and Sludge Treatment, K?ln-Hürth. 1996.
    [38] Oswald Schulze GmbH and Co K G. Heat Exchanger System for the Heat Transport from Digested Sludge to Raw Sludge[P]. German Patent, DE 32 33 407 C2. 1987.
    [39] Oswald Schulze GmbH and Co KG. Sludge digestion thermophilic/mesophilic. Company brochure. 1986.
    [40] Oles J, Dichtl N, Niehoff H H. Full scale experience of two stage thermophilic/mesophilic sludge digestion[J]. Water Sci Tech, 1997, 36(6-7):449-456.
    [41] Cheng S S, Bai M D, Chang S M, Wu K L, Chen W C.“Studies on the Feasibility of Hydrogen Production Hydrolyzed Sludge by Anaerobic Microorganisms,”The 25th Wastewater Tech. Conference, Yunlin, Taiwan (in Chinese). 2000.
    [42] Huang C S, Lin C Y, Tsai Y Y, Shieh Y G.“Preliminary Study of Anaerobic Hydrogen Production UsingVarious Substrates and Incubation Methods,”The 25th Wastewater Tech. Conference, Yunlin, Taiwan (in Chinese). 2000.
    [43] Hung W T, Feng W H, Tsai I H, Lee D J, Hong S G.“Unidirectional Freezing of Waste Activated Sludge: Radial Freezing Versus Vertical Freezing”[J], Water Res, 1997, 31:2219.
    [44] Wang C C, Chang C W, Chu C P, Lee D J, Chang B V, Liao C S.“Producing Hydrogen from Wastewater Sludge by Clostridium Bifermentans”[J]. J Biotechnol. 2003a, 102:83.
    [45] Wang C C, Chang C W, Chu C P, Lee D J. Sequential production of hydrogen and methane from wastewater sludge using anaerobic fermentation[J]. J Chin Inst Chem. Engrs, 2003,34(6): 683-687.
    [46] Cai M L, Liu J, Wei Y S. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment[J]. Environ Sci Technol, 2004, 38:3195-3202.
    [47] Kim Sang-hyoun, Han Sun-Kee and Shin Hang-sik. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge[J]. International J Hydr Ener, 2004, 29:1607-1616.
    [48] Bungay H R. Confessions of a bioenergy advocate[J]. Trends in Biotechnol, 2004, 22:67-71.
    [49] Largus T A, Khursheed K, Muthanna H A, Brian A. Wrenn and Rosa Dom?′guez-Espinosa. Production of bioenergy and biochemicals from industrial and agricultural wastewater[J]. Trends in Biotechnol, 2004, 22:477-485.
    [50] Skalsky D S, Daigger G T, Wastewater solids fermentation for volatile acid production and enhanced biological phosphorus removal[J]. Water Environ Res, 1995, 67: 230-237.
    [51] Lee S, Yu J. Production of biodegradable thermoplastics from municipal sludge by a two-stage bioprocess[J]. Resour Conserv Recy, 1997, 19:151-164.
    [52] Chung Y J, Cha H J, Yeo J S, Yoo Y J. Production of poly (3-hydroxybutyric-co -3-hydroxyvaleric) acid using propionic acid by pH regulation[J]. J Fermen Bioeng. 1997, 83:492-495.
    [53] Huang L P, Jin B, Launt P, Zhou J. Biotechnological production of lactic acid integrated with potato wastewater treatment by Rhizopus arrhizus[J]. J Chem Technol Biotechnol, 2003, 78:899-906.
    [54] Du G C, Yu J. Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates[J]. Environ Sci Technol, 2002, 36:5511-5516.
    [55] Dionisia G C, Papinia M P, Riccardib C, Majonea M, Carrascoc F. Olive Oil mill effluents as a feedstock for production of biodegradable polymers[J]. Water Res, 2005, 39:2076-2084.
    [56] Horiuchi J I, Kikuchi S, Kobayashi M S, Kannob T, Shimizu T. Modeling of pH response in continuous anaerobic acidogenesis by an artificial neural network[J]. J Biochem Eng, 2001, 19: 199-204.
    [57] Rajan R V, Lin J G, Ray B T. Low-level chemical pretreatment for enhanced sludge solubilization [J ] . J WPCF, 1989, 61:1678-1683.
    [58] Kim J S, Park C W, Kim T H, Lee Y, Kim S, Kim S W, Lee J. Effects of various pretreatment for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioengin, 2003, 95(3):271-275.
    [59]李敏,郭静,罗晶.化学前处理改善城市污水污泥厌氧消化处理的有效途径[J].城市环境与城市生态, 1997, 10(4):60-62.
    [60] Valo A, Carrère H, Philippe Delgenès J. Thermal chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion. J Chemic Technol Biotechnol, 2004, 79:1197-1203.
    [61] Vlyssides A G, Karlis P K. Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion. Bioresour Technol, 2004, 91: 201-206.
    [62] .肖本益,刘俊新.污水处理系统剩余污泥碱处理融胞效果研究[J].环境科学,2006,27 (2):319-323.
    [63] Alexandre V, Hélène C, Jean P D.Thermal,chemical and thermal-chemical pre-treatment of waste activated sludge for anaerobic digestion[J]. J Chem technol and Biotechnol, 2004, 79:1197-1203.
    [64] Barjenbruch M, Kopplow O. Enzymatic,mechanical and thermal pre-treatment of surplus sludge[J]. Adv Envir Res, 2003, (7):715-720.
    [65] Bougrier C, Albasi C, Delgenès J P, Carrère H. Effect of ultrasonic,thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability[J]. Chem Eng Pro, 2006, in press.
    [66] Nevim G, Sems Y, Levent Dagasanb, et al. Wet oxidation:a pre-treatment procedure for sludge[J]. Waste Management, 2002, 22:611-616.
    [67] Lafitte-Trouque S, Forster C F. The use of ultrasound and c-irradiation as pre-treatments for the anaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures[J]. Bioresource Technol, 2002, 84:113-118.
    [68] Wechs F. Two stage anaerobic sludge stabilization (In German). Berichte aus wassergütewirtschaft und Gesundheitsingenieurwesen, TU München, No. 53. 1985.
    [69] Strom P F. Making biomass energy a contender[J]. Technol Rev, 1985, 98:34-40.
    [70] Lepisto S S, Rintala J A. Thermophilic anaerobic digestion of the organic fraction ofmunicipal solid waste: Start-up with digested material from a mesophilic process. Environmental Technol, 1995, 16:157-164.
    [71] Buhr H O, Andrews J F. Review paper: The thermophilic anaerobic digestion process[J]. Water Res, 1977, 11:129-143.
    [72] Zinder S H. Conversion of acetic acid to methane by thermophiles, anaerobic digestion. Proceedings International Symposium on Anaerobic Digestion 1-12. 1988.
    [73] Ahring B K, Ibrahim A A, Mladenovska Z. Effect of temperature increase from 55 to 65℃on performance and microbial population dynamics of an anaerobic reactor treating cattle manure[J]. Water Res, 2001, 35(10):2446-2452.
    [74] McIntosh K B, Oleszkiewicz J A. Volatile fatty acid production in aerobic thermophilic pre-treatment of primary sludge[J]. Water Sci Tech, 1997, 36(7):189-196.
    [75] Veeken A, Hamelers B. Effect of temperature on hydrolysis rates of selected biowaste components [J]. Bioresource Technol, 1999, 69(3):249-254
    [76] Ferreiro N, Soto M. Anaerobic hydrolysis of primary sludge: influence of sludge concentration and temperature [J]. Water Sci Tech, 2003, 47(12):239-246.
    [77] Mahmoud N, Zeeman G, Gijzen H,Lettinga G. Anaerobic stabilization and corversion of biolymers in primary sluge-effct of temperature and sludge retention time [J]. Water Res., 2004, 38(4):983-991.
    [78] Banerjee A, Elefsiniotis P, Tuhtar D. Effect of HRT and temperature on the acidogenesis of municipal promary sludge and industrial wastewater [J]. Water Sci Tech, 1998.
    [79] Eastman J A, Ferguson J F. Solubilization of particulate organic matter during the acid-phase of anaerobic digestion [J]. J Water Pollut. Control. Fed., 1981, 53(3):352-366.
    [80] Lilley I D, Wentzel M C. Loewenthal R.E., Marais, G.V.R. Acid fermentation of primary sludge at 20 [R].Res.Rep.W64,Dep.Civ.Eng.,Univ.of Cape Town, 1990.
    [81]任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].北京:科学出版社, 2005. 51-135.
    [82]李顺鹏,任南琪,马放.第八次全国环境微生物学术研讨会论文集[M].北京:化学工业出版社, 2005.
    [83] Horiuchi J, Shimizu T, Tada K, et al. Selective production of organic acids in anaerobic acid reactor by pH control[J]. Bioresource Technol, 2002, 82(3):209-13.
    [84] Zhu Y, Yang S T. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum[J]. J Biotechnol, 2004, 110:143-157.
    [85] Elefsiniotis P, Oldharm W K. The effect of operational parameters on the acid-phase anaerobic fermentation in the biological phosphorus removal process[A]. In: Proceedings:ASCE Natl Conf.Environ.Eng.[C]. Reno Nev, 1991, 325-330.
    [86] Gomec C Y, Speece R E. The role of pH in the organic material solubilization of domestic sludge in anaerobic digestion [J].Water Sci Tech, 2003, 48(3):143-150.
    [87] Yu H Q, Zheng X J, Hu Z H, Gu G W. High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor [J]. Water Sci Tech, 2003, 48(4):69-75.
    [88] Banerjee A, Elefsiniotis P, Tuhtar D. The effect of addition of potato-processing wastewater on the acidogenesis of primary sludge under varied hydraulic retention time and temperature [J]. J Biotechnol, 1999, 72(3):203-212.
    [89] Lin C Y. Effect of heavy metals on volatile fatty acid degradation in anaerobic digestion [J]. Water Res, 1992, 26:177-183.
    [90]苑宏英.基于酸碱调节的剩余污泥水解酸化及其机理研究[D].同济大学博士论文.2006.
    [91]任南琪.产酸发酵细菌演替规律研究--pH≤5条件下ORP的影响[J].哈尔滨建筑大学学报, 1999, 32(2):29-34.
    [92]赵丹,任南琪,王爱杰. pH、ORP调控发酵类型和微生物顶级群落[J].重庆环境科学, 2003, 25:33-35, 38.
    [93] Chiu Y C, Chang C N, Lin J G, Huang S J. Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion [J].Water Sci Tech, 1997, 36(11):155-162.
    [94] Yu R F,Chang C N, Chen W R. Appling on-line ORP for monitoring and control of aerobic biological wastewater treatment system [J]. J. Chinese Inst. Environ. Eng, 1996, 6(2):165-172.
    [95] Huang W S. The solubility and digestion propertity of applying ultrasound and alkaline to waste activated sludge [D]. Master Thesis, Graduate Institue of Environmental Science, Tunghai Huniversity, Taichung, Taiwan, ROC. 1995.
    [96] Chang C N, Ma Y S, Lo C W. Application of oxidation-reduction potential as a controlling parameter in waste activated sludge hydrolysis [J]. J Chemical Eng, 2002, 90(3):273-281.
    [97] Dinopoulou G, Rudd T, Lester J N. Anaerobic acidogenesis of a complex wastewater: 1. Theinfluence of operational parameters on reactor performance[J]. Biotechnol Bioeng, 1988, 31:958-968.
    [98] Fang H H P, Yu H Q. Acidification of lactose in wastewater[J]. J Environ Eng, 2001, 127:825-831.
    [99] Fang H H P, Yu H Q. Mesophilic acidification of gelatinaceous wastewater[J]. J Biotechnol, 2002, 93:99-108.
    [100]Penaud V, Delgenes J P, Torrijos M, Moletta R, Vanhoutte B, Cans P. Definition of optimal conditions for the hydrolysis and acidogenesis of a pharmaceutical microbial biomass[J]. Proc Biochem, 1997, 125:515-521.
    [101]Elefsiniotis P, Oldham W K. Effect of HRT on acidogenic digestion of primary sludge[J]. J Environ Eng, 1994, 120:645-660.
    [102]Elefsiniotis P, Oldham W K. Anaerobic acidogenesis of primary sludge: the role solids retention time [J]. Biotech.Bioeng, 1994, 44(1):7-13.
    [103]Elefsiniotis P. The effect of operation and environmental parameters on the acid-phase anaerobic digestion of primary sludge [D]. Ph.D. Thesis, University of British Columbia, Vanconver, B.C., Canada.1993.
    [104]Miron Y, Zeeman G, Van Lier J B, Lettinga G. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res, 2000, 34:1705-1713.
    [105]Kayhanian M, Rich D. Pilot-scale high solids thermophilic anaerobic digestion of municipal solid waste with an emphasis on nutrient requirements[J]. Biomass and Bioen, 1995, 8:433-444
    [106]Tuomela M, Vikman M, Hatakka A, Itavaara M. Biodegradation of lignin in a compost environment: a review[J]. Bioresource Technol, 2000, 72:169-183.
    [107]Yen H W, Brune D. Anaerobic co-digestion of algal sludge and waste paper to produce methane[J]. Bioresource Technol, 2007, 98:130-134.
    [108]Batstone D J, Keller J, Angelidake R I, Kalyuzhnyi S V, Pavlostathis S G, Rozzi A, Sanders W T M, Siegrist H, Vavilin V A. Anaerobic digestion model No.1 (ADM1) scientific and technical report No. 13 IWA task group for mathematical modeling of anaerobic wastewater(88pp) [M]. IWA publishing London, 2002.
    [109]Rozzi A, Remigi E. Methods of assessing microbial activity and inhibition under anaerobic conditions: a literature review[J]. Rev Envir Sci Bio/Technol, 2004, 3:93-115.
    [110]Omeci B, Vesilind P A. Development of an improved synthetic sludge: A possible surrogate for studying activated sludge dewatering characteristic[J]. Water Res, 2000, 34(4): 1069-1078.
    [111]Nagase M, Matsuo T. Interactions between amino-aciddegrading bacteria and methanogenic bacteria in anaerobic digestion[J]. Biotechnol and Bioen, 1982, 24: 2227-2239.
    [112]Ramsay I R, Pullammanappallil P C. Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry[J]. Biodegradation, 2001, 12:247-257.
    [113]闵航,陈美慈,赵宇华,钱泽澍.厌氧微生物学[M].杭州:浙江大学出版社, 1992.
    [114]聂艳秋.废水产氢产酸/同型产乙酸耦合系统厌氧发酵产酸工艺及条件优化[D].江南大学博士论文, 2007.
    [115]Bryant M P, WolinE A, Wolin M J, Wolfe R S. Methanobacillus omelianskii, a Symbiotic association of two species of bacteria. Arch Microbiol, 1967, 59:20-31.
    [116]张春杨.厌氧互营细菌的生态、资源和分子系统学研究[D].中国科学院微生物研究所博士论文. 2004
    [117]Ghosh S, Buoy K, Dressel L. Pilot and full-scale two-phase anaerobic digestion of municipal sludge[J]. Water Environ Res, 67(1):206-214.
    [118]Chan W N. Thermophilic anaerobic fermentation of waste biomass for producing acetic acid[D ]. Ph D Thesis. Georgia Institute of Technology: USA 2002.
    [119]Thanakoses P, Black A S, Holtzapple M T. Fermentation of corn stover to carboxylic acids[J]. Biotech Bioeng, 2003, 83:191-200.
    [1] Lata K, Rajeshwari K V, Pant D C, Kishore V V N. Volatile fatty acid production during anaerobic mesophilic digestion of tea and vegetable market wastes[J]. W J Microbiol Biotechnol, 2002, 18:589-592.
    [2] Zehnder A J B. Biology of anaerobic microorganisms[J]. John Wiley: New York. 1988.
    [3]刘志杰,谢华.厌氧污泥胞外多聚物的提取、测定方法选择[J].环境科学, 1993, 15(4):23-26.
    [4] Kim M, Gomec C Y, Ahn Y, Speece R E. Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion[J]. Environ Technol, 2003, 24:1183-1190.
    [5] Cha G C, Chung H K, Chung J C. Suppression of acidogenic activities due to rapid temperature drop in anaerobic digestion[J]. Biotechnol Letters, 1997, 19:461-464.
    [6] Elefsiniotis P, Oldham W K. Influence of pH on the acid phase anaerobic digestion of primary sludge. J Chem Technol Biotechnol, 1994, 60:89-96.
    [7] Banerjee A, Elefsiniotis P, Tuhtar D. The effect of addition of potato-processing wastewater on the acidogenesis of primary sludge under varied hydraulic retention time and temperature[J]. J Biotechnol, 1999, 72:203-212.
    [8] Banerjee A, Elefsiniotis P, Tuhtar D. Effect of HRT and temperature on the acidogenesis of municipal primary sludge and industrial waste water[J]. Water Sci Technol, 1998, 38:417-423.
    [9] Elefsiniotis P and Oldham WK, Anaerobic acidogenesis of primary sludge: The role of solids retention time[J]. Biotechnol Bioeng, 2004, 44:7-13.
    [10] Bligh E G, Dyer W J. A rapid method of total lipids extraction and purification. Can J Biochem phvsiol, 1959, 37:911-917.
    [11]赵庆祥.污泥资源化技术.北京:化学工业出版社, 2003.
    [12] Miron Y, Zeeman G, Van Lier J B, Lettinga G. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems[J]. Water Res, 2000, 34:1705-1713.
    [13] Standardization Administration of the People’s Republic of China. Standard Method for Water Quality–Determination of ammonium-Nesster's reagent colorimetric method GB 7479. 1987.
    [14] Aquino S F, Stuckey D C. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds[J]. Water Res, 2004, 38:255-266.
    [15] Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances[J]. Anal Chem, 1956, 28:350-356.
    [16]国家环境保护局《水和废水监测分析方法》编委会.《水和废水监测分析方法》(第四版) [M].北京:中国环境科学出版社, 2002, 105:423-425.
    [17] Standardization Administration of the People’s Republic of China. Standard Method for Water Quality–Determination of total phosphorus-Ammonium molybdate spectrophotometric method GB/T 11893. 1989.
    [18] Chan W N. Thermophilic anaerobic fermentation of waste biomass for producing acetic acid[D]. PhD Thesis. Georgia Institute of Technology. USA. 2002.
    [19] Ince O. Performance of a two-phase anaerobic digestion system when treating dairy wastewater. Water Res, 1998, 32: 2707-2713.
    [20] Bouallagui H, Torrijos M, Godon J J, Moletta R, Cheikh R B, Touhami Y, Delgenes J P, Hamdi M. Two-phase anaerobic digestion of fruit and vegetable wastes: bioreactors performance[J]. Biochem Eng J, 2004, 21:193-197.
    [21] Chen Y G, Jiang S, Yuan H Y, Zhou Q, Gu G W. Hydrolysis and acidification of waste activated sludge at different pHs[J]. Water Res, 2007, 41:683-689.
    [22] Parawira W, Murto M, Read J S, Mattiasson B. Volatile fatty acid production during anaerobic mesophilic digestion of solid potato waste[J]. J Chem Technol Biotechnol, 2004, 79: 673-677.
    [23] Gerardi M H. The Microbiology of Anaerobic Digesters. John Wiley & Sons: New York. 2003, 15-21.
    [24] Cai M L, Liu J X, Wei Y S. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment[J]. Environ Sci Technol, 2004, 38:3195-3202.
    [25] Yuan H Y, Chen Y G, Zhang H X, Jiang S, Zhou Q, Gu G W. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions[J]. Environ Sci Technol, 2006, 40:2025-2029.
    [26] Barlindhaug J, ?degaard H. Thermal hydrolysis for the production of carbon source for denitrification[J]. Water Sci Tech, 1996, 34:371-378.
    [27] Yen H W, Brune D. Anaerobic co-digestion of algal sludge and waste paper to produce methane[J]. Bioresource Technol, 2007, 98: 130-134.
    [28]徐龙君,吴江.预处理对城市固体有机垃圾厌氧发酵的影响[J].环境污染与防治, 2006, 28(1):62-64.
    [1]徐龙君,吴江.预处理对城市固体有机垃圾厌氧发酵的影响[J].环境污染与防治, 2006, 28 (1):62-64.
    [2] Weemaes M P J, Verstraete W H. Evaluation of current wet sludge disintegration techniques. J Chem Technol Biotechnol, 1998,73(2):83-92.
    [3]王治军,王伟.剩余污泥的热水解试验[J].中国环境科学, 2005, 25:56-60.
    [4]王治军,王伟.污泥热水解过程中固体有机物的变化规律[J].中国给水排水, 2004, 20(7):1-5.
    [5]张光明,吴敏生,张维昊等.城市污泥超声波处理技术.城市环境与城市生态[J]. 2003, 16 (6):258-259.
    [6] Lafitte-Trouque S, Forster C F.The use of ultrasound and c-irradiation as pre-treatments for theanaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures[J]. Bioresource Technol, 2002, 84:113-118.
    [7] Bougrier C, Albasi C, Delgenès J P, Carrère H. Effect of ultrasonic,thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability[J]. Chem Eng Pro, 2006, in press.
    [8]肖本益,刘俊新.污水处理系统剩余污泥碱处理融胞效果研究[J].环境科学, 2006, 27 (2):319-323.
    [9]华佳,陈玉辉,李亚东,汪常青.制备剩余污泥水解蛋白质实验条件的初步研究[J].湖北大学学报(自然科学版), 2006, 28(1):87-90.
    [10] Vlyssides A G, Karlis P K. Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion[J]. Bioresource Technol, 2004, 91:201-206.
    [11] Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chem, 1956, 28 (3):350-356.
    [12] Nah I W, Kang Y W, Hwang K Y, Song W K. Mechanical pretreatment of waste activated sludge for anaerobic digestion process. Water Res, 2000, 34(8):2362-2368.
    [13] Valo A, Carrère H, Philippe Delgenès J. Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion. J Cheml Technol Biotechnol, 2004, 79(11):1197-1203.
    [14] Pinnekamp J. Effects of thermal pre-treatment of sewage sludge on anaerobic digestion. Water Sci Technol 1989, 21 (4-5):97-108.
    [15] Chiu Y C, Chang C N, Lin, J G, Huang, S J. Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion. Water Sci Technol, 1997, 36(11):155-162.
    [16] Penaud V, Delgenès J P, Moletta R. Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme and Microbial Technol, 1999, 25(3-5):258-263.
    [17] Tanaka S, Kobayashi T, Kamiyama K, Signey Bildan M L N. Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge. Water Sci Technol. 1997 35(8):209-215.
    [18]王琳,王宝贞.污泥减量技术[J].给水排水, 2000, 26(10):28-31.
    [19] Chu C P, Chang B, Liao G S, Jean, D S, Lee D J. Observations on changes in ultrasonically treated waste-activated sludge. Water Res, 2001, 35(4):1038-1046.
    [20] Inagaki N, Suzuki S, Takemura K, Miyata A. Enhancement of anaerobic sludge digestion by thermal alkaline pre-treatment. Process of the 8th International Conference Anaerobic Digestion. May, Sendai, Japan, 1997, pp. 252-260.
    [21] Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes to improve dewaterability. J hazardous Materials B, 2003, 98(1-3):51-67.
    [22] Tiehm A, Nickel K, Zellhorn M., Neis U. Ultrasonic waste activated sludge disintegration forimproving anaerobic stabilization. Water Res, 2001, 35(8) :2003-2009.
    [23]王芬,季民.污泥超声破解预处理的影响因素分析[J].天津大学学报, 2005, 38(7):649-653.
    [24] Barjenbruch M, Kopplow O. Enzymatic, mechanical and thermal pre-treatment of surplus sludge[J] Adv Environmental Res, 2003, (7):715-720.
    [25]钱泽澍,闵航编著.沼气发酵微生物学[M].杭州:浙江科学技术出版社, 1985.
    [26] Gerardi M H. The Microbiology of Anaerobic Digesters[M]. John Wiley & Sons: New York, 2003, 15-21.
    [27] Parawira W, Murto M, Read J S, Mattiasson B. Volatile fatty acid production during anaerobic mesophilic digestion of solid potato waste[J]. J Chem Technol Biotechnol, 2004, 79 (7):673-677.
    [28] Scheraga H A. Intramolecular bonds in proteins. 2. Noncovalent bonds. In: Neurath, H. (Ed.), The Proteins. Academic Press, New York, 1963, pp. 477-593.
    [29]杜长安,陈复生,武文斌,莫重文,陈洁,赵俊廷.植物蛋白工艺学[M].北京:中国商业出版社, 1995.
    [30] Gavala H N, Angelidaki I, Ahring B K. Kinetics and modeling of anaerobic digestion process[J]. Adv Biochem Engin/Biotechnol, 2003, 81:57-93.
    [31]田凯勋,戴友芝,凌运林.厌氧酸化菌产酸过程研究.微生物学通报[J], 2007, 34: 108-111.
    [32] Ghosh S, Klass D L. Process Biochem, 1978, 13:15.
    [33] Pohland F G, Ghosh S. Biotechnol Bioeng Symp, 1971, 2:85.
    [34] Ghosh S, Pohland F G. J WPCF, 1974, 46:748.
    [35] Noike T, Endo G, Chang J-E, Yaguchi J-I, Matsumoto J (1985) BioTechnol Bioeng, 1985, 27:1482-1490.
    [36] Huang C J. The effect of dilution rate on the kinetics of anaerobic acidogenesis. Proceedings of the thirteenth Annual Biochemical Engineering Symposium, Reilly PJ (ed). Pavlostathis SG, Giraldo-Gomez E (1991) [J]. Water Sci Technol, 1983, 24:35.
    [1] Elefsiniotis P, Warehan D G, Smith M O. Use of volatile fatty acid from an acid-phse digester for denitrification[J]. J. Biotechnol, 2004, 114(3):289-292.
    [2] Moser-Engeler R, Udert K M, Wild D, Siegrist H. Products form primary sludge fermentation and their suitability for nutrient removal[J]. Water Sci. Technol, 1998, 38(1):265-273.
    [3] Elefsiniotis P, Oldham W K. Influence of pH on the acidphase anaerobic-digestion of primary sludge[J]. J. Chem. Technol. Biotechnol, 1994, 60:89-96.
    [4] Yu H Q, Zheng X J, Hu Z H, Gu G W. High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor[J]. Water Sci. Technol, 2003, 48(4),69-75.
    [5] Yuan H Y, Chen Y G, Zhang H X, Jian S, Zhou Q, Gu G W. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions[J]. Environ. Sci. Technol. 2006, 40:2025-2029.
    [6] Cai W L, Liu J X, Wei Y S. Enhanced biohydrogen production form sewage sludge with alkaline pretreatment[J]. Environ. Sci Technol, 2004, 38:3195-3202.
    [7] Laskowski M, Scheraga H A. Thermodynamic considerations of protein reactions. 1. Modified reactivity of polar groups[J]. J. Am. Chem. Soc, 1954, 76:6305-6319.
    [8] Scheraga H A. Intramolecular bonds in proteins. 2. Noncovalent bonds. In: Neurath, H. (Ed.), The Proteins. Academic Press, New York, 1963, pp. 477-593.
    [9] Falc?o-Rodrigues M M, Mold?o-Martins M, Beirāo-da-Costa M L. Thermal properties of gluten proteins of two soft wheat varieties. Food Chem, 2005, 93:459-465
    [10]赵庆祥编著.污泥资源化技术[M].化学工业出版社, 2003.
    [11] Miron Y, Zeeman G, Van Lier J B, Lettinga G. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems[J]. Water Res, 2000, 34:1705-1713.
    [12] Standardization Administration of the People’s Republic of China. Standard Method for Water Quality–Determination of ammonium-Nesster's reagent colorimetric method GB 7479 (1987).
    [13] Wu Y V, Scheraga H A. Studies of soybean trypsin inhibitor. 1. Physicochemical properties[J]. Biochemistry, 1962, 1:905-911.
    [14] Tanford C. Protein denaturation. C. Theoretical models for the mechanism of denaturation[J]. Adv. Protein Chem, 1970, 24:1-95.
    [15] Nicoli D F, Benedek G B. Study of thermal denaturation of lysozyme and other globular proteins by light-scattering spectroscopy[J]. Biopolymers, 1976, 15:2421-2437.
    [16] Moses E, Hinz H J. Basic pancreatic trypsin inhibitor has unusual thermodynamic stability parameters[J]. J Mol Biol, 1983,170:765-776.
    [17] Grinberg V Y, Burova T V, Haertle T, Tolstoguzov V B. Interpretation of DSC data on protein denaturation complicated by kinetic and irreversible effects[J]. J Biotechnol, 2000, 79:269-280.
    [18] Cooke D, Gidley M J. Loss of crystalline and molecular order during starch gelatinization:Origin of the enthalpic transition[J]. Carb Res, 1992, 227, 103-112.
    
    [1] Madhuri Ganta. Anaerobic digestion of pulp and paper mill solid wastes: evaluation of operational parameters and microbial diversity[J]. Georgia Institute of technol, 2002.
    [2]陈艺阳,刘和,堵国成,陈坚. 2-溴乙烷磺酸盐对污泥厌氧发酵过程中乙酸累积及细菌种群的影响[J].应用与环境生物学报, 2007, 13:108-111.
    [3] Huang C H, Lee K S, Cheng L H, Huang Y H, Lin P J, Chang J S. Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate[J]. Environmental Biotechnol, 2007, 75:693-701.
    [4] Dearman B, Marschner P, Bentham R H. Methane production and microbial community structure in single-stage batch and sequential batch systems anaerobically co-digesting food waste and biosolids[J]. Appl Microbiol Biotechnol, 2006, 69:589-596.
    [5] Gavala H N, Lyberatos G. Influence of anaerobic culture acclimation on the degradation kinetics of various substrates[J]. Biotechnol Bioeng, 2001, 74:181-195.
    [6] McMahon K D, Zheng D, Stams A J M, Mackie R I, Raskin L. Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge[J]. Biotech Bioeng, 2004, 87:823-834.
    [7] Horiuchi J, Shimizu T, Kanno T, Kobayashi M. Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemstat culture[J]. Biotechnol Technol 1999, 13:155-157.
    [8] Baily J E, Ollis D F. Biochemical engineering fundamentals, 2nd ed. New York: McGraw-Hill, 1986.
    [9] Ye N F, LüF, Shao L M, Godon J J, He P J. Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes[J]. J Applied Microbiol, 2007, 103:1055-1065.
    [10]刘艳玲.两相厌氧系统底物转化规律与群落演替的研究[D].哈尔滨工业大学博士学位论文. 2001.
    [11] Zhu Y, Yang S. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum[J]. J Biotechnol, 2004, 110:143-157.
    [12] Bouallagui H, Torrijos M, Godon J J, Molleta R, Ben Cheikh R, Touhami Y, Delgenes J P, Hamdi M. Microbial monitoring by molecular tools of two-phase anaerobic bioreactor treating fruit and vegetable wastes[J]. Biotechnol Lett, 2004, 26:857-862.
    [13] Kawagoshi Y, Hino N, Fujimoto A, Nakao M, Fujita M, Sugimura S, Furukawa K. Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production[J]. Journal of Bioscience and Bioengineering. 2005, 100: 524-530.
    [14] Ueno Y, Sasaki D, Fukui H, Haruta S, Ishii M, Igarashi Y. Changes in bacterial community during fermentative hydrogen and acid production from organic waste by thermophilic anaerobic microflora[J]. J Applied Microbiol. 2006, 101:331-343.
    [15]任南琪.产酸发酵细菌演替规律研究.哈尔滨建筑大学学报, 1999, 32:29-33.
    [16] Marsh T L, Saxman P, Cole J, et al. Terminal Restriction Fragment Length Polymorphism Analysis Program, a Web-Based Research Tool for Microbial Community Analysis[J]. Appl Environ Microbiol, 2000, 66 (8):3616-3620.
    [17] Heuer H, Krsek M, Baker P, et al.. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients[J]. Appl Environ Microbiol, 1997, 63:3233-3241.
    [18] Zheng D, Alm E W, Stahl D A, Raskin L. Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies[J]. Appl. Environ. Microbiol, 1996, 62:4504-4513.
    [19]李艳娜,许科伟,堵国成,陈坚.厌氧生境体系中产氢产乙酸细菌的FISH定量解析[D].微生物学报, 2007, 47(6):1038-1043.
    [20] Hansen K H, Ahring B K, Raskin L. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization[J]. Appl Environ Microbiol, 1999, 65(11): 4767- 4774.
    [21] Harmsen H J M. Detection, phylogeny and population dynamics of syntrophic propionate-oxidizing bacteria in anaerobic granular sludge[D]. Ph.D. thesis. Wageningen Agricultural University, Wageningen, The Netherlands, 1996..
    [22] Harmsen H J M, Kengen H M P, Akkermans A D L, Stams A J M. Phylogenetic analysis of two syntrophic propionate-oxidizing bacteria in enrichment cultures[J]. Syst. Appl. Microbiol, 1995, 18:67-73.
    [23] Coleman A W, Maguire M J, Coleman J R. Mithramycin- and 4'-6-diamidino-2-phenylindole (DAPI)-DNA staining for fluorescence microspectrophotometric measurement of DNA innuclei, plastids, and virus particles[J]. J Histochem Cytochem, 1981, 29(8):959-968.
    [24] Yu H Q, Fang H H P. Acidogenesis of gelatin-rich wastewater in an upflow ananerobic reactor: influence of pH and temperature[J]. Water Res, 2003, 37:55-66.
    [25]沈耀良,王宝贞.废水生物处理新技术:理论与应用[M].北京:中国环境科学出版社, 2000.
    [26] Penaud V, Delgenès J P, Moletta R. Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability[J]. Enzyme and Microbial Technol. 1999, 25:258-263.
    [27] Liua W T, Chanb O C, Fangb H H P. Microbial community dynamics during start-up of acidogenic anaerobic reactors[J]. Water Res, 2002, 36:3203-3210.
    [28]任南琪,赵丹,陈晓蕾,李建政.厌氧生物处理丙酸产生和积累的原因及控制策略[J].中国科学B辑, 2002, 32: 83-89.
    [29] Elefsiniotis P, Oldham W K. The effect of operational parameters on the acid-phase anaerobic fermentation in the biological phosphorus removal process[A].In: Proceedings:ASCE Natl Conf. Environ. Eng.[C]. Reno, Nev., 1991, 325-330.
    [30] Yuan H Y, Chen Y G, Zhang H X, Jiang S, Zhou Q, Gu G W. Improved Bioproduction of Short-chain Fatty Acids (SCFAs) from Excess Sludge under Alkaline Conditions[J]. Environ. Sci Technol, 2006, 40:2025-2029.
    [31] Cai M L, Liu J X, Wei Y S. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment[J]. Environ Sci Technol, 2004, 38:3195-3202.
    [32] Ren N Q, Xing D F, Rittmann B E, Zhao L H, Xie T H, Zhao X. Microbial community structure of ethanol type fermentation in bio-hydrogen production[J]. Environ Microbiol, 2007, 9:1112-1125.
    [33]任南琪,王爱杰等编著.厌氧生物技术原理与应用.北京:化学工业出版社, 2004.
    [34]张春杨.厌氧互营细菌的生态、资源和分子系统学研究[D].中国科学院微生物学研究所,博士论文, 2004.
    [35]李新荣,沈德中.硫酸盐还原菌的生态特性及其应用[J].应用与环境生物学报, 1999, 5: 10-13.
    [36] Xu L. Production of acetic acid from synthesis gas with mixed acetogenic microorganisms[D]. PhD Thesis. Texas A&M University, 2002.
    [37] Ramsay I R, Pullammanppallil P C. Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation, 2001, 12:247-257.
    [38] Elsden S R, Hilton M G. Volatile acid production from threonine, valine, leucine and isoleucine by clostridia[J]. Archives of Microbiol, 1978, 117:165-172.
    [39] Mead G C. The amino acid-fermenting Clostridia[J]. J General Microbiol, 1971, 67:47-56.
    [40] Seto B. The Stickland Reaction. In: Knowles C J (ed) Diversity in Bacterial Respiratory Systems, Vol. 2 (pp 49-64). CRC Press. Boca Raton. 1980.
    [41] Bader J, Rauschenbach P, Simon H. On a hitherto unknown fermentation path of several aminoacids by proteolytic closdridia[J]. FEBS Letters, 1982, 140:67-72.
    [42] Andreesen J R, Bahl H, Gottschalk G. Introduction to the physiology and biochemistry of the genus Clostridium. In: Minton NP & Clarke DC ( eds) Clostridia[M], Vol. 3 (pp 27-62). Plenum Press, New York. 1989.
    [43] Barker H A. Fermentation of nitrogenous organic compounds. In: Gansalus IC & Stanier RY (eds) The bacteria, Vol. 2 (pp 151-207) [M]. Academic Press. New York. 1961.
    [44] Wiesendanger S, Nisman B. La L-methionine demercaptodesaminase: Un nouvel enzyme a pyridoxal-phosphate[J]. Compt Rend Acad Sci,1953,237:764-765 (Cited in: Andreesen JR, Bahl.
    [45] Carter J E, Sagers R D. Ferrous ion-dependent L-serine dehydratase from Clostridium acidi-urici[J]. J Bacteriol, 1972, 109:757-763.
    [46] Hardman J K, Stadtman T C. Metabolism of w-amino acids. I. fermentations of g-aminobutyric acid by Clostridium aminobutyricum n. sp[J]. J Bacteriol, 1960a, 79:544-548.
    [47] Meister A, Sober H A, Tice S V. Enzymatic decarboxylation of aspartic acid to a-alanine[J]. J Biological Chem, 1951, 189:577-590.
    [48] Brock T D, Madigan M T. Biology of Microorganisms. Prentice-Hall, Inc, London. 1991.
    [49] Pickett M J. Studies on the metabolism of Clostridium of Clostridium tetani[J]. J Biological Chem, 1943, 151:203-209.
    [50] Barker H A. Amino acid degradation by anaerobic bacteria[J]. Annual Review Biochem, 1981, 50:23-40.
    [51] Hardman J K, Stadtman T C. Metabolism of w-amino acids. II. fermentations of D-aminovaleric acid by Clostridium aminovalericum n. sp[J]. J Bacteriol, 1960b, 79:549-552.
    [52] Elsden S R, Hilton M G. Amino acid utilization patterns in clostridial taxonomy[J]. Archives of Microbiol, 1979, 123:137-141.
    [1]肖本益,刘俊新. pH对碱处理污泥厌氧发酵产氢的影响[J].科学通报, 2005, 50(24):2734-2738.
    [2] Yu H Q, Zheng X J, Hu Z H, Gu G W, High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor[J]. Water Sci Technol, 2003, 48:69-75.
    [3] Yuan H Y, Chen Y G, Zhang H X, Jiang S, Zhou Q, Gu G. W. Improved Bioproduction of Short-chain Fatty Acids (SCFAs) from Excess Sludge under Alkaline Conditions[J]. Environ. Sci. Technol, 2006, 40:2025-2029.
    [4] Du G C, Yu J. Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates[J]. Environ Sci Technol, 2002, 36:5511-5516.
    [5]任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].北京:科学出版社, 2005, 51-135.
    [6]任南琪,王爱杰等编著.厌氧生物技术原理与应用[M].北京:化学工业出版社, 2004.
    [7] Cohen A, Van Gemert J M, Zoetemeyer R J, et al. Main characteristics and stoichiometric spects of acidogenesis of soluble carbohydrate containing wastewater[J]. Process Biochem, 1984, 19:228-237.
    [8]李建政,任南琪.产酸相最佳发酵类型工程控制对策[J].中国环境科学, 1998, 18:398-402.
    [9]严月根,钱易.两相厌氧工艺的理论基础及实际应用[J].中国沼气, 1989, 7:1-6.
    [10] Yu H Q, Fang H H P. Thermophilic acidification of dairy wastewater[J]. Appl Microbiol Biotechnol, 2000, 54(2):439-444.
    [11] Horiuchi J, Shimizu T, Tada K, et al. Selective production of organic acids in anaerobic acid reactor by pH control[J]. Bioresour Technol, 2002, 82 (3):209-13.
    [12] Yang K, Yu Y, Hwang S. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids : partial acidification and methanation[J]. Water Res, 2003, 37:2467-2477.
    [13]周洪波, Ralf C R,陈坚,任洪强.产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响[J].中国沼气, 2000, 18:20-23.
    [14]任南琪,王宝贞,马放. 1995,有机废水产酸发酵的生理生态学分析[J].中国沼气, 13:1-6
    [15]马放,戴爱临,任南琪,曾莉,崔雅珊.产酸相最佳发酵类型[J].哈尔滨建筑大学学报, 1995, 28:63-68.
    [16]李白昆,吕炳南,任南琪,杨克勇.产酸相乙醇型发酵的影响因素研究[J].哈尔滨建筑大学学报, 1996, 29:44-48.
    [17] Ren N Q, Wang B Z, Huang J C. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor[J]. Biotech Bioeng, 1997, 54:428-433.
    [18]王勇,孙寓姣,任南琪,李建政. C/N对细菌产氢发酵类型及产氢能力的影响[J].太阳能学报, 2004, 25:375-378.
    [19] Bouallagui H, Torrijos M, Godon J J, Moletta R, Ben Cheikh R, Touhami Y, Delgenes J P, Hamdi M. Two-phase anaerobic digestion of fruit and vegetable wastes: bioreactors performance[J]. Biochem Eng J, 2004, 21: 193-197.
    [20] Lin C Y, Lay C H. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora[J]. International J Hydrogen Energy, 2004, 29:41-45.
    [21] Yen H W, Brune D. Anaerobic co-digestion of algal sludge and waste paper to produce methane[J]. Bioresource Technol, 2007, 98:130-134.
    [22] Ross I R. Acetate Kinase of Bacteria (Acetokinase). Methods Enzymol, 1955, 1:591-595.
    [23] Andersch W, Bahl H, Gottschalk G. Level of enzyme involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum[J]. Eur J Appl Microbiol Biotechchnol, 1983, 18: 327-332.
    [24] Zhu Y, Yang S T. Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor[J]. Biotechnol Prog. 2003, 19:365-372.
    [25] Kellermeyer R W, Wood H G. 2-methylmalonyl-CoA mutase from Propionibacterium shermanii (methylmalonyl-CoA isomerase) [J]. Methods in Enzymology, 1969, 13:207-215.
    [26] Liu M, Ren N Q, Chen Y, et al. Conversion regular patterns of acetic acid, propionic acid and butyric acid in UASB reactor[J]. J environ sci China, 2004, 16:387-391.
    [27]任南琪,赵丹,陈晓蕾,李建政.厌氧生物处理丙酸产生和积累的原因及控制对策[J].中国科学, 2002, 32:83-89.
    [28] Han S K, Shin H S. Biohydrogen production by anaerobic fermentation of food waste [J]. International J of hydrogen energy, 2004, 29:569-577.
    [29] Liu H, Fang H H P. Effect of pH on hydrogen production from glucose by a mixed culture[J]. Bioresource Technol, 2002, 82:87-93.
    [30]刘艳玲.两相厌氧系统底物转化规律与群落演替的研究[D].哈尔滨工业大学博士学位论文, 2001.
    [31] Yu H Q, Fang H H P. Acidification of mid- and high-strength dairy wastewaters[J]. Water Res, 2001, 35:3697-705.
    [32] Zindel U, Freudenberg W, Rieth M, Andreesen J R, Schnell J, Widdel F. Eubacteriumacidaminophilum sp. nov., a versatile amino acid-degradating anaerobe producing or utilizing H2 or formate[J]. Archives of Microbiol, 1988, 150:254-266.
    [33]闵航,陈美慈,赵宇华,钱泽澍编著.厌氧微生物学[M].杭州:浙江大学出版社, 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700