用户名: 密码: 验证码:
半干旱黄土区不同密度刺槐林生态效益研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对黄土高原半干旱丘陵沟壑区不同密度刺槐人工林植被的生长状况、物种多样性、林冠层和枯枝落叶层的水文生态功能、刺槐林地土壤水分-物理性质和土壤养分的研究,比较了不同密度刺槐人工林的生态效益。为该区刺槐人工林的经营管理提供理论依据和技术支持。研究结论如下:
     (1)林龄为20a的刺槐人工林,高密度林分内林木的树高、冠幅等生长指标值,均比低密度林分内的为低,但郁闭度要比低密度林分高;密度大的林分胸径普遍较小,随着林分密度的降低,胸径逐渐增大。
     (2)刺槐林下灌木层和草本层植被的平均高度、盖度、生物量、物种丰富度都随着林分密度的降低而升高。各林分林下植被层的含水量也存在着随林分密度的降低而升高的趋势。在不同密度群落内,草本层的Shannon-Weiner指数、均匀度指数和丰富度指数均高于灌木层,而灌木层的优势度指数均高于草本层。
     (3)随着林外降水量的增大,各密度林内透过降水量均增大。在林外降水量相同时,林分密度越大,林内透过降雨量愈小。相同密度林分,降雨强度越大,林冠的截留率越小;相同降雨强度下,郁闭度越大林冠截留率越大,即林分密度越大,林冠截留率越大。
     (4)刺槐中龄林林下枯落物的蓄积量随着林分密度增加而减少。随着林分密度的增加,林下枯落物未分解层蓄积量所占的百分比相应地增加。不同密度刺槐林枯落物最大持水量比较,密度为1 667株/hm~2时持水量较大。枯落物的持水量均随浸水时间的延长而增加,浸水24h时达到最大。不同密度刺槐林枯落物浸水开始时的吸水速率比较,密度为1 667株/hm~2时最大。
     (5)刺槐林地土壤含水量有随林分密度的减小而先升高后降低的趋势,密度中等(1 667株/hm~2)的林地土壤水分最好。不同密度刺槐人工林各土层深度土壤含水量随着土层深度的加深有逐渐提高的趋势。刺槐林地土壤容重随土壤深度的变化,表层容重较小,深层逐渐增大。各密度刺槐林地相比,密度为1 667株/hm~2的刺槐林下各层的容重均较其它密度刺槐林对应层的容重小,在该区这一密度林分对土壤的熟化作用更强一些。
     (6)与撂荒地相比,刺槐林地不同深度的土壤总孔隙度均有所增加,密度中等(株行距为1.5×4m,1 667株/hm~2)的林地土壤总孔隙度最大,可达57.75%,一般密度大的林分非毛管孔隙度较大。不同密度各刺槐林相比土壤养分含量变化不明显;刺槐林地的养分含量及保肥力较草地和农地高。
In this paper the ecological benefits of Black Locust plantation in hilly and gully regions on loess plateau of semi-arid area with different ages and densities were taken as research object.The following factors and their interactions were studied. Including the growth status and the species diversity, the eco-hydrological function of canopy layer and litter layer, soil moisture-physical properties and the soil nutrient content. The purpose of this paper is provided evidences to the plantation management in this area, which has great significance in theory and practice.The study results show that:
     (1) In the same stand age(20a),the values of various growth indexes in higher density forest is lower than lower density forest, such as tree height、crown width and so on, but the value of canopy density is higher than lower density forest. The DBH (Diameter at Breast Height) of higher density forest is generally smaller, and the DBH increasing gradually with the decreasing of the forest density.
     (2) At the shrub layer and herb layer under different stand densities, as the stand density increasing the plant average height, vegetation coverage, biomass and the species richness were all decreasing. The undergrowth vegetations water content is higher in lower density than in higher density. At each stand densities community the Shannon-Weiner index, species evenness index and richness index of herb layer were all higher than shrub layer, but the dominance index of herb layer were lower than shrub layer.
     (3)With the rainfall precipitation outside forest increases, the precipitation under the canopies in each density forest increasing gradually. The density of the stands has great influences on the canopy density, the canopy density is higher in higher density,and during the same rainfall intensity the rate of canopy interception in higher density is bigger than lower density.The rainfall precipitation understory decreasing as the the stand density increasing.
     (4) With the stand density increasing the litter amount in different forest decreasing accordingly, and the per centum of undecomposed litter amount increasing gradually. The litter in medium-density (1 667strains/hm2) has better water holding capacity. With the passage of immersion time the water holding capacity of litter increased, and reaches the maximum after 24h.
     (5)With the stand density in is sparse, soil water content showed the trend of increasing at first and then decreasing, and for which the medium density (1 667 strains/hm~2) is the highest. For each stand density, soil water content in deeper layer will rise. And for each stand density, the soil bulk density increasing with soil layer deepening. Soil bulk density in the medium density (1 667 strains/hm~2) is smaller than other densities, it so that the action of soil-ripening in stand density is more strong.
     (6)Compared with the barren land, the soil total porosity of Robinia pseudoacacia woodland at different depths was increased, the soil total porosity of medium-density (planting spacing of 1.5×4m,1 667strains /hm~2) woodland is the biggest,up to 57.75%. Generally speaking the soil non-capillary porosity of higher densitie forest is larger than the lower densitie forest. Although the changes in soil nutrient content caused by the changes of density are not so obvious, the nutrient content and security fertility function of Robinia pseudoacacia forest is higher than grassland and agricultural land.
引文
[1]卞义宁.陇东半干旱地区刺槐水保林合理密度分析与探讨[J].中国水土保持,1996,16(3):22-24
    [2]高人,周广柱.辽宁省东部山区5种森林植被类型水文生态效益综合评判[J],中国生态农业学报,2003,11(2):122-125
    [3]郝文芳,单长卷,梁宗锁,等.陕北黄土丘陵沟壑区人工刺槐林土壤养分背景和生产力关系研究[J],中国农学通报,2005,21(9):129-135
    [4]胡振琪,张光灿,毕银丽,等.煤矸石山刺槐林分生产力及生态效应的研究[J],生态学报,2002,22(5):122-125
    [5]李勤,刘新宇.黑龙江省黑土丘陵漫岗区水土保持林生态效益研究[J],防护林科技,2004,20(5):30-32
    [6]李世荣,张卫强,贺康宁.黄土半干旱区不同密度刺槐林地的土壤水分动态[J],中国水土保持科学,2003,1(2):28-32
    [7]刘晨峰,尹婧,贺康宁.林下植被对半干旱区不同密度刺槐林地土壤水分环境的指示作用[J],中国水土保持科学,2004,2(2):62-67
    [8]刘汉奎,于清娟,孙玉梅,等.刺槐人工林林木地径与胸径关系的分析[J],防护林科技,2007,23(5)增刊,26-27
    [9]刘培娟,杨吉华,李申安.三里庄水库上游水源涵养林不同林分枯落物水容量研究[J].水土保持研究,2002,14(1):239-241
    [10]刘增文,李玉山,刘秉正,等.黄土残塬沟壑区刺槐人工林生态系统的养分循环与动态模拟[J],西北林学院学报,1998,13(2):34-40
    [11]鲁子瑜,关秀绮.半干旱黄土区丘陵区造林密度试验研究[J],中国水土保持 1993,13(7):26-29
    [12]戚维江,高绪汤,肖思友.编制辽宁省刺槐人工林林分密度管理图[J],东北林业大学学报,1991,19(3):96-102
    [13]曲红.晋西黄土高原人工林营造对植物多样性的影响[D].北京:北京林业大学,2008.
    [14]石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,16(5):481-487
    [15]孙鹏森,马李一,马履一.油松、刺槐林潜在耗水量的预测及其与造林密度的关系[J],北京林业大学学报,2001,23(2):1-6
    [16]孙晓辉,吴祥云,刘广.沙地造林合理密度问题的探讨[J].防护林科技,2004,58(1):63-64
    [17]王玉,郭建斌.黄土高原半干旱区刺槐人工林群落物种多样性研究[J].四川林勘设计,2008,3(1):11-16
    [18]王百田,王颖,郭江红等.黄土高原半干旱地区刺槐人工林密度与地上生物量效应[J],20053(3):35-39中国水土保持科学
    [19]王斌瑞,王百田.黄土高原径流林业[M].北京:中国林业出版社,1996,17-29.
    [20]王克勤,王百田,王斌瑞.集水造林不同密度林分生长研究[J],林业科学,2002,38(2):54-60
    [21]王克勤,王斌瑞.黄土高原刺槐林问伐改造研究[J],应用生态学报,2001,13(1):11-15
    [22]王礼先,解明曙.山地防护林水土保持水文生态效益及其信息系统[M].北京:中国林业出版社,1997.28-68
    [23]王力,邵明安,李裕元.陕北黄土高原人工刺槐林生长与土壤干化的关系研究[J].林业科学,2004,40(1):84-91
    [24]王佑民.我国林冠降水再分配研究综述[J].西北林学院学报,2000,15(3):1-7
    [25]卫三平,王力,吴发启.黄土丘陵沟壑区刺槐林冠截留模拟[J],林业科学,2008,44(1):26-33
    [26]魏高军.干旱丘陵区不同整地方式刺槐林效益分析[J],河南林业科技,2005,25(4):26-27
    [27]吴钦孝,杨文治.黄土高原植被建设与可持续发展[M].北京:科学出版社,1998.37-70.
    [28]杨洪学,蒙宽宏,孟祥楠,等.阿什河流域不同林分类型枯落物持水能力研究[J].防护林科技,2005,9(5):14-17
    [29]余新晓,张建军.黄土区防护林生态系统土壤水分条件的分析与评价[J].林业科学,1996,32(4):25-33
    [30]张柏林.刺槐人工林林地凋落物量和林下植物生物量与立地因素间相关关系的研究[J],生态学杂志 1991,10(4):23-25
    [31]张洪江,程金花,史玉虎,等.三峡库区3种林下枯落物储量及其持水特性[J].水土保持学报,2003,17(3):55-58
    [32]张华,王百田,郑培龙.黄土半干旱区不同土壤水分条件下刺槐蒸腾速率的研究[J],水土保持学报,2006,20(2):12-17
    [33]张建军,毕华兴,魏天兴.晋西黄土区不同密度林分的水土保持作用研究.北京林业大学学报,2002,24(3):50-53
    [34]张建军,贺维,纳磊.黄土区刺槐和油松水土保持林合理密度的研究[J],中国水土保持科学,2007,5(2):55-59
    [35]张社奇,王国栋,刘建军,等.黄土高原刺槐林地土壤水分物理性质研究[J],西北林学院学报 2004,19(3):11-14
    [36]张永涛,杨吉华.黄土高原降水资源环境容量下侧柏合理密度的研究[J].水土保持学报,2003,17(2):156-162
    [37]张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能[J].水土保持学报,2005,19(3):139-143
    [38]赵宏伟,李宝船.刺槐人工林经营密度的研究[J],防护林科技,1999,9(3)
    [39]赵陟峰,郭建斌,赵廷宁,等.土桥沟流域不同林分枯落物的水文特性[J],西北林学院学报,2008,23(6):14-17
    [40]周跃.高山峡谷区云南松林土壤侵蚀控制的水文效应[J].土壤侵蚀与水土保持学报,1998,4(3):31-38
    [41]Annika Kangas;Matti Maltamo,Calibrating predicted diameter distribution with additional information in growth and yield predictions,Mar 2003;Canadian Journal of Forest Research;33(3):430-434
    [42]Annikki Makela,Process-based modeling of tree and stand growth:Towards a hierarchical treatment of multiscale processes,Canadian Journal of Forest Research;Mar 2003;33(3):398-409
    [43]Boris Zeide,Density and the growth of even-aged stands,Nov 2002;Forest Science; 48( 4):743-754
    [44] BORKOVER M, WU Q, DEBOVICS G. Surface area and size distribution of soil particles [J]. Colloids Surf Physicochem Eng Aspects, 1993. 73(11): 65-76.
    [45] Chang-Seok L, Hyun-Je C, Hoonbok Y.Stand dynamics of introduced black locust(Robinia pseudoacacia L.) plantation under different disturbance regimes in Korea[J]. Forest Ecology and Management, 2003, 175: 223-228.
    [46] Converse T E. Betters D R. Biomass yield equations for short rotation black locust plantation in the Central Plains[J].Fuel Energy Abstracts, 1996, 37(2): 114-118.
    [47] Converse T E. Betters D R. Biomass yield equations for short rotation black locust plantation in the Central Plains [J]. Biomass and Bioengery, 1995, 8(4): 251-254.
    [48] Don C Bragg, Optimal diameter growth equations for major tree species of the Midsouth, Feb 2003; Southern Journal of Applied Forestry; 27( 1): 5-10
    [49] EVANS J, WOOD P J. The place of plantation in tropical forestry[J]. TFU,1993, 5: 3-5.
    [50] Filcheva E, Noustorova M, enteheva-Kostadinova S. Organic accumulation and microbial action in surface coal-mine spoils,Pernik,Bulgaria[J] .Ecological Engineering, 2000, 15: 1-15.
    [51] Karl J N.Size-dependent allometry of tree weight, Diameter and trunk-taper[J]. Annals of Botany, 1995, 75(3): 217-227.
    [52] Karoly R, Zoltan O, lldiko B. Propagation methods for black locust (Robinia pseudoacacia L.) improvement in Hungary[J] .Journal of Forestry Research, 2001, 12(4): 215-219.
    [53] Karoly R. Black locust (Robinia pseudoacacia L.)improvement stand management in Hungary [J].Forestry Studies in China, 2000, 1(2): 42-46.
    [54] Karoly R. Management of black locust (Robinia pseudoacacia L.) stands in Hungary [J]. Journal of Forestry Research, 2002, 13(4): 260-264.
    [55] Leer. Forest Hydrology[M]. New York: Columbia University Press, 1980.
    [56] Monserud R A. Height growth and site index curves for inland Douglas-firbased on stem analysis data forest habitat type Forest Scie. 1984. 30(4)
    [57] Quang V Cao; Shiansong Li; Marc E McDill, Developing a system of annual tree growth equations for the loblolly pine shortleaf pine type in Louisiana, Nov 2002;Canadian Journal of Forest Research; 32(11): 2051-2059
    [58] S Sironen; A Kangas; M Maltamo; J Kangas, Estimating individual tree growth with nonparametric methods, Mar 2003; Canadian Journal of Forest Research; 33(3): 444-449
    [59] TURCOTIEDL. Fractal fragmentation model of soil aggregation[J]. Geography Res, 1993, 91(12): 1896-1899.
    [60] TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle-size distribution analysis and limitations[J]. Soil Sci Soc Am J, 1992(56): 362-369.
    [61] Vodak M C, Roberts P L, Wellman J D, et al.Scenic impact of eastern hardwood management[J]. Forest Science, 1985, 31(2): 239-301
    [62] Wang Baitian, Tian Jinghui, Zhang Fu'e, Design Method of Rainwater Harvesting System for Afforestation in The Loess Plateau,Forestry Studies in China, 2002, Vol.4, No.1, P: 29-34
    [63] Wang Keqin,Yang Xiaohui. The optional thinning intensity and water productivity of black locust foist on Loess Plateau, Beijng For Univ(in English),1998,7(2): 19-27
    [64] Zhi An Li; Bi Zou; Han-ping Xia; Hai Ren; et al. Litterfall Dynamics of an Evergreen Broadleaf Forest and a Pine Forest in the Subtropical Region of China, ProQuest 2005.51(6) ,608-615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700