用户名: 密码: 验证码:
季冻区路基土冻融循环后力学特性研究及微观机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改革开放以来,我国的经济建设有了突飞猛进的发展,公路、铁路、水利水电等设施的建设大规模地开展,作为所有工程用作基础的土,明确其在各种环境及人为因素下的物理力学性质,对于保证工程的稳定性和安全性是极其必要的。由于土是自然界各种岩石风化形成的,没有哪一种人为作用能控制土的性质,土的物理及力学特征亦因其形成过程而异有很大的不同,因此,不同地区不同种类的土会在相同条件下呈现出各异的力学特征,尤其在多年冻土和季节性冻土区,由于环境影响因素复杂,土的性质更加难以掌握。
     国内外的专家、学者对土的研究取得了一些阶段性成果,已经明确影响土物理力学性质的因素有很多,包括土的矿物组成、化学成分、土中的盐分、颗粒级配、含水量、孔隙率、温度及荷载等。对于季节性冻土区的压实路基土,其影响因素更加复杂。我国季节性冻土地区占到了国土面积的53.5%,土体在该地区特殊的气候条件下,其物理及力学性质会发生变化,从而影响季冻区路基的工程特性。季冻区路基土冬季冻胀,春季融化,在交通荷载作用下容易发生路面病害,如:鼓包、弹簧、断裂和翻浆冒泥等现象,给交通运输和经济建设带来极大的危害,严重影响整个交通运输事业的发展。
     为了使研究结果具有普遍性,本文选取3种不同塑性指数土,首先在最佳含水率下压实成型,对不同塑性指数路基土进行不同次数冻融循环,再进行静、动三轴试验,得到压实路基土静、动力参数与冻融循环次数的关系。同时采用场发射扫描电镜(ESEM)采集不同塑性指数土,不同冻融循环次数后的压实路基土微观结构图像,然后对土各状态下颗粒及孔隙的微观结构参数进行量化统计,分析微观机理。
     本文是国家自然科学基金资助项目计划《冻融循环后路基材料力学特性的静动参数转换理论及试验研究》项目(50978117)中的一部分,主要的工作内容如下:
     1.选择3种不同塑性指数的路基土,进行常规物性指标试验。
     为了使项目对季冻区路基土的研究具有普遍性,本文选取3种不同塑性指数土,基本能够涵盖直接应用于路基建设(无需改良)的所有土,以使研究结果更具推广性。首先对3种土的物性指标进行确定,包括含水率、密度、颗粒分析、最佳含水率、界限含水率等。还进行了化学元素全分析和X射线衍射分析得到土的矿物含量和化学成分。
     2.对不同塑性指数路基土进行三轴压缩试验
     通过对室内制备的最大压实度试样在经历0~7次完整冻融循环过程后,进行不同围压下三轴压缩试验,得到3种土不同冻融循环次数及不同围压下的力学参数。结果表明:粘聚力c及内摩擦角φ随冻融循环次数变化规律不明显;抗剪强度及弹性模量在不同冻融循环次数及不同围压下规律较明显:相同围压相同冻融循环次数条件下,路基土抗剪强度和弹性模量均随塑性指数增加而增加;同种土相同冻融循环次数下,路基土抗剪强度和弹性模量随围压增加而增加;相同围压下路基土抗剪强度随冻融循环次数基本呈下降趋势,路基土弹性模量随冻融循环次数的增加呈下降趋势,且前几次冻融循环后下降比较明显,以后逐渐趋于稳定值。本文采用多元非线性拟合方法,建立不同塑性路基土抗剪强度、弹性模量与围压及冻融循环次数关系,拟合效果理想,可为缺乏相关资料的季冻区路基设计提供参考。
     本文对进行三轴试验的压实路基土试件进行不同冻融循环次数后冻胀率统计,并对试验数据进行分析处理,得到不同塑性路基土在不同冻融循环次数后冻胀率变化规律:相同冻融循环次数条件下,路基土冻胀率随塑性指数增加而增加;对于同一种土,路基土冻胀率随冻融循环次数增加而增加。采用非线性拟合方法得出路基土冻胀率与塑性指数、冻融循环次数的关系,由相关系数可见,拟合效果理想。
     3.对不同塑性指数路基土进行动三轴试验
     对季冻区3种不同塑性指数压实路基土进行0~7次冻融循环后在不同围压下进行动三轴试验,试验结果表明:在加载初期,土的动模量(包含动弹性模量E d和动剪切模量G d)随着循环次数的增加呈下降趋势,随着动荷载次数继续增加,动模量渐趋稳定值。取荷载作用5000-6000次的动模量平均值作为土在此状态下的稳定值。总结规律如下:季冻区压实路基土动模量随围压的增加而增大,随冻融循环次数的增加而减小,随塑性指数的增加而增加。阻尼比随冻融循环次数、围压及塑性指数均无明显规律可循。通过数据分析得到动模量与围压、塑性指数和冻融循环次数的关系式,对于季冻区缺乏动模量数据的路基土,可依此公式进行冻融循环后的动模量推算,进而为季冻区路基设计及施工提供参考。
     通过对相同条件下,试验实测静、动弹性模量值进行非线性拟合,建立了静动参数转换理论,可由简单易测的静弹性模量推导出动弹性模量,将大大减少动三轴试验的工作量,为道路设计提供快速准确的动弹性模量数据。
     4.对不同塑性指数路基土经历不同次数冻融循环之后进行微观分析试验
     采用与静、动三轴试验相同的土样,在最佳含水率下压实成压实度大于95%的试件,经历0~7次冻融循环,将循环后的试件采用冷冻真空升华干燥法进行干燥,采用场发射环境扫描电子显微镜(ESEM)提取3种土不同冻融循环次数后的微观结构图像,利用Image-Pro Plus(简称IPP)软件对微观图片进行分析处理,对所选的微观形态参数进行测量计数,并进行统计分析,得出3种土在不同冻融循环次数后的颗粒和孔隙的各项微观参数统计结果,包括:平均直径、方向角、平均圆形度、丰度和分形维数,统计分析出各微观结构参数随冻融循环次数的变化规律,并对前述压实路基土静、动力参数随冻融循环次数变化规律进行微观机理分析验证。
Since the reform and opening up, the economic construction of China has been rapiddevelopment. Amount of construction of highways, railways, water conservancy andhydropower facilities carry out. For all the projects, the soil is used as the basis, and definingits physical and mechanical properties under variety of environmental and humen factors isextremely necessary to guarantee the stability and security of the project. The soil is formedby a variety of rock weathering in nature. The nature of the soil cannot be controlled bywhatever human activities. Soil physical and mechanical characteristics vary because ofdifferent formation process. Therefore, different types of soil in different areas will showdifferent mechanical characteristics under the same mechanical conditions. Especially in thepermafrost and seasonally frozen areas, the complex environment impact factors make soilproperties more difficult to grasp.
     Domestic and foreign experts and scholars have obtained some initial results on the soilresearch. The factors which affect soil physical and mechanical properties have beenidentified including the soil mineral composition, chemical composition, soil salinity,particle size distribution, moisture content, porosity, temperature and load. For compactedsubgrade soil in seasonally frozen soil area, its influencing factors are more complex.Seasonally frozen soil area in China accounts for53.5percent of the land area. For the soilunder the climatic conditions in the region, its physical and mechanical properties willchange, thus it will affect the engineering properties of subgrade in seasonally frost regions.For the subgrade in seasonally frozen area, as the winter freezing and spring thawing, thepavement under the traffic loading is liable to break, frost boiling, mud pumping, etc. Thenthat will bring great harm to transport and economic development and the entiretransportation business will be affected seriously. The micro-structure pictures of compactedsubgrade soils of different plasticity index under different freeze-thaw cycles are collectedusing ESEM (Environmental Scanning Electron Microscope). The micro structuralparameters of soil particles and pores under each state are quantitatively counted andmicroscope mechanism is analyzed.
     This paper is one important part of the National Natural Science Foundation-funded project plan (50978117). The main content of the paper is as follow:
     1. Select three soils of different plasticity index, conventional physical properties testcarry out.
     In order to make the study results to the universality, three kinds of plasticity index soilare selected, they will represent all the soil that can be directly used in roadbed constructionwithout improvement. It will make the reseach results more promotional. Firstly, thephysical properties are obtained including moisture content, density, particle analysis,optimum moisture content, boundry moisture content etc. Soil mineral content and chemicalcomposition are obtained by the chemical element analysis and X-ray diffraction analysis.
     2. Triaxial compression test on subgrade soils of different plasticity index
     Specimen are prepared indoor to the maximum degree of compaction, then experience0to7time complete freeze-thaw cycle. Triaxial compression test carries out on the specimenunder different confining pressure. The mechanical parameters of three soils experiencingdifferent times freeze-thaw cycles under different confining pressure are obtained. Theresults show that: variation of cohesion c and internal friction angle φ with thefreeze-thaw cycle is not obvious. The variation of Shear strength and elastic modulus withdifferent freeze-thaw cycles under different confining pressure is more obvious: shearstrength and elastic modulus of subgrade increases with the plasticity index experiencing thesame freeze-thaw cycles and under the same confining pressure. Shear strength and elasticmodulus of subgrade experiencing the same freeze-thaw cycles increases with the confiningpressure. Shear strength of subgrade under the same confining pressure decreases with thetimes of freeze-thaw cycles. Elastic modulus of subgrade decreases with the times offreeae-thaw cycles, and decreases significantly at first several times then it will stabilize.Multiple nonlinear fitting is adopted to get the relationship between shear strength, elasticmodulus and confining pressure, plasticity index, freeze-thaw cycles and it shows a goodcorrelation. It will provide references for subgrade design in seasonally frozen region whichlack of relevant information.
     Frost heaving ratio of three kinds of different plasticity index subgrade soils underdifferent number of freeze-thaw cycles is achieved through the statistics on the geometricsize of test soil samples. After analyzing test data, the regulation between frost heaving ratioand plasticity index, freeze-thaw cycles is obtained. Under the same number of freeze-thawcycles, frost heaving ratio of subgrade soil increases with plasticity index. For the same soil,frost heaving ratio of subgrade soil increases with the number of freeze-thaw cycles. Multiple nonlinear fitting is adopted for test data. The relationship between frost heavingratio and plasticity index, freeze-thaw cycles is obtained and the correlation is good.
     3. Dynamic triaxial test on subgrade soils of different plasticity index
     Specimen are prepared indoor to the maximum degree of compaction, then experience0to7time complete freeze-thaw cycle. Dynamic triaxial test carries out on the specimenunder different confining pressure. At the initial stage, the dynamic modulus of the soil(including dynamic elastic modulusE dand dynamic shear modulusG d) show a downwardtrend with the increase of the load cycles. As the number of dynamic loads continue toincrease, the dynamic modulus is stable. Take the average dynamic modulus of5000to6000load cycles as the soil dynamic properties of this state. Summed up the laws as follows: thedynamic modulus of the compacted soil in seasonally frozen region increase with theincrease of confining pressure, decrease with the increase of the number of freeze-thaw cycle,increase with the plasticity index. The damping ratio has no obvious rule to follow with thefreeze-thaw cycles, confining pressure and plasticity index. The relationship of dynamicmodulus with confining pressure, plasticity index and the number of freeze-thaw cycles isobtained though data analysis. It can provide a reference for the embankment design andconstruction in the seasonally frozen region.
     Nonlinear fitting method is adopted to get the test value of the static and dynamicelastic modulus under the same conditions. Dynamic elastic modulus can be deducedthrough the static elastic modulus which easy to measured, it will greatly reduce the dynamictriaxis test work. It will provide fast and accurate dynamic elastic modulus data for roaddesign.
     4. Microanalysis tests on subgrade soils of different plasticity index experienceddifferent number of freeze-thaw cycles.
     The specimens are same with those in static and dynamic triaxial tests which arecompacted under the optimum moisture content to the specimens with the degree ofcompaction greater than95%. Then they will experience0to7times freeze-thaw cycles anddried by frozen vacuum sublimation drying method. Field emission environmental scanningelectron microscope (ESEM) is adopted to extract the micro-structure pictures of three soilsexperienced different freeze-thaw cycles. The Image-Pro Plus (IPP) is adopted to analyzeand process the micro-structure pictures. Parameters of morphology selected are counted andstatistical analysis is carried out. The statistical results of microscopic parameters of threesoils particles and pores experienced different times freeze-thaw cycles are gotten including the average diameter, direction angle, the average roundness, abundance and fractaldimension. Variation of each micro-structure parameter with the freeze-thaw cycles isstatistically analyzed and verify the variation of compacted subgrade soil static and dynamicparameters with the the freeze-thaw cycles based on microscopic mechanism.
引文
[l]邓学钧.路基路面工程[M].北京:人民交通出版社,2005.
    [2]王坤.基于RS/GIS的青藏高原冻土分布模拟研究[D].长春:吉林大学,2009.
    [3]朱东鹏,章金钊,李金平.青藏公路多年冻土区路基下冻土发育特征[C]. RecentDevelopment of Research on Permafrost Engineering and Cold RegionEnvironment--Proceedings of the Eighth International Symposium on PermafrostEngineering.2009:262-266.
    [4]霍明,陈建兵,朱东鹏,张金钊.青藏公路多年冻土区预警系统研究[J].岩土力学,2010,31(1):331-336.
    [5]陈建兵,汪双杰,章金钊,马巍.青藏公路高路基病害的形成及其机理[J].长安大学学报(自然科学版),2008,28(6):30-35.
    [6] Erik Simonsen, Ulf Isacsson. Thaw weakening of pavement structures in coldregions[J]. Cold Regions Science and Technology.1999,29:135-151.
    [7] Pranshoo Solnki. Characterization of cementitiously stabilized subgrades formechanistic-empirical pavement design [D]. Norman: University of Oklahoma,2010.
    [8]于基宁.地温三轴试验机研制及粉质粘土冻融循环力学效应试验研究[D].北京:中国科学院研究生院,2007.
    [9]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001.
    [10]郑秀清,樊贵盛,邢述彦.水分在季节性非饱和冻融土壤中的运动[M].北京:地质出版社,2002.
    [11]周幼吾,邱国庆,程国栋,郭东信.中国冻土[M].北京:科学出版社,2000.
    [12]中国科学院兰州冰川冻土沙漠研究所.冻土[M].北京:科学出版社,1975.
    [13] Chamberlain, E., Blouin, S.E. Densification by freezing and thawing of fine materialdredged from waterways[C]. Proc. Third International Conference on Permafrost,Edmonton, Canada.1978:623-628.
    [14] Knutsson, S. Heave and settlement due to freezing and thawing around heat extractionpipes placed at shallow depths[R]. Lulea. University of Technology, Lulea, Sweden,Technical Report,1983.
    [15] Konrad, J. M. Physical processes during freeze-thaw cycles in clayey silts [J]. ColdRegions Science and Technology.1989.16(3),291-303.
    [16] Nishimura, T., Ogawa, S. Influence on freezing and thawing on volume change ofunsaturated soils[C]. Proceedings of the International Symposium on PrefailureDeformation Characteristics of Geomaterials,1994:335-340.
    [17] Eigenbrod, K.D. Effects of cyclic freezing and thawing on volume changes andpermeabilities of soft fine-grained soils [J]. Can. Geotech.1996, J.33:529-537.
    [18] Skarzynska, K.M. Formation of soil structure[C]. Proceedings of the4th InternationalSymposium on Ground Freezing,1985, Vol.2:213-218.
    [19] Knutsson, S. Effect of cyclic freezing and thawing on the Atterberg limits of clay[R].University of Technology, Lulea, Sweden, Research Report TULEA1984.
    [20] Yong, R.N., Boonsinsuk, P., Yin, C.W.P. Alteration of soil behavior after cyclicfreezing and thawing[C]. Proceedings of the Fourth International Symposium onGround Freezing,1985:187-195.
    [21] Broms, B., Yao, L.Y.C. Shear strength of a soil after freezing and thawing [J]. SoilMechanics Foundation Division, ASCE,1964:1-25.
    [22] Graham, J., Au, V.C.S. Effects of freeze–thaw and softening on natural clay at lowstresses [J]. Can. Geotech.1985, J.22:69-78.
    [23] Eigenbrod, K.D., Knutsson, S., Sheng, D. Pore water pressures in freezing and thawingfine-grained soils [J]. J. Cold Reg. Eng.1996,10(2):76-92.
    [24] Wong, L.C., Haug, M.D. Cyclical closed-system freezethaw permeability testing of soilliner and cover material [J]. Can. Geotech.,1991, J.28:784-793.
    [25] Benson, C.H., Othman, M.A. Hydraulic conductivity of compacted clay frozen andthawed in situ[J]. J. Geotech. Eng.1993,119(2):276-294.
    [26] Benson, C.H., Abichou, T.H., Olson, M.A., Bosscher, P.J. Winter effects on hydraulicconductivity of compacted clay [J]. J. Geotech. Eng.1995,121(1):69-79.
    [27] Viklander, P.,1995. Influence of cycles of freezing and thawing on the permeability insoils, a literature investigation[R]. Lulea University of Technology, Lulea, Sweden,Technical Report,1995.
    [28] Janoo, V., Berg, R. Thaw weakening of pavement structures in seasonal frost areas[R].Transportation Research Record,1990, vol.1286:217–233.
    [29] Saarelainen, S., Onninen, H., Kangas, H., Pihlajamaki, J. Fullscale accelerated testing ofa pavement on thawing, frostsusceptible subgrade[C]. International Conference on theAccelerated Pavement Testing,1999.
    [30] Janoo, V., Shoop, S. Influence of spring thaw on pavement rutting[R]. UNBAR6Pavements Unbound. Nottingham, UK,2004:115–124.
    [31] Cole, D., Bentley, D., Durell, G., Johnson, T. Resilient modulus of freeze–thawaffected granular soils for pavement design and evaluation, Part1[R]. Laboratory testson soils from Winchendon, Massachusetts, test sections. CRREL Report86-4. U.S.Army Engineer Research and Development Center, Cold Regions Research andEngineering Laboratory, Hanover, New Hampshire.1986.
    [32] Cole, D., Bentley, D., Durell, G., Johnson, T. Resilient modulus of freeze–thawaffected granular soils for pavement design and evaluation, Part3[R]. Laboratory testson soils from Albany County Airport. CRREL Report87-2. U.S. Army EngineerResearch and Development Center, Cold Regions Research and EngineeringLaboratory, Hanover, New Hampshire,1987.
    [33] Erik Simonsen, Vincent C. Janoo. Resilient Properties of Unbound Road Materialsduring Seasonal Frost Conditions [J]. Journal of Cold Regions Engineering,2002, vol.16:28-50.
    [34] Johnson, T. C., Cole, D. M., and Chamberlain, E. J. Influence of freezing and thawingon the resilient properties of a silt beneath an asphalt concrete pavement[R]. USA ColdRegions Research and Engineering Laboratory Report, Hanover, N.H,1978.
    [35] Thaddeus C. Johnson, David M. Cole, Edwin J. Chamberlain. Effect of freeze—thawcycles on resilient properties of fine-grained soils [J]. Engineering Geology,1979,13(1-4):247-276.
    [36] Woojin Lee, N.C. Bohra, A.G. Altschaeffl, and T.D. White, Resilient modulus ofcohesive soils and the effect of freeze–thaw[J]. Canadian Geotechnical Journal,1995,32(4):559-568.
    [37] Eigenbrod, K.D., Knutsson, S., Sheng, D. Pore water pressures in freezing and thawingfine-rained soils [J]. Journal of Cold Regions Engineering,1996,10(2):76-92.
    [38] J.T.C. Seto, J. M. Konrad. Pore pressure measurements during freezing of anoverconsolidated clayey silt [J]. Cold Regions Science and Technology,1994,22(4):319-338.
    [39] Edwin J. Chamberlain, Anthony J. Gow. Effect of freezing and thawing on thepermeability and structure of soils [J]. Engineering Geology,1979,13(1-4):73-92.
    [40] Simonsen, E., Isacsson, U. Soil behavior during freezing and thawing using variableand constant confining pressure triaxial tests [J]. Canadian Geotechnical Journal,2001:863-875.
    [41] Chamberlain, E.J., Ayorinde, M., Ayorinde, O.A. Freeze–thaw effects on clay coversand liners [C]. Cold Regions6th Int. Specialty Conf. TCCP/ASCE, West Lebanon, NH,USA,1991:136-151.
    [42] Czurda, K.A., Ludwig, S. Influence of freezing and thawing on the permeability of claybarriers [J]. Proc. of the7th Euroclay Conf. Dresden,1991:255-260.
    [43] White, T.L., Williams, P.J. Cryogenic alteration of frost susceptible soils [C]. Int. Symp.on Ground Freezing, Beijing, China,,1994:189-195.
    [44] Viklander, P., Knutsson, S. Permeability changes in a fine-grained till due to cycles offreezing and thawing [C]. Proc. International symposium on ground freezing and frostaction in soils.1997:193-202.
    [45] Chamberlain, E.J., Iskander, I., Hunsickert, S.E. Effect of freeze–thaw cycles on thepermeability and macrostructure of soils [C]. Proc. Int. Symp. On Frozen Soil Impactson Agricultural Range and Forest land. Special report,1990:145–155.
    [46] Porebska, M. Effects of freezing on the microstructure of compacted clays[R]. FinalReport. CRREL, Hanover, USA,1994:92.
    [47] Klas Hansson, Lars-Christer Lundin. Equifinality and sensitivity in freezing andthawing simulations of laboratory and in situ data [J]. Cold Regions Science andTechnology.2006(44):20-37.
    [48] Daehyeon Kim,Jong Ryeol Kim. Resilient behavior of compacted subgrade soils underthe repeated triaxial test [J]. Construction and Building Materials.2007(21):1470-1479.
    [49] D.V. Okura, A. Ansalb, Stiffness degradation of natural fine grained soils during cyclicloading [J]. Soil Dynamics and Earthquake Engineering.2007(27):843–854.
    [50] Sally Shoop, Rosa Affleck, Robert Haehnel, Vincent Janoo. Mechanical behaviormodeling of thaw-weakened soil [J]. Cold Regions Science and Technology,2008(52):191-206.
    [51] Z. Khan, M.H. El Naggar, G. Cascante. Frequency dependent dynamic propertiesfrom resonant column and cyclic triaxial tests [J]. Journal of the FranklinInstitute.2011,348(7):1363-1376.
    [52]赵安平.季冻区路基土冻胀的微观机理研究[D],长春:吉林大学,2008.
    [53]刘经仁,马世敏.从文献目录看中国冰川冻土研究的发展[J],冰川冻土,1993,15(4):602-605.
    [54]车茜.基于BP神经网络的季节冻土水分迁移机理研究[D],长春:吉林大学,2008.
    [55]中国科学院地理研究所冰川冻土研究室.青藏铁路沿线冻土考察(文集)[M].北京:科学出版社,1965.
    [56]杜榕桓,谢自楚.青藏公路沿线冰缘地貌特征-青藏公路沿线冻土考察[M].北京:科学出版社,1965.
    [57]辛奎德,任奇甲.中国东北地区多年冻土的分布[J].地质知识,1956,10.
    [58]范锡朋.青海高原东部的多年冻土[J].地理,1963,4.
    [59]周幼吾,杜榕桓.青藏高原冻土初步考察[J].科学通报,1963,2.
    [60]铁道部第三勘测设计院.多年冻土的工程地质性质和铁路建筑[M].北京:科学出版社,1958.
    [61]中科院兰州冰川冻土研究所.青藏冻土研究论文集[C].北京:科学出版社,1983.
    [62]黄小铭.青藏高原多年冻土地区铁路路堤临界高度的确定[C].第二届全国冻土学术会议论文选集.兰州:甘肃人民出版社,1983:391-397.
    [63]程恩远等,季节冻土地基的融沉[C].中科院兰州冰川冻土研究所集刊,1986.
    [64]叶拔友.多年冻土地区的路基病害[J].路基工程,1986.
    [65]喻文学等.青藏公路多年冻土区路基冻融变形的初步分析[J].西安公路学院学报,1986.
    [66]吴紫汪等.土的冻胀性实验研究[C].中科院兰州冻土研究所集刊,1988.
    [67]程地会,姜锡瑞.北方地区基土冻胀量的数学模型[J].哈尔滨科学技术大学学报,1993,17(3):70~74.
    [68]戴惠民,乐鹏飞,王兴隆,陈肖柏等.季冻区公路路基土冻胀性的研究[J].中国公路学报,1994,7(2):1-8.
    [69]杨旭东.多年冻土地区路基变形特性研究[D].西安:西安公路交通大学,1999.
    [70]田康斌.岛状多年冻土地区路基路面稳定性研究[D].西安:西安公路交通大学,1999.
    [71]王铁行,胡长顺.冻土路基水分迁移数值模型[J].中国公路学报,2001,14(4):5-8.
    [72]霍凯成,黄继业,罗国荣.路基冻胀机制及冻害防治整治措施探讨[J].岩石力学与工程学报,2002,21(7):1099-1103.
    [73]杨成松,何平,程国栋,朱元林等.冻融作用对土体干容重和含水量影响的试验研究[J].岩石力学与工程学报,2003,22(增2):2695-2699.
    [74]骆亚生.非饱和黄土在动、静复杂应力条件下的结构变化特性及结构性本构关系研究[D].西安:西安理工大学,2003.
    [75]王大雁,马巍,常小晓,孙志忠等.冻融循环作用对青藏粘土物理力学性质的影响[J].岩石力学与工程学报,2005,24(23):4313-4319.
    [76]谷宪明.季冻区道路冻胀翻浆机理及防治研究[D].长春:吉林大学,2007.
    [77]魏海斌.冻融循环对粉煤灰土动力特性影响的理论与试验研究[D].长春:吉林大学,2007.
    [78]冯勇,何建新,刘亮,杨力行.冻融循环作用下细粒土抗剪强度特性试验研究[J].2008,30(6):1013-1017.
    [79]田亚护.动、静荷载作用下细粒土冻结时水分迁移与冻胀性实验研究[D].北京:北京交通大学,2008.
    [80]毛雪松,侯仲杰,王威娜.基于含水量和冻融循环的重塑土回弹模量试验研究[J].岩石力学与工程学报.2009,28(增2):3585-3590.
    [81]杨庆,王猛,栾茂田,刘功勋.非饱和粉土静、动强度对比试验研究[J].岩土力学,2010,31(1):71-75.
    [82]王威娜,支喜兰,毛雪松,侯仲杰,雷明轩.冻融循环作用下路基土回弹模量试验研究[J].冰川冻土,2010,32(5):954-959.
    [83]王天亮.冻融条件下水泥及石灰路基改良土的动静力特性研究[D].北京:北京交通大学,2011.
    [84] K.太沙基.徐志英译.理论土力学[M].北京:地质出版社,1960.
    [85] Colias,K., Megown, A. The form and function of microfabric feature in a variety ofnatural soils [J].Geotechnique,1974,2:93-98.
    [86] Casagrande. A. The structure of clay and its importance in foundation engineering[J].J.Boston Soc.Civil Eng,1932,19(4):168-209.
    [87] T. W. Lambe. The engineering behavior of compacted clay [J]. J. SMFD,ASCE,1958.84(SM2).
    [88] H. B. Seed. Structure and strength characteristics of compacted clays [J]. J. SMFD,ASCE,1959.85(SM5).
    [89] Aylmore, L.A.G. and Quirk, J.P. Swelling of clay water systems [J]. Nature,1959,183(4677):1752-1753.
    [90] L.A.G. Aylmore, and J.P. Quirk, The structure status of clay systems[C], Proc. Natn.Conf. Clays9,1962.
    [91] Van.Olphen.An introduction to clay colloid chemistry [M].1963.
    [92] Ohta, Shibata, An idealized model of soil structure[C] J Internat. Symp. on SoilStructure, Gothenburg, Swedish Geotechnical Society, Stockholm,1973:123-130.
    [93] Tovey. Quantitative analysis of electron micrographs of soil structure [C], GB Internat.Symp. on Soil Structure, Gothenburg, Swedish Geotechnical Society, Stockholm,1973:50-57.
    [94] Osipov Yu.B. Sokolov B.A. On the texture of clay soils of different genesis investigatedby magnetic anisotropy method [C]. Proceedings of the International symposium onsoil structure, Gothenburg.1973.
    [95] Osipov V.I. Nature of strength and deformation properties of clay materials [M]. MGU(Moscow University Publishing House),1979.
    [96] Z. P. Bazant, P. G. Gambarova, Crack shear in concrete: crack band microplane model[J], Journal of Structural Engineering. ASCE,1984:2015-2036.
    [97] Z. P. Bazant, J.K. Kim. Creep of Anisotropic Clay: Microplane Model [J]. Journal ofGeotechnical Engineering,1986,112(4):458-475.
    [98] Bazant Z. P., Oh B H. Microplane model for progressive fracture of concrete and rock[J]. Journal of Engineering Mechanics, ASCE,1985,111(4):559-582.
    [99] Bazant Z. P., Prat P. C. Microplane model for brittle-plastic material. I: Theory[J].Journal of Engineering Mechanics, ASCE,1988,114(10):1672-1688.
    [100] Bazant Z. P., Xiang Y, Prat P C.Microplane model for concrete. I: Stress-strainboundaries and finite strain [J]. Journal of Engineering Mechanics, ASCE,1996,122(3):245-254.
    [101] Bazant Z. P., Xiang Y, Adley M D, et al. Microplane model for concrete. II: Datadelocalization and verification [J]. Journal of Engineering Mechanics, ASCE,1996,122(3):255-262.
    [102] Bazant Z. P., Caner F. C., Carol I, et al. Microplane model M4for concrete. I:Formulation with Work-Conjugate deviatoric stress Algorithm and calibration [J].Journal of Engineering Mechanics, ASCE,2000,126(9):944-953.
    [103] Caner F. C., Bazant Z. P. Microplane model M4for concrete. II: Algorithm andcalibration [J]. Journal of Engineering Mechanics, ASCE,2000,126(9):954-961.
    [104] Tancredi Caruso, E. Kathryn Barto, Md. Rezaul Karim Siddiky, Jeffrey Smigelski,Matthias C. Rillig. Are power laws that estimate fractal dimension a good descriptor ofsoil structure and its link to soil biological properties?[J] Soil Biology&Biochemistry.2011,43:359-366.
    [105] C. A. Moore, C. F. Donaldson. Quantifying soil microstructure using fractals [J].Geotechnique,1995,45(1):105-116.
    [106] V. R Ouhadi, R.N Yong. Impact of clay microstructure and mass absorption coefficienton the quantitative mineral identification by XRD analysis [J]. Applied Clay Science.2003,23(1-4):141-148.
    [107] Olivier Monga, Fatou Ndeye Ngom, Jean Francois Delerue. Representing geometricstructures in3D tomography soil images: Application to pore-space modeling [J].Computers&Geosciences.2007,33:1140-1161.
    [108] Olivier Cuisinier, Jean-Claude Aurio, Tangi Le Borgne, Dimitri Deneele.Microstructure and hydraulic conductivity of a compacted lime-treated soil [J].Engineering Geology.2011,123:187-193.
    [109] T. Zhang. Linear elastic constitutive relation for multiphase porous media usingmicrostructure superposition: Freeze–thaw soils [J]. Cold Regions Science andTechnology.2011,65(2):251-257.
    [110] Ndèye Fatou Ngom, Olivier Monga, Mohamed Mahmoud Ould Mohamed, PatriciaGarnier.3D shape extraction segmentation and representation of soil microstructuresusing generalized cylinders [J]. Computers&Geosciences.2012,39:50-63.
    [111]高国瑞.兰州黄土显微观结构与湿陷机理探讨[J].兰州大学学报,1979,(1):123-134.
    [112]高国瑞.中国黄土的微结构[J].科学通报.1980,(20):945-948.
    [113]高国瑞.黄土显微观结构分类与湿陷性[J].中国科学,1980,12:1203-1208.
    [114]王幼麟.蒲沂第四纪红色粘土的物质成分结构特性及其与工程性质的关系[C].全国首届工程地质学术会议论文选集.1979:91-97.
    [115]陈守义,谭罗荣,张梅英.某些粘土岩的各向异性在亚微观结构上的表现[J].水文地质工程地质.1980:17-19.
    [116]王永焱,滕志宏.中国黄土的微结构及其在时代上和区域上的变化——扫描电子显微镜下的研究[J].科学通报.1982,2:102-105.
    [117]张梅英.利用扫描电镜研究土的微结构有关问题[C].第三次中国电子显微学会议论文摘要集(二).1983.
    [118]高国瑞.中国海洋土微结构特征[J].工程勘察.1984,4:30-34.
    [119]施斌,李生林.击实膨胀土微结构与工程特性的关系[J].岩土工程学报.1988,10(6):80-87.
    [120]吴义祥.工程粘性土微观结构的定量研究[D].北京:中国地质科学院,1988年.
    [121]李华斌.滑坡滑带土微结构的定量研究及其应用[D].北京:中国地质科学院,1991.
    [122]马巍,吴紫汪,常小晓,王家澄.围压作用下冻结砂土微结构变化的电镜分析[J].冰川冻土,1995,17(2):152-158.
    [123]张长庆,魏雪霞,苗天德.冻土蠕变过程的微结构损伤行为与变化特征[J].冰川冻土.1995,17(增):60-65.
    [124]王家澄,张学珍,王玉杰.扫描电子显微镜在冻土研究中的应用[J].冰川冻土.1996,18(2):184-188.
    [125]施斌,李立,姜洪涛,王宝军. DIPIX图像处理系统在土体微结构定量研究中的应用[J].南京大学学报,1996,32(2):275-280.
    [126]徐永福,田美存.土的分形微结构[J].水利水电科技进展.1996,16(1):25-29.
    [127]李向全,胡瑞林,张莉.粘性土固结过程中的微结构效应研究[J].岩土工程技术,1999,3:52-56.
    [128]沈珠江.土体结构性的数学模型——21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.
    [129]胡瑞林,王思敬,李向全,官国琳.21世纪工程地质学生长点:土体微结构力学[J].水文地质工程地质,1999,(4):5-8.
    [130]杨庆,张传庆,栾茂田.基于微结构定量分析的非饱和土广义有效应力原理[J].大连理工大学学报.2004,44(4):556-559.
    [131]赵常洲,王晖,杨为民.夯实地基土的微结构特性及其对工程性质的影响[J].岩土工程技术.2005,19(2):75-79.
    [132]王伟,冯小平,邹昀,王俭.黏性土力学强度与微结构动态环境场内在关联分析[J].岩土力学.2006,27(12):2219-2224.
    [133]王伟,胡昕,洪宝宁,何小元.一种自动跟踪土微观变形的试验方法[J].大连理工大学学报,2006,46(S):126-129.
    [134]陈开圣.公路工程压实黄土的强度与变形及其微观结构研究[D].西安:长安大学,2006.
    [135]王志强,柴寿喜,仲晓梅,郭英等.多元逐步回归分析应用于固化土强度与微结构参数相关性评价[J].岩土力学.2007,28(8):1650-1654.
    [136]夏银飞.软粘土的结构性及模型研究[D].武汉:武汉理工大学,2007.
    [137]查甫生,刘松玉,杜延军,崔可锐.基于电阻率法的膨胀土吸水膨胀过程中结构变化定量研究[J].岩土工程学报.2008,30(12):1832-1839.
    [138]查甫生,刘松玉,杜延军,崔可锐等.土的微结构特征对其电阻率的影响实验研究[J].工程勘察.2008(10):6-10.
    [139]查甫生,刘松玉,杜延军,崔可锐等.黄土湿陷过程中微结构变化规律的电阻率法定量分析[J].岩土力学.2010,31(6):1692-1698.
    [140]李伟.粘性土基本力学特性微结构机理研究[D].上海:同济大学,2008.
    [141]李顺群,郑刚,崔春义,刘双菊.黏土微结构各向异性评估的谱系聚类方法[J].岩土工程学报.2010,32(1):109-114.
    [142]柴寿喜.固化滨海盐渍土的强度特性研究[D].兰州:兰州大学,2006.
    [143]张小平,施斌.石灰膨胀土团聚体微结构的扫描电镜分析[J].工程地质学报,2007,15(5):654-660.
    [144]陈惠娥,王清.水泥加固土微观结构的分形[J].哈尔滨工业大学学报,2008,40(2):307-309.
    [145]黄雨,周子舟,柏炯,陈企奋.水泥土搅拌法加固重填土软土地基的微观试验[J].同济大学学报:自然科学版,2010,38(7):997-1001.
    [146]刘鑫,洪宝宁,陈艳丽,张华杰.侵蚀环境下水泥土强度及微结构变化规律研究[J].武汉理工大学学报,2010,32(10):11-15.
    [147]查甫生,刘松玉,杜延军,崔可锐.改良膨胀土的微结构变化规律电阻率法研究[J].工业建筑,2011,41(8):55-58.
    [148] S.普拉卡什著.徐攸在,王志良,王余庆,刘慧珊译.土动力学[M],北京:水利电力出版社,1984.
    [149] William Newell Brabston. Deformation Characteristics of Compacted Subgrade Soilsand Their Influence in Flexible Pavement Structures [D]. Texas: Texas A&MUniversity.1982.
    [150] O. C. Zienkiewicz. Basic formulation of static and dynamic behaviours of soil andother porous media [J]. Applied Mathematics and Mechanics, English Edition,1982,3(4):457-468.
    [151] E. A. Meroi, B. A. Schrefler, L. O. C. Zienkiewicz, Large strain static and dynamicsemi-saturated soil behaviour[J]. International Journal for Numerical&AnalyticalMethods in Geomechanics,1995,19(2):81-106.
    [152]贾革续.粗粒土工程特性的试验研究[D].大连:大连理工大学.2003.
    [153]李广信.高等土力学[M].北京:清华大学出版社.2004
    [154]长春地质学院工程地质教研室.工程岩土学[M].地质出版社,1980.
    [155]黄文熙.土的工程性质[M].北京:水利电力出版社.1983.
    [156]卢正.交通荷载作用下公路结构动力响应及路基动强度设计方法研究[D].北京:中国科学院研究生院.2009.
    [157]徐斌.移动荷载引起饱和土动力响应及排桩隔振研究[D].上海:上海交通大学.2009.
    [158]孙宏磊.高速交通荷载作用下饱和土体与线路系统的动力响应[D].浙江大学.2008.
    [159]朱东方.交通荷载作用下土的力学分析[D].西安:长安大学.2008.
    [160]吕峰.车辆与结构相互作用随机动力分析[D].大连:大连理工大学.2008;
    [161]陈远国,金波.移动简谐荷载作用下多孔地基的动力响应[J].中国科学.2008,38(3):250-259.
    [162] Hyodo M,Yasuhara K,Murata H. Deformation analysis of the soft clay foundation oflow embankment road under traffic loading[C].Proeeeding of the3lst Symposium ofJapanese Society of Soil Mechanics and Foundation Engineering,1996:27-32.
    [163] Soil Dynamics and Special Design Aspects[M]. Department of Defense Handbook.1997.
    [164]高大钊,袁聚云.土质学与土力学[M].北京:人民交通出版社,2003.
    [165]白颢,孔令伟.固结比对石灰土动力特性的影响实验研究[J].岩土力学.2009,30(6):1590-1594.
    [166]谢定义.土动力学[M].西安:西安交通大学出版社.1988.
    [167]李松林.动三轴试验的原理与方法[M].北京:地质出版社.1990.
    [168] Qi, J. L., Vermeer, P.A., Cheng, G., A review of the influence of freeze–thaw cycleson soil geotechnical properties [J]. Permafrost and Periglacial Processes2006,17:245-252.
    [169] Qi, J. L., Ma, W., Song, C.X. Influence of freeze–thaw on engineering properties of asilty soil [J]. Cold Regions Science and Technology2008,53(3):397-404.
    [170] Ekrem Kalkan. Effects of silica fume on the geotechnical properties of fine-grainedsoils exposed to freeze and thaw [J]. Cold Regions Science and Technology.2009,58:130-135.
    [171]土工试验技术手册[M].北京:人民交通出版社,2003.
    [172]王威娜,支喜兰,毛雪松等,冻融循环作用下路基土回弹模量试验研究[J].冰川冻土,2010,32(5):954-959.
    [173]邴文山(译).道路冻害与防治[M].哈尔滨;哈尔滨工业大学出版社,1991.
    [174]何岩.聚丙烯纤维改良粉煤灰土动、静力学参数研究[D].长春:吉林大学,2010.
    [175]王大雁,马巍等.冻融循环作用对青藏粘土物理力学性质的影响[J].岩石力学与工程学报,2005,24(33):4314-4319.
    [176] http://training.ce.washington.edu/PGI/
    [177] Edel R. Cortez. Moisture effects on the mechanical behavior of flexible pavementsubgrades[D] Durham: University of New Hampshire,2007.
    [178] Seed, H. B., Chan, C. K., Monosmith, C. L. Effects of repeated loading on the strengthand deformation of compacted clay [C]. Proc., Highway Research Board,1955,34:541-558.
    [179] Irwin, Lynne H. Practical Realities and Concerns Regarding Pavement Evaluation[C].Proceedings of the4thInternational Bearing Conference on the Bearing Capacity ofRoads and Airfields,1994:19-45.
    [180] Ansal A, Erken A. Rate dependent dynamic behavior of normally consolidated clay
    [C]. Seventh European conference on earthquake engineering,1982:329-336.
    [181] Ansal A, Erken A. Undrained behavior of clay under cyclic shear stresses [J]. JGeotech Eng ASCE1989,115:968-983.
    [182] Azzouz AS, Malek AM, Baligh MM. Cyclic behavior of clays in undrained simpleshear [J]. J Geotech Eng ASCE1989,115(5):637–657.
    [183] Yasuhara L, Hirao K, Hyde A. Effects of cyclic loading on undrained strength andcompressibility of clay [C]. Soils Found1992,32:100-16.
    [184] Kokusho T. Cyclic triaxial test of dynamic soil properties for wide strain range [C].Soils Found.1980,20:45-60.
    [185] Koutsoftas DC, Fischer JA. Dynamic properties of two marine clays [J]. J GeotechEng Div ASCE1980, GT6:645-657.
    [186]摩根斯顿,N.R.结构与物理化学作用对粘土性质的影响[C].土工译丛第2集.长办科学院.1975.
    [187]齐吉琳,谢定义,石玉成.土结构性的研究方法及现状[J].西北地震学报.2001,23(1):99-103.
    [188]张平,房营光,严小庆,何智威.不同干燥方法对重塑膨润土压汞法试验用土样的影响试验研究[J].岩土力学.2011,32(S):388-391.
    [189] IPP StartUp Guide
    [190]张济忠.分形[M].北京:清华大学出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700