用户名: 密码: 验证码:
南海中尺度涡涡动动能和涡致热量输运特征的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大洋里,中尺度涡的典型空间尺度为数十千米至数百千米,时间尺度为数十天至数百天。海洋中大部分的动能都储存在中尺度涡中,然而,中尺度涡却在向极热量输运中扮演着相对轻微的角色。近年来,水文观测资料和卫星高度计资料显示南海存在着复杂的多涡结构。
     通过分析卫星高度计、气候态温盐资料,探讨了南海中尺度涡的活动特征。利用不稳定性理论,分析了调节南海涡动动能(EKE)季节变化的动力机制。本文还利用Stammer涡致热量输运(EHT)理论讨论了基于观测的南海涡致热量输运特征。结果表明:南海海盆尺度平均的涡动动能在8-12月处于高值水平,而在2月至次年5月处于低值水平;越南东部海域、台湾西南海域和吕宋岛西南海域是三个EKE水平最显著的区域,并具有不同的季节变化特征;涡动动能主导着南海的总动能,特别是在中央海盆区域;50-500米范围内的水平流速的垂向剪切是不稳定性产生的主要来源,从而最终调节着南海涡动动能的季节演变;基于Stammer理论,涡致热量输运方向是downgradient的。
     本文基于ROMS (Regional Ocean Modeling System)建立了南海涡识别的区域海洋模式。利用数值模式揭示了EKE的垂直结构特征。结果表明:EKE的季节和经向变化主要集中在南海表层和次表层;深层水域积分的EKE值不可忽略;南海EKE垂直曲线中,以-200m为拐点,其上EKE随着深度的增加迅速减弱,其下EKE变化缓慢。
     利用数值模式揭示了南海冬季涡致热量输运的水平分布、垂直结构和温跃层对EHT的影响;探讨了EHT产生的动力机制;分析了Stammer涡致热量输运理论的缺陷。结果表明南海涡致热量输运矢量呈现海盆尺度的反气旋式输运特征,与平均流热量输运方向相反。涡致热量输运的经向分量是沿着温度的经向梯度的(upgradient),因此,Stammer涡致热量输运理论不适用于南海。引起中尺度涡热传输的主要动力过程局限于海洋表层和次表层。EHT在垂向存在着方向转换,向北输运的最大值在表层,次表层以深区域EHT的方向向南。温跃层的存在对EHT的垂向结构有重要影响,温跃层附近EHT被显著加强,有时伴随着符号转换。导致EHT产生的动力机制主要是涡致温度异常和涡致流速异常在垂向结构上的不重合性,这种不重合性来源于表面强迫,因而主要集中在混合层。此外,中尺度涡中轴线的倾斜也是EHT产生的可能原因。
Oceanic mesoscale eddies have typical spatial scales of tens to hundreds of kilometers and temporal scales of tens to hundreds of days, respectively. Most of the oceanic kinetic energy is contained in eddy kinetic energy (EKE), however, the eddies play a relatively minor role in the poleward heat transport. Recently, satellite observations show a rich pattern of mesoscale eddies embedded in the mean circulation in the South China Sea (SCS).
     The mesoscale eddy activity is investigated with newly re-processed satellite altimetry observations and hydrographic data. Instability theory analysis is applied to investigate the modulation mechanism of the EKE seasonal variation. Furthermore, Stammer's theory on eddy heat transport (EHT) is adopted to discuss the characteristics of EHT in the SCS. The EKE level of basin-wide average shows a distinct seasonal cycle with the maximum in August-December and the minimum in February-May. In addition, the seasonal pattern of EKE in the basin is dominated by regions offshore central Vietnam (OCV), southwest of Taiwan (SWT), and southwest of Luzon (SWL), which are also the breeding grounds of mesoscale eddies in the SCS. Instability theory analysis suggests that the seasonal modulation of EKE is a manifestation of baroclinic instability. High eddy growth rates (EGR) are found in the active eddy regions. Vertical velocity shear in the upper ocean of50-500m depth is crucial for the growth of baroclinic instability, leading to seasonal EKE evolution in the SCS. The EHT calculated upon Stammer's method results in a downgradient transport of heat in the SCS.
     An eddy-resolving regional ocean model is configured and reasonably well validated for the SCS. The vertical structure of EKE is investigated by using of a realistic simulation over the period of2000-2008. We find that the seasonality as well as meridional variation of EKE is largely confined to the surface and subsurface layers. It should be noted that even though the value of EKE is quite small in the deep layer, its integration over the deep waters is not negligible. In the vertical profile of basin-wide averaged EKE, there is a transportation point around200m, above which EKE decreases sharply from the surface. However, under that point, EKE varies slowly along with depth.
     The horizontal distribution, vertical structure and influence of thermocline on EHT are then investigated. Furthermore, we also discuss the mechanisms of EHT generation and examine why the method of Stammer fails in estimating the EHT in the SCS. The EHT is found to be strong in the western boundary current, while it is generally weak in the central basin. On the basin-scale, the eddy heat transport vector is anticyclonic, while the heat transport by the mean flow is cyclonic. We also found that the direction of EHT is opposite to that of the meridional temperature gradient. This is indicative of an upgradient tansport of heat by eddies. Therefore, Stammer's method for estimating the EHT using altimetry data and the climatological temperature field fails to reproduce the model's directly evaluated EHT in the SCS. Vertically, the EHT is largely confined to the surface and subsurface layers. The vertical profile of basin-wide averaged EHT indicates a direction reversal around the subsurface layer, under which the direction of EHT reverses to southward from northward above. The spatial variation of the effective depth of EHT (De) is also investigated, which is defined by the depth integrated EHT (DEHT) divided by EHT at the surface. Examination of vertical profiles of the simulated eddy reveals that, in the mixed layer, the temperature associated with mesoscale eddies is radically modified by the surface forcing, while the velocity field is not. The consequent enhanced misalignment of temperature and velocity anomalies leads to substantial modifications on the EHT across the seasonal thermocline.
引文
[1]Qu T. Upper-Layer Circulation in the South China Sea*. Journal of Physical Oceanography,2000,30 (6):1450-1460
    [2]Wyrtki K. Scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959-1961. NAGA report,1961,2
    [3]Hellerman S, Rosenstein M. Normal monthly wind stress over the world ocean with error estimates. Journal of Physical Oceanography,1983,13 (7):1093-1104
    [4]Chao S-Y, Shaw P-T, Wu S Y. El Nino modulation of the South China Sea circulation. Progress In Oceanography,1996,38 (1):51-93
    [5]Chu P C, Lu S, Chen Y. Temporal and spatial variabilities of the South China Sea surface temperature anomaly. Journal of Geophysical Research,1997,102 (C9): 20937-20920,20955
    [6]Nitani H,1972. Beginning of the Kuroshio. Kuroshio, H. Stommel and K. Yoshida, Eds. University of Washington Press, pp.129-163.
    [7]Liang W D, Tang T, Yang Y, et al. Upper-ocean currents around Taiwan. Deep Sea Research Part II:Topical Studies in Oceanography,2003,50 (6-7):1085-1105
    [8]Liang W D, Yang Y J, Tang T Y, et al. Kuroshio in the Luzon Strait. Journal of Geophysical Research,2008,113 (C8):C08048
    [9]Yuan Y, Liao G, Guan W, et al. The circulation in the upper and middle layers of the Luzon Strait during spring 2002. Journal of Geophysical Research,2008,113 (C6): C06004
    [10]Li L, Nowlin W D, Jilan S. Anticyclonic rings from the Kuroshio in the South China Sea. Deep-Sea Research Part I,1998,45 (9):1469-1482
    [11]Xu J, Su J. Hydrological analysis of Kuroshio water intrusion into the South China Sea. Acta oceanologica sinica,2000,19 (3):1-21
    [12]Wu C-R, Chiang T-L. Mesoscale eddies in the northern South China Sea. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2007,54 (14-15):1575-1588
    [13]Xiu P, Chai F, Shi L, et al. A census of eddy activities in the South China Sea during 1993-2007. Journal of Geophysical Research,2010,115 (C3):C03012
    [14]黄企洲.巴士海峡黑潮流速和流量的变化.热带海洋,1983,(01)
    [15]Shaw P-T. The Seasonal Variation of the Intrusion of the Philippine Sea Water Into the South China Sea. Journal of Geophysical Research,1991,96 (C1):821-827
    [16]Centurioni L R, Niiler P P, Lee D-K. Observations of Inflow of Philippine Sea Surface Water into the South China Sea through the Luzon Strait. Journal of Physical Oceanography,2004,34 (1):113-121
    [17]Yang Q, Tian J, Zhao W. Observation of Luzon Strait transport in summer 2007. Deep Sea Research Part Ⅰ:Oceanographic Research Papers,2010,57 (5):670-676
    [18]Qu T, Girton J B, Whitehead J A. Deepwater overflow through Luzon Strait.2006a,
    [19]Gilson J, Roemmich D. Mean and temporal variability in Kuroshio geostrophic transport south of Taiwan (1993-2001). Journal of Oceanography,2002,58 (1): 183-195
    [20]Tian J, Yang Q, Liang X, et al. Observation of Luzon Strait transport. Geophysical Research Letters,2006,33 (19):L19607
    [21]Dale W. Wind and drift currents in the South China Sea. Malay Trop Geogr,1956,8: 1-31
    [22]Fang Y, Guo-hong F, Ke-jun Y. ADI barotropic ocean model for simulation of Kuroshio intrusion into China southeastern waters. Chinese Journal of Oceanology and Limnology,1996,14 (4):357-366
    [23]Metzger E J, Hurlburt H E. Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. Journal of Geophysical Research,1996,101 (C5): 12331-12312,12352
    [24]Gan J, Li H, Curchitser E N, et al. Modeling South China Sea circulation:Response to seasonal forcing regimes. Journal of Geophysical Research,2006,111 (C6): C06034
    [25]Wang D, Xu H, Lin J, et al. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. Journal of Oceanography,2008a,64 (6):925-935
    [26]Nan F, Xue H, Chai F, et al. Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dynamics,2011:1-14
    [27]Qu T, Du Y, Sasaki H. South China Sea throughflow:A heat and freshwater conveyor. Geophysical Research Letters,2006b,33 (23):L23617
    [28]Metzger E J. Upper ocean sensitivity to wind forcing in the South China Sea. Journal of Oceanography,2003,59 (6):783-798
    [29]Metzger E J, Hurlburt H E. The importance of high horizontal resolution and accurate coastline geometry in modeling South China Sea inflow. Geophysical Research Letters,2001a,28 (6):1059-1062
    [30]Zhao W, Hou Y, Qi P, et al. The Effects of Monsoons and Connectivity of South China Sea on the Seasonal Variations of Water Exchange in the Luzon Strait. Journal of Hydrodynamics, Ser. B,2009,21 (2):264-270
    [31]Shaw P-T, Chao S-Y. Surface circulation in the South China Sea. Deep Sea Research Part I:Oceanographic Research Papers,1994,41 (11-12):1663-1683
    [32]Liu Q, Yang H, Liu Z. Seasonal features of the Sverdrup circulation in the South China Sea. Progress in Natural Science,2001a,11 (3):202-206
    [33]Liu Z, Yang H, Liu Q. Regional Dynamics of Seasonal Variability in the South China Sea. Journal of Physical Oceanography,2001b,31 (1):272-284
    [34]Soong Y, Hu J H, Ho C R, et al. Cold-core eddy detected in South China Sea. EOS Transactions,1995,76:345-345
    [35]Chu P C, Fan C, Lozano C J, et al. An airborne expendable bathythermograph survey of the South China Sea, May 1995. Journal of Geophysical Research,1998,103 (CIO):21637-21652
    [36]Shaw P T, Chao S Y, Liu K K, et al. Winter upwelling off Luzon in the northeastern South China Sea. Journal of Geophysical Research,1996,101 (C7): 16435-16416,16448
    [37]Yang H, Liu Q. Forced Rossby wave in the northern South China Sea. Deep Sea Research Part I:Oceanographic Research Papers,2003,50 (7):917-926
    [38]Fang G, Fang W, Fang Y, et al. A survey of studies on the South China Sea upper ocean circulation. Acta Oceanographica Taiwanica,1998,37:1-16
    [39]Morimoto A, Yoshimoto K, Yanagi T. Characteristics of sea surface circulation and eddy field in the South China Sea revealed by satellite altimetric data. Journal of Oceanography,2000,56 (3):331-344
    [40]Yuan D, Han W, Hu D. Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters. Geophys. Res. Lett,2007,34:L13610
    [41]Wang G, Chen D, Su J. Winter Eddy Genesis in the Eastern South China Sea due to Orographic Wind Jets. Journal of Physical Oceanography,2008b,38 (3):726-732
    [42]Wang G, Su J, Chu P C. Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett.,2003,30 (21):2121
    [43]Chen G, Hou Y, Chu X. Mesoscale eddies in the South China Sea:Mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research,2011,116 (C6):C06018
    [44]Hwang C, Chen S-A. Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry. Journal of Geophysical Research,2000,105 (C10): 23943-23965
    [45]林鹏飞,王凡,陈永利,et al.南海中尺度涡的时空变化规律Ⅰ.统计特征分析.海洋学报(中文版),2007,(03):14-22
    [46]Tai C K, White W B. Eddy variability in the Kuroshio expansion as revealed by geosat altimetry:energy propagation away from the jet, Reynolds stress, and seasonal cycle. Journal of Physical Oceanography,1990,20 (11):1761-1777
    [47]Wang L, Koblinsky C J, Howden S. Mesoscale variability in the South China Sea from the TOPEX/Poseidon altimetry data. Deep Sea Research Part I:Oceanographic Research Papers,2000,47 (4):681-708
    [48]杨昆,施平,王东晓,et al.冬季南海北部中尺度涡旋的数值研究.海洋学报(中文版),2000,(01)
    [49]苏京志,卢筠,侯一筠,et al.南海表层流场的卫星跟踪浮标观测结果分析.海洋与湖沼,2002,(02):121-127
    [50]Jia Y, Liu Q. Eddy shedding from the Kuroshio bend at Luzon Strait. Journal of Oceanography,2004,60 (6):1063-1069
    [51]Yuan D, Han W, Hu D. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J. Geophys. Res,2006,111:C11007
    [52]Metzger E J, Hurlburt H E. The Nondeterministic Nature of Kuroshio Penetration and Eddy Shedding in the South China Sea*. Journal of Physical Oceanography,2001b, 31 (7):1712-1732
    [53]Cai S, Su J, Gan Z, et al. The numerical study of the South China Sea upper circulation characteristics and its dynamic mechanism, in winter. Continental Shelf Research,2002,22 (15):2247-2264
    [54]Su J, Wang W. On the sources of the Taiwan Warm Current from the South China Sea. Chinese Journal of Oceanology and Limnology,1987, (04):299-308
    [55]Su J. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Continental Shelf Research, 2004,24(16):1745-1760
    [56]Gan J, Qu T. Coastal jet separation and associated flow variability in the southwest South China Sea. Deep Sea Research Part Ⅰ:Oceanographic Research Papers,2008, 55(1):1-19
    [57]Chen G, Hou Y, Chu X, et al. The variability of eddy kinetic energy in the South China Sea deduced from satellite altimeter data. Chinese Journal of Oceanology and Limnology,2009,27 (4):943-954
    [58]Cheng X, Qi Y. Variations of eddy kinetic energy in the South China Sea. Journal of Oceanography,2010,66 (1):85-94
    [59]He Z, DONGXIAO W, JIANYU H. Features of eddy kinetic energy and variations of upper circulation in the South China Sea. Acta oceanologica sinica,2002,21 (2): 305-314
    [60]Zhuang W, Xie S-P, Wang D, et al. Intraseasonal variability in sea surface height over the South China Sea. Journal of Geophysical Research,2010a,115 (C4): C04010
    [61]Wunsch C. Where do ocean eddy heat fluxes matter? Journal of Geophysical Research,1999,104 (C6):13235-13213,13249
    [62]Roemmich D, Gilson J. Eddy Transport of Heat and Thermocline Waters in the North Pacific:A Key to Interannual/Decadal Climate Variability? Journal of Physical Oceanography,2001,31 (3):675-687
    [63]Wyrtki K, Magaard L, Hager J. Eddy Energy in the Oceans. Journal of Geophysical Research,1976,81 (15):2641-2646
    [64]Richardson P L. Eddy Kinetic Energy in the North Atlantic From Surface Drifters. Journal of Geophysical Research,1983,88 (C7):4355-4367
    [65]Stammer D. Global Characteristics of Ocean Variability Estimated from Regional TOPEX/POSEIDON Altimeter Measurements. Journal of Physical Oceanography, 1997a,27 (8):1743-1769
    [66]Zang X, Wunsch C. Spectral Description of Low-Frequency Oceanic Variability. Journal of Physical Oceanography,2001,31 (10):3073-3095
    [67]Gill A E, Green J S A, Simmons A J. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep Sea Research and Oceanographic Abstracts,1974,21 (7):499-508, IN491,509-528
    [68]Scharffenberg M G, Stammer D. Seasonal variations of the large-scale geostrophic flow field and eddy kinetic energy inferred from the TOPEX/Poseidon and Jason-1 tandem mission data. Journal of Geophysical Research,2010,115 (C2):C02008
    [69]Beckmann A, Boning C W, Koberle C, et al. Effects of Increased Horizontal Resolution in a Simulation of the North Atlantic Ocean. Journal of Physical Oceanography,1994a,24 (2):326-344
    [70]Stammer D. Steric and wind-induced changes in TOPEX/POSEIDON large-scale sea surface topography observations. Journal of Geophysical Research,1997b,102 (C9): 20987-21009
    [71]Stammer D. On Eddy Characteristics, Eddy Transports, and Mean Flow Properties. Journal of Physical Oceanography,1998,28 (4):727-739
    [72]Jayne S R, Marotzke J. The Oceanic Eddy Heat Transport*. Journal of Physical Oceanography,2002,32 (12):3328-3345
    [73]Antonov J, Locarnini R, Boyer T, et al. World Ocean Atlas 2005, vol.2, Salinity, NOAA Atlas NESDIS, vol.62, edited by S. Levitus,182 pp., NOAA, Silver Spring, Md,2006,
    [74]Locarnini R, Mishonov A, Antonov J, et al. World Ocean Atlas 2005, vol.1, Temperature, NOAA Atlas NESDIS, vol.61, edited by S. Levitus,182 pp., NOAA, Silver Spring, Md,2006,
    [75]Ducet N, Le Traon P Y, Reverdin G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. Journal of Geophysical Research,2000,105 (C8):19477-19498
    [76]Le Traon P Y, Nadal F, Ducet N. An Improved Mapping Method of Multisatellite Altimeter Data. Journal of Atmospheric and Oceanic Technology,1998,15 (2): 522-534
    [77]Ho C-R, Kuo N-J, Zheng Q, et al. Dynamically Active Areas in the South China Sea Detected from TOPEX/POSEIDON Satellite Altimeter Data. Remote Sensing of Environment,2000,71 (3):320-328
    [78]Shaw P-T, Chao S-Y, Fu L-L. Sea surface height variations in the South China Sea from satellite altimetry. Oceanologica Acta,1999,22 (1):1-17
    [79]Zhuang W, Du Y, Wang D, et al. Pathways of mesoscale variability in the South China Sea. Chinese Journal of Oceanology and Limnology,2010b,28 (5):1055-1067
    [80]Wang G, Chen D, Su J. Generation and life cycle of the dipole in the South China Sea summer circulation. Journal of Geophysical Research,2006,111 (C6):C06002
    [81]Xie S-P, Xie Q, Wang D, et al. Summer upwelling in the South China Sea and its role in regional climate variations. Journal of Geophysical Research,2003,108 (C8):3261
    [82]Wu X, Xie Q, He Z, et al. Free and Forced Rossby Waves in the Western South China Sea Inferred from Jason-1 Satellite Altimetry Data. Sensors,2008,8 (6): 3633-3642
    [83]Emery W J. On the Geographical Variability of the Upper Level Mean and Eddy Fields in the North Atlantic and North Pacific. Journal of Physical Oceanography, 1983,13 (2):269-291
    [84]Qiu B, Kelly K A, Joyce T M. Mean Flow and Variability in the Kuroshio Extension From Geosat Altimetry Data. Journal of Geophysical Research,1991,96 (C10): 18491-18507
    [85]Halliwell G R, Olson D B, Peng G. Stability of the Sargasso Sea Subtropical Frontal Zone. Journal of Physical Oceanography,1994,24 (6):1166-1183
    [86]Qiu B. Seasonal Eddy Field Modulation of the North Pacific Subtropical Countercurrent:TOPEX/Poseidon Observations and Theory. Journal of Physical Oceanography,1999,29 (10):2471-2486
    [87]Zhai X, Greatbatch R J, Kohlmann J-D. On the seasonal variability of eddy kinetic energy in the Gulf Stream region. Geophys. Res. Lett.,2008,35 (24):L24609
    [88]Lorenz E N. Available Potential Energy and the Maintenance of the General Circulation. Tellus,1955,7(2):157-167
    [89]Eady E T. Long Waves and Cyclone Waves. Tellus,1949,1 (3):33-52
    [90]Charney J. Geostrophic Turbulence. Journal of Atmospheric Sciences,1971,28: 1087-1094
    [91]Levitus S, Boyer T. Temperature. Vol.4. World Ocean Atlas 1994,1994,
    [92]Marchesiello P, McWilliams J C, Shchepetkin A. Open boundary conditions for long-term integration of regional oceanic models. Ocean Modelling,2001,3 (1-2): 1-20
    [93]Flather R. A tidal model of the north-west European continental shelf. Memoires Societe Royale des Sciences de Liege,1976,10 (6):141-164
    [94]Chapman D C. Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic Coastal Ocean Model. Journal of Physical Oceanography,1985,15 (8):1060-1075
    [95]Orlanski I. A simple boundary condition for unbounded hyperbolic flows. Journal of computational physics,1976,21 (3):251-269
    [96]Raymond W H, Kuo H. A radiation boundary condition for multi dimensional flows. Quarterly Journal of the Royal Meteorological Society,1984,110 (464):535-551
    [97]Phillips N A. A coordinate system having some special advantages for numerical forecasting. Journal of Atmospheric Sciences,1957,14:184-185
    [98]Freeman N, Hale A, Danard M. A modified sigma equations' approach to the numerical modeling of Great Lakes hydrodynamics. Journal of Geophysical Research, 1972,77(6):1050-1060
    [99]Song Y, Haidvogel D. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. Journal of computational physics,1994, 115(1):228-244
    [100]Shchepetkin A F, McWilliams J C. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling,2005,9 (4):347-404
    [101]Large W. Modeling and parameterizing ocean planetary boundary layers. NATO ASI SERES C MATHEMATICAL AND PHYSICAL SCIENCES,1998,516:81-120
    [102]Mellor G L, Yamada T. A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences,1974,31 (7):1791-1806
    [103]Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems. Reviews of geophysics and space physics,1982,20 (4):851-875
    [104]Galperin B, Kantha L, Rosati A, et al. A quasi-equilibrium turbulent energy model for geophysical flows. Journal of the Atmospheric Sciences,1988,45 (1):55-62
    [105]Allen J, Newberger P, Federiuk J. UpweHing Circulation on the Oregon Continental Shelf. Part I:Response to Idealized Forcing. Journal of Physical Oceanography,1995, 25:1843-1866
    [106]Wu C R, Shaw P T, Chao S Y. Assimilating altimetric data into a South China Sea model. Journal of Geophysical Research,1999,104 (C12):29987-29930,29005
    [107]Jing Z-y, Qi Y-q, Hua Z-l, et al. Numerical study on the summer upwelling system in the northern continental shelf of the South China Sea. Continental Shelf Research, 2009,29 (2):467-478
    [108]Jing Z, Qi Y, Du Y. Upwelling in the continental shelf of northern South China Sea associated with 1997-1998 E1 Nino. Journal of Geophysical Research,2011,116 (C2): C02033
    [109]Qu T. Evidence for water exchange between the South China Sea and the Pacific Ocean through the Luzon Strait. Acta oceanologica sinica,2002, (02):175-185
    [110]Li L, Qu T. Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions. Journal of Geophysical Research,2006,111 (C5):C05017
    [111]Broecker W S, Patzert W C, Toggweiler J R, et al. Hydrography, chemistry, and radioisotopes in the southeast Asian basins. Journal of Geophysical Research,1986, 91 (C12):14345-14314,14354
    [112]Tian J, Yang Q, Zhao W. Enhanced Diapycnal Mixing in the South China Sea. Journal of Physical Oceanography,2009,39 (12):3191-3203
    [113]Qu T, Song Y T, Yamagata T. An introduction to the South China Sea throughflow: Its dynamics, variability, and application for climate. Dynamics of Atmospheres and Oceans,2009,47 (1-3):3-14
    [114]Wang G, Xie S-P, Qu T, et al. Deep South China Sea circulation. Geophys. Res. Lett., 2011,38(5):L05601
    [115]Smith R D, Maltrud M E, Bryan F O, et al. Numerical Simulation of the North Atlantic Ocean at 1/10°. Journal of Physical Oceanography,2000,30 (7):1532-1561
    [116]Yim B Y, Noh Y, Qiu B, et al. The Vertical Structure of Eddy Heat Transport Simulated by an Eddy-Resolving OGCM. Journal of Physical Oceanography,2010, 40 (2):340-353
    [117]Noh Y, Yim B Y, You S H, et al. Seasonal variation of eddy kinetic energy of the North Pacific Subtropical Countercurrent simulated by an eddy-resolving OGCM. Geophys. Res. Lett.,2007a,34 (7):L07601
    [118]Brachet S, Le Traon P Y, Le Provost C. Mesoscale variability from a high-resolution model and from altimeter data in the North Atlantic Ocean. Journal of Geophysical Research,2004,109 (C12):C12025
    [119]Noh Y, Yim B Y, You S H, et al. Seasonal variation of eddy kinetic energy of the North Pacific Subtropical Countercurrent simulated by an eddy-resolving OGCM. Geophys. Res. Lett,2007b,34 (7):L07601
    [120]Beckmann A, Boning C W, Briigge B, et al. On the generation and role of eddy variability in the central North Atlantic Ocean. Journal of Geophysical Research, 1994b,99 (C10):20381-20391
    [121]Eden C, Boning C. Sources of Eddy Kinetic Energy in the Labrador Sea. Journal of Physical Oceanography,2002,32 (12):3346-3363
    [122]Masina S, Philander S G H. An analysis of tropical instability waves in a numerical model of the Pacific Ocean 1. Spatial variability of the waves. Journal of Geophysical Research,1999,104 (C12):29613-29635
    [123]Jochum M, Malanotte-Rizzoli P. On the generation of North Brazil Current rings. Journal of Marine Research,2003,61 (2):147-173
    [124]Jouanno J, Sheinbaum J, Barnier B, et al. The mesoscale variability in the Caribbean Sea. Part II:Energy sources. Ocean Modelling,2009,26 (3-4):226-239
    [125]Meijers A J, Bindoff N L, Roberts J L. On the Total, Mean, and Eddy Heat and Freshwater Transports in the Southern Hemisphere of a 1/8°×1/8° Global Ocean Model. Journal of Physical Oceanography,2007,37 (2):277-295
    [126]Volkov D L, Lee T, Fu L-L. Eddy-induced meridional heat transport in the ocean. Geophys. Res. Lett.,2008,35 (20):L20601
    [127]Cronin M, Watts D R. Eddy-Mean Flow Interaction in the Gulf Stream at 68°W. Part I:Eddy Energetics. Journal of Physical Oceanography,1996,26 (10):2107-2131
    [128]Bower A S, Hogg N G. Structure of the Gulf Stream and Its Recirculations at 55°W. Journal of Physical Oceanography,1996,26 (6):1002-1022
    [129]Qiu B, Chen S. Eddy-Induced Heat Transport in the Subtropical North Pacific from Argo, TMI, and Altimetry Measurements. Journal of Physical Oceanography,2005, 35 (4):458-473
    [130]Hansen D V, Paul C A. Genesis and effects of long waves in the equatorial Pacific. Journal of Geophysical Research,1984,89 (C6):10431-10410,10440
    [131]Bryden H L, Brady E C. Eddy momentum and heat fluxes and their effects on the circulation of the equatorial Pacific Ocean. Journal of Marine Research,1989,47 (1): 55-79
    [132]Marshall J, Jones H, Karsten R, et al. Can Eddies Set Ocean Stratification? Journal of Physical Oceanography,2002,32 (1):26-38
    [133]Boning C W, Cox M D. Particle Dispersion and Mixing of Conservative Properties in an Eddy-Resolving Model. Journal of Physical Oceanography,1988,18 (2):320-338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700