用户名: 密码: 验证码:
毛乌素沙地三典型造林树种蒸腾耗水特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛乌素沙地水资源短缺,人工造林由于密度过大而易出现退化,需要人工灌溉以保证林木持续存活,基于此背景,笔者于2011年4月份起至11月份的整个生长季,应用热平衡包裹式和探针式茎干液流计对当地典型造林、绿化树种新疆杨(Populus bolleana Lauche)、樟子松(Pinussylovestrisver.Mongolica)以及优良天然固沙植物花棒(Hedysarum scoparium)的蒸腾耗水特性、林分水分平衡状况进行了研究,并据此推算合理造林密度。主要研究结果如下:1、整个生长季内,四棵地茎分别为29mm、22mm、16mm、12mm的花棒植株各自耗水量为1045.4L、379.7L、311.1L、159.7L,两棵胸径为91、96mm的新疆杨耗水量分别为5383.5L、5607.8L,地茎30mm的樟子松耗水量为2479.3L。不同大小花棒和新疆杨植株的液流量与植株叶面积和茎干截面积正相关。2、花棒、新疆杨和樟子松的液流量存在明显的季节变化,液流速率日进程规律在不同生长阶段随着植物体水分利用机制改变也发生过渡变化。3、阴雨天气会对三者的液流规律均造成显著影响,花棒雨天夜间液流昼低夜高,雨后天晴液流迅速恢复昼夜节律,且液流速率较雨前提升。樟子松雨天昼、夜液流速率都维持平稳低值,雨后晴天恢复昼夜节律。雨天新疆杨的液流速率变的平稳峰值不明显。花棒、樟子松和新疆杨在降雨天气土壤水分达到饱和时水分吸收的响应机制不同,反映了不同植物种在水分吸收动力上的不同,花棒、新疆杨会通过蒸腾拉力、根压及被动吸水三种动力吸取水分,而樟子松的被动吸水很弱。4、对生长季林地土壤剖面水分动态进行分析,各层次土壤水分补给、消耗途径不同,动态变化趋势不一,其中10-50cm土层水分含量变化幅度最大,受太阳辐射蒸发和植物根系吸收消耗作用变化剧烈,60-1OOcm剖面深的水分动态变化不明显,水分亏损量最小,5至11月份为花棒林地水分亏缺20.7mm,樟子松林地亏缺21.8mm5、根据已经测得的树种耗水量和水分平衡状况推算三树种的最小水分营养面积,3cm地茎的樟子松最小水分营养面积为12.8m2。胸径10cm的新疆杨最小水分营养面积为28m2。地茎3cm的花棒最小水分营养面积为5.3m2。
Water resource in Mu us Sandy land is much short-handed, meanwhile more and more trees are being planted which needed to be irrigated, on this background we took a research on the evaportranspiration of three typical trees:Hedysarum scoparium, the mean indigenous tree,Populus bolleana Lauche, Pinussylovestrisver.Mongolica, trees of shelter belts and towns. From April to October in2011, we study the transpiration of this three trees, the water equilibrium of soil-plant syatem, base on which we calculate the appropriate density or space between trees. Finally, we got results as follows:1、In the whole growing season, April to October, the four Hedysarum scoparium with stems of30mm,20mm,15mm,9mm have consumed water of1045.4L、379.7L、311.1L、59.7L respectatively, Water consumption increasing from May to July, reach the maximum in August。2、Populus bolleana Lauche with stems of (91mm,96mm)consumed water of5383.5L,5607.8L respectively, Pinussylovestrisver. Mongolica, stem of30mm used up water of2479.3L。The accumulation of water consumption in the whole growing season is in direct proportion to leave area and stem diameter。2、Diunal variation of sap flow fluctuation is transitionally changing in the growing season, adjusting to its way of water consumption.3、In rainy and cloudy days, sap flow of the three trees are influenced obviously, in the nights of rainy days, sap flow of Hedysarum scoparium reach the maximum, in the day time it is only1/4of that in fine days, in the fellowed days, it recover rapidly and increase in some extent. Sap flow of Pinussylovestrisver. Mongolica, in rainy days is rather slow in both daytime and nighttime, and recover the previous pattern. In rainy days, sap flow of Populus bolleana Lauche stay smooth and steady, without fluctuation. When soil moisture reach the maximum in rainy days, they absob water in different ways, which reflect that the dynamic of water absoption diverse in the three trees. Transpirational pull and root pressure, two ways of active/initiative water absorption, and passive absorption of water. 4、The vertical distribution of soil moisture content was observed throughout the whole growing season, water replenishment and consumption is different in every layer. Over the50cm, water content rise and fall rapidly, it is the rapid change layer, on the surface water is easiest to change for rain, dew and evaporation. In the20-50cm layer, water supplied by infiltration and used by root absorption. In60-100cm layer, soil moisture content is relatively stable, only precipitations over40mm is able to obviously infiltrate into80-100cm layer. Form the beginning to the end of growing season, the water wane in Hedysarum scoparium woosland is20.7mm, water wane in Pinussylovestrisver. Mongolica woodland is21.8mm.5、In light of the water consumption of tree transpiration that of soil evaporation of forest plot and the precipitation quantity under an assurance rate as80%during the growth season, the least water nourishment area for a Pinussylovestrisver. Mongolica with stem of3cm is12.8m2,,and the current density of planted forest is over, the appropriate density is3*4, two time of the atual density.For Populus bolleana Lauche with stem of8to10cm the least water nourishment area is28m2, Hedysarum scoparium with stem of3cm need a least water nourishment area of5.3m2.
引文
[1].安锋,张硕新.7种木本植物根和小枝木质部栓塞的脆弱性[J].生态学报,2005,25(8):1928-1933.
    [2].白雪峰,韩辉,周凤艳.沙地樟子松蒸腾耗水的生态学特征[J].辽宁工程技术大学学报(自然科学版)2011,30(3):404-408.
    [3].常学向,赵文智.荒漠绿洲农田防护树种二白杨生长季节树干液流的变化[J].生态学报2004.24(7):1436-1442.
    [4].陈丽华,余新晓.晋西黄土地区合理造林密度的确定[J].林业科技通讯,1995,(1):22-23.
    [5].陈永金.干旱地区植物耗水量的研究与进展[J].干旱区资源与环境,2004,18(6):152-157.
    [6].党宏忠,张劲松,李卫.柠条主根液流与叶面积关系初探[J].林业科学研究,2009,22(5):635-640.
    [7].丁晓纲,何茜,李吉跃.毛乌素沙地樟子松和油松人工林光合生理特征[J].水土保持研究,2011,18(1):215-220.
    [8].段爱国.干热河谷主要植被恢复树种蒸腾作用[J].生态学报2009.29(12):6691-6701.
    [9].段玉玺(2008),盐池县沙地造林的水分环境容量与区域生态用水研究,北京林业大学博士学位论文
    [10].段玉玺,秦景,贺康宁.白榆、新疆杨液流动态比较研究[J].中国沙漠,2008,28(6):1136-1145.
    [11].冯金朝,刘新民.干旱环境与植物的水分关系.[M]北京:中国环境科学出版社,1998,45-46
    [12].冯仲科,余新晓.3S技术及其应用[M],北京:中国林业出版社,2000.125-126
    [13].格日勒,张力,刘军.库布齐沙漠人工梭梭林地土壤水分动态规律的研究[J].干旱区资源与环境,2006,20(6):1 73-179.
    [14].格日勒.几种荒漠植物对干旱过程的生理适应性比较[J].应用与环境生态学报,2008.14(6):763-768
    [15].贡璐,潘晓玲,常顺利SPAC系统研究进展及其在干旱区研究应用初探[J].新疆环境保护,2002,24(2):1-4.
    [16].郭跃(2011),毛乌素沙地沙木蓼和花棒牦水特性研究,北京林业大学硕士学位论文
    [17].何斌,李卫红,陈永金.干旱胁迫条件下胡杨茎流与茎直径变化分析[J].干旱区地理,2007.30(2):223-231.
    [18].贺康宁,田阳,张光灿.剌槐日蒸腾过程的Penman-Monteith方程模拟[J].生
    态学报,2003,23(2):251.
    [19].蒋瑾. 从水分平衡角度探讨固沙植物合理密度[J].生态学杂志,1986,5(1):7-12.
    [20].金红喜:,徐先英,唐进年.花棒液流变化规律及其对环境因子的响应[J].西北植物学报,2006,26(2):0354-0361.
    [21].靳甜甜,刘国华,胡婵娟.黄土高原常见造林树种光合蒸腾特征[J].生态学报,2008,28(11):5758-5766.
    [22].康博文,刘建军,李文华.樟子松苗木生长规律研究[J].西北林学院学报,2009,24(1):74-77.
    [23].李红丽.浑善达克沙地植物蒸腾特征的研究[J].干旱区资源与环境,2003,17(5)135-140.
    [24].刘昌明,张喜英.大型蒸渗仪与小型棵间蒸发器结合测定冬小麦蒸散的研究[J].水利学报,1998,(10):36-39.
    [25].刘文国,刘玲,张旭东.杨树人工林树干液流特性及其与影响因子关系的研究[J].水上保持学报,2010,24(2):96-102
    [26].马建新,陈亚宁,李卫红.荒漠防护林典型树种液流特征及其对环境因子的响应[J].生态学报,2010,30(3):0579-0586.
    [27].聂立水,李吉跃.应用TDP技术研究油松树干液流速率[J].北京林业大学学报,2004,26(6):49-57.
    [28].国家林业局,三北防护林体系建设30年发展报告[M].北京:中国林业出版社,2008
    [29].桑玉强,郭芳,张劲松.毛乌素沙地新疆杨蒸腾变化规律及其影响因索[J].林业科学,2009,45(9):66-72.
    [30].桑玉强,刘全军,吴文良.毛乌素沙地新疆杨生长季节蒸腾耗水规律[J].东北林业大学学报,2008,36(9):28-32.
    [31].申李华,张志强,刘晨峰.沙地杨树人工林树干液流特征[J].中国水土保持科学.,2007,5(1):88-92.
    [32].沈吉庆,防风固沙优良先锋树种—花棒[J].林业实用技术,2002,2:18-22
    [33].沈振西(2005),宁夏南部柠条、沙棘和华北落叶松的液流与蒸腾耗水特性,中国林业科学研究院博士学位论文
    [34].司建华,冯起,张小由.极端干旱区荒漠河岸林胡杨生长季树干液流变化[J].中国沙漠,2007,27(3):442---447.
    [35].宋云民(2006),毛乌索沙地主要树种水分特征及植被恢复模式研究,中南林业科技大学博士学位论文
    [36].孙慧珍.应用热技术研究树干液流进展[J].应用生态学报,2004,15(6)1074-1078.
    [37].孙双峰.稳定同位素技术在植物水分利用研究中的应用[J].生态学报,2005,25(9):2362-2371.
    [38].田阳(2009),盐池沙地防护林林木耗水特性及其结构配置研究,北京林业大学博士学位论文
    [39].王礼先.全球荒漠化防治现状及发展趋势[J].世界林业研究,1994,(01):10-17.
    [40].王鸣远,关三和,王义.毛乌素沙地过渡地带土壤水分特征及其植物利用[J].干旱区资源与环境,2002,16(2):37-43.
    [41].王新平.沙坡头地区固沙植物油蒿、柠条蒸散状况的研究[J].中国沙漠,2002,22(4):363-36.
    [42].温存(2007),宁夏盐池沙地主要植物群落土壤水分动态研究,北京林业大学硕士学位论文
    [43].吴丽萍,王学东,尉全恩.樟子松树干液流的时空变异性研究[J].水土保持研究2003,10(4):66-68.
    [44].吴丽萍,王学东.樟子松树干液流的时空变异性研究[J].水土保持研究,2003,10(4):66-68.
    [’45].夏永秋,邵明安.黄上高原半干旱区柠条树干液流动态及其影响因子[Jl.生态学报,2008,28(4):1376-1383.
    [46].徐先英,孙保平,丁国栋,等.干旱荒漠区典型国沙灌木液流动态变化及其对环境因子的响应[J].生态学报,2008,28(3):895-905.
    [47].徐英华,胡俊,李裕红.碳稳定同位素技术在植物水分胁迫研究中的应用[J].生态学报,2004,24(5):1027-1033.
    [48].许冬梅,王堃,龙澍普.毛乌素沙地南缘生态过渡带植被和土壤的特性[J].水土保持通报,2008,28(5):39-45.
    [49].许凤,钟新春,孙润仓.花棒的解剖结构及超微结构研究[J].中国造纸学报,2006,21(2): 1-4.
    [50].许浩,张希明,王永东,等.塔里木沙漠公路防护林乔木状沙拐枣耗水特性[J].干旱区研究,2006,23(2):216-223.
    [51].许浩,张希明,闻海龙,等.塔克拉玛干沙漠腹地多枝柽柳茎干液流及耗水量[J].应用生态学报,2007,18(4):735-741.
    [52].许浩,张希明,闫海龙,等.塔克拉玛干沙漠腹地梭梭(Haloxylon ammodendron)蒸腾耗水规律[J].生态学报,2008,28(8):3713-3811.
    [53].杨文斌.柠条、沙柳人上林水分特征及其在固沙造林中的应用[J].内蒙古林业科技,1993,2:3-8
    [54].于卫平,孙向阳,马晖.宁夏防治治沙及沙产业技术开发研究[J].林业科学研究2004,17: 1-8.
    [55].余峰,陈林,王峰.宁夏中部干旱带人工柠条茎流及蒸腾特征研究[J].水土保持研究,2011,18(2):18-26.
    [56].原鹏飞(2009),盐池沙地水分动态与干沙层形成规律研究,北京林业大大学硕士学位论文
    [57].岳广阳,张铜会,赵哈林,等.科尔沁沙地黄柳和小叶锦鸡儿茎流及蒸腾特征[J].生态学报,2006,26(10):3205-3214.
    [58].岳广阳,赵哈林,张铜会.小叶锦鸡儿灌从群落蒸腾耗水量估算方法[J].植物生态学报,2009,33(3):508-515
    [59].曾凡江,李小明,张希明.塔克拉玛干沙漠南缘新疆杨长枝叶与短枝叶水分生理特性的初步研究[J].干旱区研究,2002,19(1):44-49.
    [60].张国平,周伟军.植物生理生态学[M]:浙江大学出版社,2009
    [61].张进虎(2008),宁夏盐池沙地沙柳、柠条抗旱生理及土壤水分特征研究,北京林业大学硕士学位论文
    [62].张小由,胡杨树干液流的时空变异性研究[J],中国沙漠,2004,24(4):489-49.
    [63].张小由,康尔泗,张智慧,等.沙枣树干液流的动态研究[J].中国沙漠,2006,26(1):146-152.
    [64].张友焱(2006),毛乌素沙地几种树种水分生理特性研究,北京林业大学博士学位论文
    [65].张志强.沙地杨树人工林树干液流特征[J].中国水土保持科学.2007.5(1):88-92.
    [66].张志山.热平衡技术与气孔计法测定沙生植物蒸腾[J].北京林业大学学报,2007,29(1):60-66
    [67]张志山.沙漠人工植被区的蒸发蒸腾[J].生态学报,2005,25(10):2484-2491.
    [68].赵从举,康慕谊,徐广才.非灌溉条件下不同年龄梭梭蒸腾耗水比较[J].干旱区研究,2006,23(2):295-302.
    [69].赵翠仙,黄子琛.腾格里沙漠主要旱生植物旱性结构的初步研究[J].植物学报,1981(23):278-283.
    [70].周海燕,荒漠沙生植物生理生态学研究与展望[J].植物学通报,2001,18(6):643-648.
    [71]. Clark J,Gibbs R D.Studies in tree physiology IV.Further investigations of seasonal changes in moisture content of certain Canada forest trees[J].Can J Bot,1957,35:219-253.
    [72]. Edwards W R N, Warwick N W M. Transpiration from a kiwifruit vine as estimation by the heat pulse technique and the Penman-Monteith equation[J]. New Zealand Journal of Agricultural Research,1984,27:537-543.
    [73]. Fredrik L, Anders L.Transpiration response to soil moisture in pine and spruce trees in Sweden.Agriculture and Forest Meteorology,2002,112:67-85
    [74]. Fredrik L, Anders L.Transpiration response to soil moisture in pine and spruce trees in Sweden Agriculture and Forest Meteorology,2002,112:67-85
    [75]. Hetherington A M,Woodward F I. The role of stomata in sensing and driving environmental change[J].Nature,2003,424:901-908
    [76]. Huerb. Observation and Measurements of Sap Flow in Plant[J].Berichteder Deutscher Botanishen Gessellschaft,1932,50:89-109
    [77]. Lu P.A direct method for estimating the average sap flux density using a medified Grainier measuring system. Aust.J.Plant Physiol.,1997,24:701-705
    [78]. Molly A.Cavaleri and Lawern Sack.Comparetive water use of native and invasive plants at multiple sacles:a global meta-analysis. Ecology 2010.91(9)2705-2715
    [79]. Stand wullschleger, A review of whole-plant water use studies in trees,[J]Tree Physiology 18,1998,499-512
    [80]. Stephen S.O. Burgess, Todd E. Dawson, Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance:a caution. Plant Soil,2008,305:5-13
    [81]. Tyree M T,Ewers F W.The hydraulic architecture of trees and other woody plants[J].New Phytol,1991,119:345-360.
    [82]. Xiaoyan Xu,Ling Tong,Fusheng Li.Sap flow of irrigated Populus alba var. pyramidalisand its relationship with environmental factors and leaf area index in an arid region of Northwest China[J], The Japanese Forest Society and Springer,2011,16:144-152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700