用户名: 密码: 验证码:
BPS有序介孔材料的制备及其对含苯有机污染物的吸附行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的高速发展,工业废水量逐年增多,而这些工业废水中大多含有难降解的有机污染物(POPs),容易造成环境污染,进而危害人体健康。因此,如何去除POPs是当下世界性工业化城市共同面临的一个难题。本文研究的桥联倍半硅氧烷(BPS)有序介孔材料具有吸附POPs的能力,它以有机桥联三乙烷基[(R’O)3Si-R-Si(OR)3]为有机硅的先驱体,采用了溶胶-凝胶法和模板法分别形成高度有序的两类不同结构(六方和立方)的介孔材料,并对BPS材料进行了吸附实验,研究显示BPS有序介孔材料能有效的吸附POPs,这在水处理研究领域预期具有重要的理论价值,在环保领域有着可观的应用前景。
     采用溶胶-凝胶法,在四氢呋喃溶液中,以甲酸为催化剂,(EtO)3Si(CH2)3NH-CONH(CH2)11CH3为单体,通过水解缩合,合成了双缩脲桥联基BPS六方有序纳米介孔材料。双缩脲基团之间的氢键及尾对尾连接有机链通过BPS自组装形成了纳米棒状结构。把超薄碳膜上沉积的BPS胶体浸没在甲醇里面,待室温干燥后,纳米BPS粒子形成咖啡环状结构。采用红外、核磁硅谱、小角X射线衍射、透射电镜、高分辨透射电镜、选区电子衍射等实验仪器对合成的纳米棒状结构进行了测试表征。结果显示双缩脲基BPS有序介孔材料具有六方有序纳米结构,高的比表面积和较窄的孔径分布。
     采用两种模板合成法,一种是在酸性条件下,以甲烷基、乙烷基、己烷基、辛烷基、苯基和联苯基三乙氧基硅烷为先驱体,聚(氧乙烯)十六烷基醚(Brij56)为模板剂,合成了空间群为Pm3n的三维BPS立方有序介孔材料;另一种是在碱性条件下,以1,6-二(三乙氧基硅烷基)己烷(BESH)为先驱体,N-(3-三甲基氨丙基)十六铵二溴和十六烷基三甲基溴化铵为模板剂,合成了空间群为Pm3n的三维BPS立方有序介孔材料。采用小角X射线衍射和透射电镜等手段对样品进行了测试表征。酸性及碱性条件下合成的BPS材料具有高度有序的立方介孔结构、高的比表面积和狭窄的孔径分布。另外,老化时间、老化温度、BESH的浓度、去离子水及氢氧化钠摩尔量,均影响己烯基BPS材料介孔相的形成及其表面的结构性能。
     利用合成的BPS有序介孔材料分别对含苯有机污染物(硝基苯、2,4-二氯苯酚(DCP)、芘和菲)进行了吸附实验。采用高效液相色谱、紫外可见分光光度计等仪器对实验结果进行了测试分析。研究表明:联苯基及苯基的BPS介孔材料比双缩脲基、己烯基和辛烯基的BPS有更高的吸附量;BPS有序介孔材料的疏水性能对芘、菲、硝基苯和DCP等POPs的吸附起主要作用,π–π键和氢键作用次之。同时,POPs的辛醇水分配系数(Kow)、溶剂性能和分子尺寸等对BPS有序介孔材料吸附芘、菲、硝基苯和DCP有一定影响。
     BPS有序介孔材料对含苯有机污染物(菲、DCP和硝基苯)的竞争吸附主要受孔阻断和吸附位点的影响。对己烯基BPS有序介孔材料竞争吸附菲、DCP和硝基苯进行了吸附机理研究。采用高效液相色谱、紫外可见分光光度计等仪器对实验结果进行了测试分析。研究表明:经过7d的竞争吸附实验,己烯基BPS有序介孔材料对菲和DCP及菲和硝基苯竞争吸附的饱和吸附量均下降了;较大的介孔孔体积能够减轻孔阻断的影响;含苯有机污染物的分子重量差异也会导致不同程度的孔阻断。此外,理论模型和数值公式解释了观察到的孔阻断和位点竞争吸附现象。
With the rapid development of modern industry, most of the industrialwastewater containing persistent organic pollutants (POPs) cause environmentalpollution, which harm human health. Therefore, POPs removal is a major challengein the world's industrialized cities. The bridged silsesquioxane (BPS) mesoporousmaterials can adsorb POPs. Organic-inorganic hybrid materials were accomplishedby using an organic bridged triethyl [(R’O)3Si-R-Si(OR)3] as the organosilicaprecursor, sol-gel and alkyl chain surfactants as the template. surfactant wasremoved to yield highly order hexagonal and cubic mesoporous materials;Meanwhile, the hexagonal and cubic mesoporous materials were selected foradsorption and competitive adsorption experiments, which are expected in the fieldsof water treatment research and environment that have important theoretical valueand considerable potential applications.
     In this paper, a silsesquioxane was synthesized by the hydrolysis andpolycondensation of (EtO)3Si(CH2)3NHCONH(CH2)11CH3in tetrahydrofuran (THF)employing formic acid as catalyst. The silsesquioxane self-assembled into nanorodsdue to the strong H-bonds among urea groups and the tail-to-tail associations oforganic chains. The biuret BPS material was characterized by a variety ofexperimental techniques (FTIR,(29)Si NMR, XRD, TEM. HRTEM, and SAED). Acolloidal solution of the silsesquioxane in methanol was deposited on a carbon filmgenerating coffee ring structures with nanoparticles located at the boundary of rings.The result showed that the sample was ordered hexagonal mesopore that wasconfirmed by small angle X-ray scattering and transmission electron microscopy.Nitrogen adsorption analysis of the biuret BPS revealed their high surface area andmesopore.
     Three-dimensional cubic (Pm3n) periodic mesoporous bridged silsequioxane(BPS) with methylene, ethylene, hexylene, octylene, phenyl, and biphenyl-bridginggroup were synthesized using the five different types of silsequioxane precursors inthe presence of a Brij56(Polyethylene glycol Monocetyl ether, n=23) under acidiccondition. Three-dimensional cubic (Pm3n) periodic mesoporous BPS wassynthesized by condensation of1,6-bis(triethoxysilyl) hexane (BESH) in thepresence of hexadecyltrimethyl ammonium bromide (CTAB) andN-(3-trimethyl-ammoniumpropyl) hexadecyl ammonium dibromide (C16-3-1) underbasic conditions. The BPS mesoporous materials were characterized by a variety ofexperimental techniques (FTIR, small angle XRD, TGA,TEM.). Highly ordered3Dcubic (Pm3n) mesostructure was confirmed by small angle X-ray scattering and transmission electron microscopy. Nitrogen adsorption analysis of the methylene,ethylene, hexylene, octylene, phenyl, and biphenyl bridging samples revealed theirhigh surface area and accessible mesopores. The ageing duration, ageingtemperature, concentration of BESH, amount of water and amount of NaOH werevaried systematically in order to study their effects on the mesophase formed and onthe surface properties of the materials synthesized.
     Biuret, hexylene, octylene, phenyl and biphenyl BPS mesoporous materialswere selected for adsorption of pyrene, phenanthrene, nitrobenzene, and2,4-dichlorophenol (DCP). The adsorption properties were analyzed by a variety ofexperimental techniques (HPLC and UV-1750). Rigid aromatic BPS (phenyl andbiphenyl) showed higher sorption capacity than soft aliphatic BPS (biuret,hexylene and octylene). Hydrophobic interaction dominantly controlled organicpollutants’ sorption on BPS. Other interactions, e.g. π–π interactions, H-bondinteractions, also have effects on sorption as indicated by Kownormalized sorptionisotherms. Meanwhile, adsorption of pyrene, phenanthrene, nitrobenzene and DCPon BPS was greatly affected by adsorbate properties, i.e. Kow, solvation propertiesand molecular size.
     In this study, the pore blockage and site competition effect of hexylene BPS onphenanthrene,2,4-Dichlorophenol (DCP) and nitrobenzene adsorption isothermwere investigated. Hexylene BPS was tested to determine the roles of hexylene BPSpore size distribution and molecular weight distribution in the pore blockagemechanism. The adsorption properties were analysed by a variety of experimentaltechniques (HPLC and UV-1750). A decrease in phenanthrene, DCP andnitrobenzene removal was observed in a continuous sway hexylene BPS system afterallowing7days of contact. A hexylene BPS with a relatively large fraction ofmesopores was shown to suffer much less from the pore blockage effect comparedwith a hexylene BPS that had a much smaller fraction of mesopores. The hexyleneBPS with different organic pollutants molecular weight distribution caused differentextents of pore blockage. A conceptual model and formulae were proposed tofurther explain the observed phenomena.
引文
[1] D. R. Lin,L. J. Hu,H. You,et al..Initial screening studies on potential ofhigh phenolic-linked plant clonal systems for nitrate removal in coldlatitudes[J].Journal Of Soils and Sediments,2010,10(5):923-932
    [2] T. S. Huuha,T. A. Kurniawan,M. E. T. Sillanpaa.Removal of silicon frompulping whitewater using integrated treatment of chemical precipitation andevaporation[J].Chemical Engineering Journal,2010,158(3):584-592
    [3] R. Molinari,L. Palmisano,E. Drioli,et al..Studies on various reactorconfigurations for coupling photocatalysis and membrane processes in waterpurification[J].Journal Of Membrane Science,2002,206(1-2):399-415
    [4] Venny,S. Y. Gan,N. K. Ng.Current status and prospects of Fenton oxidationfor the decontamination of persistent organic pollutants (POPs) insoils[J].Chemical Engineering Journal,2012,213:295-317
    [5] Z. Cai,Q. X. Zhou,S. W. Peng,et al..Promoted biodegradation andmicrobiological effects of petroleum hydrocarbons by Impatiens balsamina L.with strong endurance[J].Journal Of Hazardous Materials,2010,183(1-3):731-737
    [6] A. K. Golder,A. N. Samanta,S. Ray.Removal of Chromium and OrganicPollutants from Industrial Chrome Tanning Effluents byElectrocoagulation[J].Chemical Engineering&Technology,2011,34(5):775-783
    [7] L. Mohapatra,K. M. Parida.Zn-Cr layered double hydroxide: Visible lightresponsive photocatalyst for photocatalytic degradation of organicpollutants[J].Separation And Purification Technology,2012,91:73-80
    [8] A. J. Brooks,H. N. Lim,J. E. Kilduff.Adsorption uptake of synthetic organicchemicals by carbon nanotubes and activated carbons[J].Nanotechnology,2012,23(29)
    [9] K. J. Shea,D. A. Loy.Bridged polysilsesquioxanes. Molecular-engineeredhybrid organic-inorganic materials[J].Chemistry of Materials,2001,13(10):3306-3319
    [10] Y. C. Chiu,H. C. Tsai,T. Imae.Thermal degradation analysis of theisocyanate polyhedral oligomeric silsequioxanes (POSS)/sulfone epoxynanocomposite[J].Journal of Applied Polymer Science,2012,124(2):1234-1240
    [11] C. U. Pittman,G. Z. Li,H. L. Ni.Hybrid inorganic/organic crosslinked resinscontaining polyhedral oligomeric silsesquioxanes[J]. MacromolecularSymposia,2003,196:301-325
    [12] M. C. Burleigh, M. A. Markowitz, M. S. Spector, et al.. Porouspolysilsesquioxanes for the adsorption of phenols[J].Environmental Science&Technology,2002,36(11):2515-2518
    [13] A. Dabrowski,M. Barczak,E. Robens,et al..Ethylene and phenylene bridgedpolysilsesquioxanes functionalized by amine and thiol groups as adsorbentsof volatile organic compounds[J].Applied Surface Science,2007,253(13):5747-5751
    [14] A. Dabrowski, M. Barczak, N. V. Stolyarchuk, et al.. Bridgedpolysilsesquioxane xerogels functionalizated by amine-and thiol-groups:Synthesis, structure, adsorption properties[J]. Adsorption-Journal of theInternational Adsorption Society,2005,11(5-6):501-517
    [15] S. B. Hartono,S. Z. Qiao,K. Jack,et al..Improving Adsorbent Propertiesof Cage-like Ordered Amine Functionalized Mesoporous Silica with VeryLarge Pores for Bioadsorption[J].Langmuir,2009,25(11):6413-6424
    [16] W. Na,Q. Wei,Z. C. Zou,et al..Mesoporous organosilicas with ultra-largepores: Mesophase transformation and bioadsorption properties[J].Journal ofColloid and Interface Science,2010,346(1):61-65
    [17] J. Fan,C. Z. Yu,T. Gao,et al..Cubic mesoporous silica with largecontrollable entrance sizes and advanced adsorptionproperties[J].Angewandte Chemie-International Edition,2003,42(27):3146-3150
    [18] H. Y. Wu,C. T. Chen,I. M. Hung,et al..Direct Synthesis of CubicBenzene-Bridged Mesoporous Organosilica Functionalized withMercaptopropyl Groups as an Effective Adsorbent for Mercury and SilverIons[J].Journal of Physical Chemistry C,2010,114(15):7021-7029
    [19] S. Z. Qiao,H. Djojoputro,Q. H. Hu,et al..Synthesis and lysozymeadsorption of rod-like large-pore periodic mesoporousorganosilica[J].Progress in Solid State Chemistry,2006,34(2-4):249-256
    [20] J. H. Shin,S. S. Park,C. S. Ha.Adsorption behavior of nicotine on periodicmesoporous organosilicas[J].Colloids and Surfaces B-Biointerfaces,2011,84(2):579-584
    [21] C. B. Vidal,A. L. Barros,C. P. Moura,et al..Adsorption of polycyclicaromatic hydrocarbons from aqueous solutions by modified periodicmesoporous organosilica[J].Journal of Colloid and Interface Science,2011,357(2):466-473
    [22] C. P. Moura,C. B. Vidal,A. L. Barros,et al..Adsorption of BTX (benzene,toluene, o-xylene, and p-xylene) from aqueous solutions by modified periodicmesoporous organosilica[J].Journal of Colloid and Interface Science,2011,363(2):626-634
    [23] D. Q. Zhu,H. Zhang,Q. Tao,et al..Surface functionalized mesoporoussilicas as adsorbents for aromatic contaminants in aqueoussolution[J].Environmental Toxicology and Chemistry,2009,28(7):1400-1408
    [24] C. Y. Liu,S. Y. Wang,Z. H. Rong,et al..Synthesis of structurally stableMCM-48using mixed surfactants as co-template and adsorption of vitaminB12on the mesoporous MCM-48[J].Journal of Non-Crystalline Solids,2010,356(25-27):1246-1251
    [25] F. Dong, W. Guo, S. S. Park, et al.. Uniform and monodispersepolysilsesquioxane hollow spheres: synthesis from aqueous solution and usein pollutant removal[J].Journal of Materials Chemistry,2011,21(29):10744-10749
    [26] J. H. Shin,S. S. Park,M. Selvaraj,et al..Adsorption of amino acids onperiodic mesoporous organosilicas[J].Journal of Porous Materials,2012,19(1):29-35
    [27] M. Park,S. S. Park,M. Selvaraj,et al..Hydrophobic periodic mesoporousorganosilicas for the adsorption of cytochrome c[J]. Journal of PorousMaterials,2011,18(2):217-223
    [28]李爱民,张全兴,陈金龙等.Thermodynamic study of adsorption of phenoliccompounds onto Amberlite XAD-4polymeric adsorbents and its acetylizedderivative MX-4[J].环境科学学报:英文版,2002,14(4):457-463
    [29]康永.钛杂化笼型聚倍半硅氧烷吸附苯胺废水的动/热力学以及吸附机理研究[J].化学工业与工程技术,2010,31(1):4~8
    [30]任洪波,毕于铁,秦元成等.紫外光固化聚丙烯酰/SiO2有机/无机杂化气凝胶制备[J].强激光与粒子束,2009,21(1):83~86
    [31]赵春宝,杨绪杰,汪信等.多面体倍半硅氧烷制备有序介孔氧化硅材料[J].无机化学学报.2007,23(3):545~549
    [32]徐洪耀,王献彪,吴振玉.低介电多孔薄膜的制备及形成机制研究[J].高等学校化学学报.2006,27(1):104~107
    [33] J. S. Beck,J. C. Vartuli,W. J. Roth,et al..A New family of mesoporousmolecular-sieves prepared with liquid-crystal templates[J].Journal of theAmerican Chemical Society,1992,114(27):10834-10843
    [34] F. Hoffmann,M. Cornelius,J. Morell,et al..Silica-based mesoporousorganic-inorganic hybrid materials[J]. Angewandte Chemie-InternationalEdition,2006,45(20):3216-3251
    [35] K. J. Shea,D. A. Loy,O. Webster.Arylsesquioxane gels and related materials-new hybrids of organic and inorganic networks[J].Journal of the AmericanChemical Society,1992,114(17):6700-6710
    [36] C. J. Brinker,R. Sehgal,S. L. Hietala,et al..Sol-gel strategies for controlledporosity inorganic materials[J].Journal of Membrane Science,1994,94:85-102
    [37] D. A. Loy,J. V. Beach,B. M. Baugher,et al..Dialkylene carbonate-bridgedpolysilsesquioxanes. Hybrid organic-inorganic sol-gels with a thermallylabile bridging group[J].Chemistry of Materials,1999,11(11):3333-3341
    [38] B. Boury,R. J. P. Corriu.Adjusting the porosity of a silica-based hybridmaterial[J].Advanced Materials,2000,12(13):989-992
    [39] A. Katz, M. E. Davis. Molecular imprinting of bulk, microporoussilica[J].Nature,2000,403(6767):286-289
    [40] B. Arkles. Commercial applications of sol-gel-derived hybridmaterials[J].Mrs Bulletin,2001,26(5):402-+
    [41] R. J. J. Williams,R. Erra-Balsells,Y. Ishikawa,et al..UV-MALDI-TOF andESI-TOF mass spectrometry characterization of silsesquioxanes obtained bythe hydrolytic condensation of (3-glycidoxypropyl)-trimethoxysilane in anepoxidized solvent[J].Macromolecular Chemistry and Physics,2001,202(11):2425-2433
    [42] C. Sanchez,G. Soler-Illia,F. Ribot,et al..Designed hybrid organic-inorganicnanocomposites from functional nanobuilding blocks[J]. Chemistry OfMaterials,2001,13(10):3061-3083
    [43] A. Romo-Uribe,P. T. Mather,T. S. Haddad,et al..Viscoelastic andmorphological behavior of hybrid styryl-based polyhedral oligomericsilsesquioxane (POSS) copolymers[J]. Journal of Polymer Science PartB-Polymer Physics,1998,36(11):1857-1872
    [44] R. H. Baney,M. Itoh,A. Sakakibara,et al..Silsesquioxanes [J].ChemicalReviews,1995,95(5):1409-1430
    [45] L. L. Hench,J. K. West.The sol-gel process[J].Chemical Reviews,1990,90(1):33-72
    [46] C. J. Brinker, A. J. Hurd, G. C. Frye, et al.. Sol-gel thin-filmformation[J].Journal of Non-Crystalline Solids,1990,121(1-3):294-302
    [47] A. Arafat,J. C. Jansen,A. R. Ebaid,et al..Microwave preparation ofzeolite-Y and ZSM-5[J].Zeolites,1993,13(3):162-165
    [48] K. K. Kang, C. H. Park, W. S. Ahn. Microwave preparation of atitanium-substituted mesoporous molecular sieve[J].Catalysis Letters,1999,59(1):45-49
    [49]许磊,王公慰,魏迎旭等. MCM-41介孔分子筛合成研究:水热合成法[J].催化学报,1999,20(3):248-250
    [50]詹望成,卢冠忠,王艳芹.介孔分子筛的功能化制备及催化性能研究进展[J].化工进展,2006,25(1):1-7
    [51]徐如人,庞文琴,于吉红等.分子筛与多孔材料化学.北京:科学出版社.2004
    [52]梁延刚,郭超,金国新.酸性条件下纯硅六方介孔分子筛的合成,表征及酸介质的影响.无机化学学报,2004,20(7):763-769
    [53]刘天华.以稻壳灰为基料制备硅烷类杂化材料及性能研究[D].黑龙江:哈尔滨工业大学,2007
    [54]赵丽,余家国,赵修建等.介孔纳米结构材料的研究与发展[J].稀有金属材料与工程,2004,33(1):5-10
    [55] D. A. Loy,J. P. Carpenter,S. A. Myers,et al..Intramolecular condensationreactions of alpha,omega-bis(triethoxysilyl)alkanes. Formation of cyclicdisilsesquioxanes[J].Journal of the American Chemical Society,1996,118(35):8501-8502
    [56] G. Z. Li,L. C. Wang,H. L. Ni,et al..Polyhedral oligomeric silsesquioxane(POSS) polymers and copolymers: A review[J].Journal of Inorganic andOrganometallic Polymers,2001,11(3):123-154
    [57] K. Tanaka, K. Inafuku, S. Adachi, et al.. Tuning of Properties ofPOSS-Condensed Water-Soluble Network Polymers by Modulating theCross-Linking Ratio between POSS[J].Macromolecules,2009,42(10):3489-3492
    [58] J. H. Small,K. J. Shea,D. A. Loy.Arylene-bridged and alkylene-bridgedpolysilsesquioxanes[J].Journal of Non-Crystalline Solids,1993,160(3):234-246
    [59] D. A. Loy,J. P. Carpenter,S. A. Yamanaka,et al..Polymerization ofbis(triethoxysilyl) ethenes. Impact of substitution geometry on the formationof ethenylene-and vinylidene-bridged polysilsesquioxanes[J].Chemistry ofMaterials,1998,10(12):4129-4140
    [60] H. W. Oviatt,K. J. Shea,J. H. Small.Alkylene-bridged silsesquioxane sol-gelsynthesis and xerogel characterization-molecular requirements forporosity[J].Chemistry of Materials,1993,5(7):943-950
    [61] G. Cerveau,R. J. P. Corriu,C. Lepeytre.Organic-inorganic hybrid silica-chemical-reactivity as a tool for studying the solid arrangement as a functionof molecular-structure[J].Journal of Materials Chemistry,1995,5(5):793-795
    [62] D. A. Loy,K. J. Shea.Brided polysilsesquioxanes-highly porous hybridorganic-inorganic materials[J].Chemical Reviews,1995,95(5):1431-1442
    [63] A. Dabrowski,M. Barczak.Bridged polysilsesquioxanes as a promising classof adsorbents. A concise review[J].Croatica Chemica Acta,2007,80(3-4):367-380
    [64] P. L. Edmiston,L. A. Underwood.Absorption of dissolved organic speciesfrom water using organically modified silica that swells[J].Separation andPurification Technology,2009,66(3):532-540
    [65] R. J. P. Corriu. Ceramics and nanostructures from molecularprecursors[J].Angewandte Chemie-International Edition,2000,39(8):1376-1398
    [66] T. Asefa,M. J. MacLachlan,N. Coombs,et al..Periodic mesoporousorganosilicas with organic groups inside the channel walls[J].Nature,1999,402(6764):867-871
    [67] S. Inagaki,S. Guan,T. Ohsuna,et al..An ordered mesoporous organosilicahybrid material with a crystal-like wall structure[J].Nature,2002,416(6878):304-307
    [68] K. Yamamoto,Y. Sakata,Y. Nohara,et al..Organic-inorganic hybrid zeolitescontaining organic frameworks[J].Science,2003,300(5618):470-472
    [69] K. Yamamoto,Y. Nohara,Y. Domon,et al..Organic-anorganic hybridzeolites with framework organic groups[J].Chemistry of Materials,2005,17(15):3913-3920
    [70] K. Yamarnoto,T. Tatsumi.ZOL: A new type of organic-inorganic hybridzeolites containing organic framework[J].Chemistry of Materials,2008,20(3):972-980
    [71] D. Hoebbel,K. Endres,T. Reinert,et al..Inorganic-organic polymers derivedfrom functional silicic-acid derivatives by additive reaction[J].Journal ofNon-Crystalline Solids,1994,176(2-3):179-188
    [72] P. G. Harrison, R. Kannengiesser. Porous materials derived fromtrigonal-prismatic {Si6O9} and cubane {Si8O12} cagemonomers[J].Chemical Communications,1996(3):415-416
    [73] M. Seino, Y. Kawakami. Selective vinyl functionalization ofoctakis(dimethylsiloxy)octasilsesquioxane with allylbenzene and1,5-hexadiene and copolymerization of the products withbis(dimethylsilyl)benzene[J].Polymer Journal,2004,36(5):422-429
    [74] K. Su,D. R. Bujalski,K. Eguchi,et al..Low-k interlayer dielectric materials:Synthesis and properties of alkoxy-functional silsesquioxanes[J].Chemistryof Materials,2005,17(10):2520-2529
    [75] C. V. Nguyen,K. R. Carter,C. J. Hawker,et al..Low-dielectric, nanoporousorganosilicate films prepared via inorganic/organic polymer hybridtemplates[J].Chemistry of Materials,1999,11(11):3080-3085
    [76] N. Takamura,L. Viculis,C. Zhang,et al..Completely discontinuousorganic/inorganic hybrid nanocomposites by self-curing of nanobuildingblocks constructed from reactions of HMe2SiOSiO1.5(8) withvinylcyclohexene[J].Polymer International,2007,56(11):1378-1391
    [77] T. P. Trainor,P. J. Eng,G. E. Brown,et al..Crystal truncation rod diffractionstudy of the alpha-Al2O3(1(1)over-bar-02) surface[J].Surface Science,2002,496(3):238-250
    [78] P. Liu,T. Kendelewicz,G. E. Brown.Reaction of water with MgO(100)surfaces. Part II: Synchrotron photoemission studies of defectivesurfaces[J].Surface Science,1998,412-13:315-332
    [79] G. E. Brown,G. A. Parks.Sorption of trace elements on mineral surfaces:Modern perspectives from spectroscopic studies, and comments on sorptionin the marine environment[J].International Geology Review,2001,43(11):963-1073
    [80] G. Sposito. Surface-reactions in natural aqueous colloidalsystems[J].Chimia,1989,43(6):169-176
    [81] A. K. Bajpai, R. Dengre. Adsorption of gelatin at solid-liquidinterfaces[J].Imaging Science Journal,1997,45(3-4):236-238
    [82] N. J. Barrow,J. W. Bowden.A comparision of models for describing theadsorption of anions on a variable charge mineral surface[J].Journal ofColloid and Interface Science,1987,119(1):236-250
    [83] W. Stumm. Water, endangered ecosystem-assessment of chemicalpollution[J].Journal of Environmental Engineering-Asce,1992,118(4):466-476
    [84] K. Yang,W. H. Wu,Q. F. Jing,et al..Aqueous Adsorption of Aniline, Phenol,and their Substitutes by Multi-Walled Carbon Manotubes[J].EnvironmentalScience&Technology,2008,42(21):7931-7936
    [85] E. C. Vermisoglou,V. Georgakilas,E. Kouvelos,et al..Sorption propertiesof modified single-walled carbon nanotubes[J].Microporous and MesoporousMaterials,2007,99(1-2):98-105
    [86] N. J. Barrow. Reaction of anions and cations with variable-chargesoils[J].Advances in Agronomy,1985,38:183-230
    [87] L. Y. Piao,Q. R. Liu,Y. D. Li,et al..Adsorption of L-phenylalanine onsingle-walled carbon nanotubes[J].Journal of Physical Chemistry C,2008,112(8):2857-2863
    [88] L. M. Woods,S. C. Badescu,T. L. Reinecke.Adsorption of simple benzenederivatives on carbon nanotubes[J].Physical Review B,2007,75(15)
    [89] D. Wang, X.D. Chen, X.W. Zhang, et al.. Enhancement corrosion resistanceof (γ-methacryloxypropyl)-silsesquioxane hybrid films and its validation bygas-molecule diffusion coefficients using MD simulation[J]. Journal ofSol-Gel Science and Technology,2009,49(3),293–300
    [90] H.Y. Wang, D.R. Lin*, D. Wang, et al. Computational and experimentaldeterminations of the UV adsorption of polyvinylsilsesquioxane-silica andtitanium dioxide hybrids[J].Bio-Medical Materials and Engineering,2014,24(01),651–657
    [91] S. T. Hobson,K. J. Shea.Bridged bisimide polysilsesquioxane xerogels: Newhybrid organic-inorganic materials[J].Chemistry of Materials,1997,9(2):616-623
    [92] K. G. Sharp,M. J. Michalczyk.Star gels: New hybrid network materials frompolyfunctional single component precursors[J].Journal of Sol-Gel Scienceand Technology,1997,8(1-3):541-546
    [93] Y. F. Lu,H. Y. Fan,N. Doke,et al..Evaporation-induced self-assembly ofhybrid bridged silsesquioxane film and particulate mesophases with integralorganic functionality[J].Journal of the American Chemical Society,2000,122(22):5258-5261
    [94] K. M. Choi,K. J. Shea.Preparation of nano-sized chromium clusters andintimate mixtures of chromium CDS phases in a porous hybrid xerogel by aninternal doping method[J].Journal of the American Chemical Society,1994,116(20):9052-9060
    [95] K. O. Hwang,T. Sasaki.Imprinting for the assembly of artificial receptors ona silica surface[J].Journal of Materials Chemistry,1998,8(9):2153-2156
    [96] S. Dai,M. C. Burleigh,Y. H. Ju,et al..Hierarchically imprinted sorbentsfor the separation of metal ions[J]. Journal of the American ChemicalSociety,2000,122(5):992-993
    [97] C. X. Zhang,F. Babonneau,C. Bonhomme,et al..Highly porous polyhedralsilsesquioxane polymers. Synthesis and characterization[J].Journal of theAmerican Chemical Society,1998,120(33):8380-8391
    [98] R. Tamaki,J. W. Choi,R. M. Laine.A polyimide nanocomposite fromocta(aminophenyl)silsesquioxane[J].Chemistry of Materials,2003,15(3):793-797
    [99] G. Gerritsen,R. Duchateau,R. A. van Santen,et al..Boron, aluminum, andgallium silsesquioxane compounds, homogeneous models for group13element-containing silicates and zeolites[J].Organometallics,2003,22(1):100-110
    [100] J. Choi,A. F. Yee,R. M. Laine.Organic/inorganic hybrid composites fromcubic silsesquioxanes. Epoxy resins of octa(dimethylsiloxyethylcyclohexy-lepoxide) silsesquioxane[J].Macromolecules,2003,36(15):5666-5682
    [101] M. Barczak,P. Borowski,A. Dabrowski.Structure-adsorption properties ofethylene-bridged polysilsesquioxanes and polysiloxanes functionalized withdifferent groups[J]. Colloids and Surfaces a-Physicochemical andEngineering Aspects,2009,347(1-3):114-120
    [102] D. R. Lin,L. J. Hu,H. You,et al..Synthesis and characterization of ananostructured photoluminescent silsesquioxane containing urea and dodecylgroups that can be patterned on carbon films[J].European Polymer Journal,2011,47(8):1526-1533
    [103] C. T. Kresge,M. E. Leonowicz,W. J. Roth,et al..Ordered mesoporousmolecular-sieves synthesized by a liquid-crystal templatemechanism[J].Nature,1992,359(6397):710-712
    [104] J. J. Leary,E. B. Messick.Constrained calibration curves-a novel applicationof lagrange multipliers in analytical-chemistry[J].Analytical Chemistry,1985,57(4):956-957
    [105] K. S. W. Sing,D. H. Everett,R. A. W. Haul,et al..Reporting physisorptiondata for gas solid systems with special reference to the determination ofsurface-area and porosity (recommendations1984)[J].Pure and AppliedChemistry,1985,57(4):603-619
    [106] G. Leofanti,M. Padovan,G. Tozzola,et al..Surface area and pore textureof catalysts[J].Catalysis Today,1998,41(1-3):207-219
    [107] E. P. Barrett,L. G. Joyner,P. P. Halenda.The determination of pore volumeand area distribution of pore volume and area distributions in poroussubstances1computations from nitrogen isotherms[J]. Journal of theAmerican Chemical Society,1951,73(1):373-380
    [108] U. Ciesla,F. Schuth.Ordered mesoporous materials[J].Microporous andMesoporous Materials,1999,27(2-3):131-149
    [109] P. I. Ravikovitch,D. Wei,W. T. Chueh,et al..Evaluation of pore structureparameters of MCM-41catalyst supports and catalysts by means of nitrogenand argon adsorption[J].Journal of Physical Chemistry B,1997,101(19):3671-3679
    [110] P. I. Ravikovitch,S. C. Odomhnaill,A. V. Neimark,et al..Capillaryhysteresis in nanopores: Theoretical and experimental studies of nitrogenadsorption on MCM-41[J].Langmuir,1995,11(12):4765-4772
    [111] M. W. Maddox,J. P. Olivier,K. E. Gubbins.Characterization of MCM-41using molecular simulation: Heterogeneity effects[J].Langmuir,1997,13(6):1737-1745
    [112] P. I. Ravikovitch,A. V. Neimark.Relations between structural parametersand adsorption characterization of templated nanoporous materials with cubicsymmetry[J].Langmuir,2000,16(6):2419-2423
    [113] D. Y. Zhao,J. L. Feng,Q. S. Huo,et al..Triblock copolymer syntheses ofmesoporous silica with periodic50to300angstrom pores[J].Science,1998,279(5350):548-552
    [114] T. Asefa,M. J. MacLachlan,H. Grondey,et al..Metamorphic channels inperiodic mesoporous methylenesilica[J].Angewandte Chemie-InternationalEdition,2000,39(10):1808-+
    [115] C. Sanchez.Design of functional materials: From nanostructured hybridmaterials to hierarchical structures[J].Abstracts of Papers of the AmericanChemical Society,2004,228:U490-U490
    [116] P. Calvert. Inkjet printing for materials and devices[J]. Chemistry OfMaterials,2001,13(10):3299-3305
    [117] B. J. de Gans,P. C. Duineveld,U. S. Schubert.Inkjet printing of polymers:State of the art and future developments[J].Advanced Materials,2004,16(3):203-213
    [118] D. Zopes,R. von Hagen,R. Muller,et al..Ink-jetable patterning ofmetal-catalysts for regioselective growth of nanowires[J].Nanoscale,2010,2(10):2091-2095
    [119] R. Seemann,S. Herminghaus,K. Jacobs.Gaining control of pattern formationof dewetting liquid films[J].Journal Of Physics-Condensed Matter,2001,13(21):4925-4938
    [120] R. Mukherjee,S. Das,A. Das,et al..Stability and Dewetting of MetalNanoparticle Filled Thin Polymer Films: Control of Instability Length Scaleand Dynamics[J].Acs Nano,2010,4(7):3709-3724
    [121] X. Y. Shen, C. M. Ho, T. S. Wong. Minimal Size of Coffee RingStructure[J].Journal Of Physical Chemistry B,2010,114(16):5269-5274
    [122] V. Truskett,K. J. Stebe.Influence of surfactants on an evaporating drop:Fluorescence images and particle deposition patterns[J].Langmuir,2003,19(20):8271-8279
    [123] R. Bhardwaj, X. H. Fang, D. Attinger. Pattern formation during theevaporation of a colloidal nanoliter drop: a numerical and experimentalstudy[J].New Journal Of Physics,2009,11
    [124] M. Layani,M. Gruchko,O. Milo,et al..Transparent Conductive Coatingsby Printing coffee Ring Arrays Obtained at Room Temperature[J].Acs Nano,2009,3(11):3537-3542
    [125] C. B. Murray,C. R. Kagan,M. G. Bawendi.Synthesis and characterizationof monodisperse nanocrystals and close-packed nanocrystalassemblies[J].Annual Review Of Materials Science,2000,30:545-610
    [126] P. Alivisatos. Colloidal quantum dots. From scaling laws to biologicalapplications[J].Pure And Applied Chemistry,2000,72(1-2):3-9
    [127] K. K. Jain.Biochips for gene spotting[J].Science,2001,294(5542):621-+
    [128] A. N. Parikh,M. A. Schivley,E. Koo,et al..n-alkylsiloxanes: From singlemonolayers to layered crystals. The formation of crystalline polymers fromthe hydrolysis of n-octadecyltrichlorosilane[J].Journal Of the AmericanChemical Society,1997,119(13):3135-3143
    [129] R. W. Wang,G. Baran,S. L. Wunder.Packing and thermal stability ofpolyoctadecylsiloxane compared with octadecylsilanemonolayers[J].Langmuir,2000,16(15):6298-6305
    [130] J. J. E. Moreau,B. P. Pichon,C. Bied,et al..Structuring of bridgedsilsesquioxanes via cooperative weak interactions: H-bonding of urea groupsand hydrophobic interactions of long alkylene chains[J].Journal Of MaterialsChemistry,2005,15(35-36):3929-3936
    [131] J. J. E. Moreau,L. Vellutini,M. W. C. Man,et al..Lamellar bridgedsilsesquioxanes: Self-assembly through a combination of hydrogen bondingand hydrophobic-interactions[J].Chemistry-a European Journal,2005,11(5):1527-1537
    [132] H. E. Romeo,M. A. Fanovich,R. J. J. Williams,et al..Self-assembly of abridged silsesquioxane containing a pendant hydrophobic chain in the organicbridge[J].Macromolecules,2007,40(5):1435-1443
    [133] M. L. Gomez,C. E. Hoppe,I. A. Zucchi,et al..Hierarchical Assemblies ofGold Nanoparticles at the Surface of a Film Formed by a BridgedSilsesquioxane Containing Pendant Dodecyl Chains[J].Langmuir,2009,25(2):1210-1217
    [134] L. D. Carlos, V. D. Bermudez, V. S. Amaral, et al.. Nanoscopicphotoluminescence memory as a fingerprint of complexity in self-assembledalkyl/siloxane hybrids[J].Advanced Materials,2007,19(3):341-+
    [135] J. J. E. Moreau,L. Vellutini,P. Dieudonne,et al..Structural ordering ofself-assembled alkylene-bridged silsesquioxanes probed by X-ray diffractionexperiments[J].Journal Of Materials Chemistry,2005,15(46):4943-4948
    [136] S. S. Nobre,C. D. S. Brites,R. A. S. Ferreira,et al..Photoluminescence ofEu(III)-doped lamellar bridged silsesquioxanes self-templated through ahydrogen bonding array[J].Journal Of Materials Chemistry,2008,18(35):4172-4182
    [137] A. Shimojima, K. Kuroda. Designed synthesis of nanostructuredsiloxane-organic hybrids from amphiphilic silicon-basedprecursors[J].Chemical Record,2006,6(2):53-63
    [138] M. A. Wahab,Kim, II,C. S. Ha.Hybrid periodic mesoporous organosilicamaterials prepared from1,2-bis(triethoxysilyl)ethane and(3-cyanopropyl)triethoxysilane[J].Microporous And Mesoporous Materials,2004,69(1-2):19-27
    [139] V. Rebbin,M. Jakubowski,S. Potz,et al..Synthesis and characterisation ofspherical periodic mesoporous organosilicas (sph-PMOs) with variable porediameters[J].Microporous And Mesoporous Materials,2004,72(1-3):99-104
    [140] R. W. Wang,J. Guo,G. Baran,et al..Characterization of the state of orderof octadecylsilane chains on fumed silica[J].Langmuir,2000,16(2):568-576
    [141] J. J. E. Moreau,L. Vellutini,M. W. C. Man,et al..Self-organized hybridsilica with long-range ordered lamellar structure[J].Journal Of the AmericanChemical Society,2001,123(32):7957-7958
    [142] S. S. Soni,G. Brotons,M. Bellour,et al..Quantitative SAXS analysis of theP123/water/ethanol ternary phase diagram[J].Journal Of Physical ChemistryB,2006,110(31):15157-15165
    [143] M. J. Stevens. Thoughts on the Structure of alkylsilanemonolayers[J].Langmuir,1999,15(8):2773-2778
    [144] A. Corma.From microporous to mesoporous molecular sieve materials andtheir use in catalysis[J].Chemical Reviews,1997,97(6):2373-2419
    [145] J. Y. Ying,C. P. Mehnert,M. S. Wong.Synthesis and applications ofsupramolecular-templated mesoporous materials[J]. AngewandteChemie-International Edition,1999,38(1-2):56-77
    [146] M. E. Davis.Ordered porous materials for emerging applications[J].Nature,2002,417(6891):813-821
    [147] F. Schuth. Non-siliceous mesostructured and mesoporousmaterials[J].Chemistry Of Materials,2001,13(10):3184-3195
    [148] F. Schuth,W. Schmidt.Microporous and mesoporous materials[J].AdvancedMaterials,2002,14(9):629-638
    [149] K. J. Shea,D. A. Loy.Bridged polysilsesquioxanes: Molecular engineering ofhybrid organic-inorganic materials[J].Mrs Bulletin,2001,26(5):368-376
    [150] Y. F. Hu,K. Qian,P. Yuan,et al..Synthesis of large-pore periodicmesoporous organosilica[J].Materials Letters,2011,65(1):21-23
    [151] N. Hao,H. T. Wang,P. A. Webley,et al..Synthesis of uniform periodicmesoporous organosilica hollow spheres with large-pore size and efficientencapsulation capacity for toluene and the large biomolecule bovine serumalbumin[J].Microporous And Mesoporous Materials,2010,132(3):543-551
    [152] L. Ji,A. Katiyar,N. G. Pinto,et al..Al-MCM-41sorbents for bovine serumalbumin: relation between Al content and performance[J].Microporous AndMesoporous Materials,2004,75(3):221-229
    [153] D. A. Loy,B. M. Baugher,C. R. Baugher,et al..Substituent effects on thesol-gel chemistry of organotrialkoxysilanes[J].Chemistry Of Materials,2000,12(12):3624-3632
    [154] S. Guan,S. Inagaki,T. Ohsuna,et al..Cubic hybrid organic-inorganicmesoporous crystal with a decaoctahedral shape[J].Journal Of the AmericanChemical Society,2000,122(23):5660-5661
    [155] A. Keilbach, M. Doblinger, R. Kohn, et al.. Periodic MesoporousOrganosilica in Confined Environments[J].Chemistry-a European Journal,2009,15(27):6645-6650
    [156] E. B. Cho,D. Kim,J. Gorka,et al..Three-dimensional cubic (Im3m) periodicmesoporous organosilicas with benzene-and thiophene-bridginggroups[J].Journal of Materials Chemistry,2009,19(14):2076-2081
    [157] Y. C. Liang, M. Hanzlik, R. Anwander. Ethylene-bridged periodicmesoporous organosilicas with Fm3m symmetry[J].Journal Of MaterialsChemistry,2005,15(35-36):3919-3928
    [158] X. F. Zhou,S. Z. Qiao,N. Hao,et al..Synthesis of ordered cubic periodicmesoporous organosilicas with ultra-large pores[J].Chemistry Of Materials,2007,19(7):1870-1876
    [159] N. Hao, Y. X. Yang, H. T. Wang, et al.. Synthesis of large-porephenyl-bridged mesoporous organosilica with thick walls byevaporation-induced self-assembly for efficient benzeneadsorption[J].Journal Of Colloid And Interface Science,2010,346(2):429-435
    [160] S. Y. Guan,S. Inagaki,T. Ohsuna,et al..Hybrid ethane-siloxane mesoporousmaterials with cubic symmetry[J].Microporous And Mesoporous Materials,2001,44:165-172
    [161] T. Ren, X. M. Zhang, J. S. Suo. Synthesis of periodic mesoporousorganosilicas via the "S+X-I+" route[J]. Microporous And MesoporousMaterials,2002,54(1-2):139-144
    [162] Y. C. Liang,E. S. Erichsen,M. Hanzlik,et al..Facile mesophase control ofperiodic mesoporous organosilicas under basic conditions[J].Chemistry OfMaterials,2008,20(4):1451-1458
    [163] B. Lee,Y. Kim,H. Lee,et al..Synthesis of functionalized porous silicas viatemplating method as heavy metal ion adsorbents: the introduction of surfacehydrophilicity onto the surface of adsorbents[J]. Microporous AndMesoporous Materials,2001,50(1):77-90
    [164] M. P. Kapoor,Q. H. Yang,S. Inagaki.Self-assembly of biphenylene-bridgedhybrid mesoporous solid with molecular-scale periodicity in the porewalls[J].Journal of the American Chemical Society,2002,124(51):15176-15177
    [165] Y. C. Pan,H. Y. Wu,C. C. Kao,et al..Model System for Solid-State NMRStudy on Co-condensation Behavior of Silicon Precursors in PeriodicMesoporous Organosilicas[J].Journal of Physical Chemistry C,2009,113(42):18251-18258
    [166] M. J. Kim,R. Ryoo.Synthesis and pore size control of cubic mesoporoussilica SBA-1[J].Chemistry of Materials,1999,11(2):487-491
    [167] D.R. Lin,L.J. Hu,Z. Li,et al..Influence of alkylene-bridging group lengthon mesostructure and porosity in cubic (Pm3n) periodic mesoporous bridgedpolysilsesquioxanes[J].Journal of Porous Materials,2013,(Accepted)
    [168] D. Y. Zhao,P. D. Yang,D. I. Margolese,et al..Synthesis of continuousmesoporous silica thin films with three-dimensional accessible porestructures[J].Chemical Communications,1998(22):2499-2500
    [169] M. Weinberger,S. Puchegger,T. Froschl,et al..Sol-Gel Processing of aGlycolated Cyclic Organosilane and Its Pyrolysis to Silicon OxycarbideMonoliths with Multiscale Porosity and Large Surface Areas[J].Chemistry ofMaterials,2010,22(4):1509-1520
    [170] M. Weinberger,T. Froschl,S. Puchegger,et al..Organosilica Monoliths withMultiscale Porosity: Detailed Investigation of the Influence of the Surfactanton Structure Formation[J].Silicon,2009,1(1):19-28
    [171] Q. S. Huo,D. I. Margolese,U. Ciesla,et al..Generalized synthesis of periodicsurfactant inorganic composite-materials[J].Nature,1994,368(6469):317-321
    [172] Y. C. Pan,H. Y. Wu,G. L. Jheng,et al..Ordered and Hydrothermally StableCubic Periodic Mesoporous Organosilicas with SBA-1Mesostructures:Synthesis, Characterization, Solid-State NMR Spectroscopy, and DFTCalculations[J].Journal Of Physical Chemistry C,2009,113(7):2690-2698
    [173] M. Weinberger,S. Puchegger,C. Rentenberger,et al..Mesoporous dendrimersilica monoliths studied by small-angle X-ray scattering[J]. Journal OfMaterials Chemistry,2008,18(40):4783-4789
    [174] B. Tan,S. M. Vyas,H. J. Lehmer,et al..Synthesis of inorganic andorganic-inorganic hybrid hollow particles using a cationic surfactant with apartially fluorinated tail[J].Advanced Functional Materials,2007,17(14):2500-2508
    [175] S. Brunauer,P. H. Emmett,E. Teller.Adsorption of gases in multimolecularlayers[J].Journal of the American Chemical Society,1938,60:309-319
    [176] P. I. Ravikovitch,A. V. Neimark.Experimental confirmation of differentmechanisms of evaporation from ink-bottle type pores: Equilibrium, poreblocking, and cavitation[J].Langmuir,2002,18(25):9830-9837
    [177] S. Inagaki,S. Guan,Y. Fukushima,et al..Novel mesoporous materials witha uniform distribution of organic groups and inorganic oxide in theirframeworks[J].Journal of the American Chemical Society,1999,121(41):9611-9614
    [178] B. J. Melde,B. T. Holland,C. F. Blanford,et al..Mesoporous sieves withunified hybrid inorganic/organic frameworks[J].Chemistry of Materials,1999,11(11):3302-3308
    [179] C. Yoshina-Ishii, T. Asefa, N. Coombs, et al.. Periodic mesoporousorganosilicas, PMOs: fusion of organic and inorganic chemistry 'inside' thechannel walls of hexagonal mesoporous silica[J].Chemical Communications,1999(24):2539-2540
    [180] W. Whitnall, T. Asefa, G. A. Ozin. Hybrid periodic mesoporousorganosilicas[J].Advanced Functional Materials,2005,15(10):1696-1702
    [181] A. D. P. Netto,J. C. Moreira,A. Dias,et al..Evaluation of humancontamination with polycyclic aromatic hydrocarbons (PAHS) and theirnitrated derivatives (NHPAS): A review of methodology[J].Quimica Nova,2000,23(6):765-773
    [182] K. Yang, L. Z. Zhu, B. S. Xing. Adsorption of polycyclic aromatichydrocarbons by carbon nanomaterials[J]. Environmental Science&Technology,2006,40(6):1855-1861
    [183] K. Yang,X. L. Wang,L. Z. Zhu,et al..Competitive sorption of pyrene,phenanthrene, and naphthalene on multiwalled carbonnanotubes[J].Environmental Science&Technology,2006,40(18):5804-5810
    [184] X. L. Wang,J. L. Lu,B. S. Xing.Sorption of organic contaminants by carbonnanotubes: Influence of adsorbed organic matter[J].Environmental Science&Technology,2008,42(9):3207-3212
    [185] H. T. Jang,Y. Park,Y. S. Ko,et al..Highly siliceous MCM-48from rice huskash for CO2adsorption[J].International Journal of Greenhouse Gas Control,2009,3(5):545-549
    [186] Y. Kato,M. Machida,H. Tatsumoto.Inhibition of nitrobenzene adsorptionby water cluster formation at acidic oxygen functional groups on activatedcarbon[J].Journal of Colloid and Interface Science,2008,322(2):394-398
    [187] T. Merle,J. S. Pic,M. H. Manero,et al..Comparison of Activated Carbonand Hydrophobic Zeolite Efficiencies in2,4-Dichlorophenol AdvancedOzonation[J].Ozone-Science&Engineering,2010,32(6):391-398
    [188] R. Peng,D. Zhao,N. M. Dimitrijevic,et al..Room Temperature Synthesisof Ti-MCM-48and Ti-MCM-41Mesoporous Materials and TheirPerformance on Photocatalytic Splitting of Water[J].Journal of PhysicalChemistry C,2012,116(1):1605-1613
    [189] M. Sander,J. J. Pignatello.Characterization of charcoal adsorption sites foraromatic compounds: Insights drawn from single-solute and Bi-solutecompetitive experiments[J].Environmental Science&Technology,2005,39(6):1606-1615
    [190] Q. Liao,J. Sun,L. Gao.Adsorption of chlorophenols by multi-walled carbonnanotubes treated with HNO3and NH3[J].Carbon,2008,46(3):553-555
    [191] C. S. Lu,Y. L. Chung,K. F. Chang.Adsorption of trihalomethanes fromwater with carbon nanotubes[J].Water Research,2005,39(6):1183-1189
    [192] D. H. Lin,B. S. Xing. Adsorption of phenolic compounds by carbonnanotubes: Role of aromaticity and substitution of hydroxylgroups[J].Environmental Science&Technology,2008,42(19):7254-7259
    [193] M. M. Dubinin,V. A. Astakhov.Development of ideas of volume filling ofmicropores during adsorption of gases and vapours by micropous adsorbents1carbonaceous adsorbents[J]. Izvestiya Akademii Nauk Sssr-SeriyaKhimicheskaya,1971(1):5-11
    [194] J. Febrianto,A. N. Kosasih,J. Sunarso,et al..Equilibrium and kinetic studiesin adsorption of heavy metals using biosorbent: A summary of recentstudies[J].Journal of Hazardous Materials,2009,162(2-3):616-645
    [195] K. Yang, B. S. Xing. Adsorption of Organic Compounds by CarbonNanomaterials in Aqueous Phase: Polanyi Theory and ItsApplication[J].Chemical Reviews,2010,110(10):5989-6008
    [196] K. Yang, W. H. Wu, Q. F. Jing, et al.. Competitive Adsorption ofNaphthalene with2,4-Dichlorophenol and4-Chloroaniline on MultiwalledCarbon Nanotubes[J].Environmental Science&Technology,2010,44(8):3021-3027
    [197] A. Imyim, E. Prapalimrungsi. Humic acids removal from water byaminopropyl functionalized rice husk ash[J]. Journal Of HazardousMaterials,2010,184(1-3):775-781
    [198] K. Yang,B. S. Xing.Sorption of Phenanthrene by Humic Acid-CoatedNanosized TiO2and ZnO[J].Environmental Science&Technology,2009,43(6):1845-1851
    [199] O. Olkhovyk, V. Antochshuk, M. Jaroniec. Benzoylthiourea-modifiedMCM-48mesoporous silica for mercury(II) adsorption from aqueoussolutions[J]. Colloids and Surfaces a-Physicochemical and EngineeringAspects,2004,236(1-3):69-72
    [200] Q. L. Li,V. L. Snoeyink,B. J. Marinas,et al..Pore blockage effect of NOMon atrazine adsorption kinetics of PAC: the roles of PAC pore sizedistribution and NOM molecular weight[J].Water Research,2003,37(20):4863-4872
    [201] C. Pelekani,V. L. Snoeyink.Competitive adsorption in natural water: Role ofactivated carbon pore size[J].Water Research,1999,33(5):1209-1219
    [202] C. Pelekani,V. L. Snoeyink.Competitive adsorption between atrazine andmethylene blue on activated carbon: the importance of pore sizedistribution[J].Carbon,2000,38(10):1423-1436
    [203] G. Newcombe,J. Morrison,C. Hepplewhite,et al..Simultaneous adsorptionof MIB and NOM onto activated carbon-II. Competitive effects[J].Carbon,2002,40(12):2147-2156
    [204] G. Newcombe,J. Morrison,C. Hepplewhite.Simultaneous adsorption of MIBand NOM onto activated carbon. I. Characterisation of the system and NOMadsorption[J].Carbon,2002,40(12):2135-2146
    [205] C. Pelekani,V. L. Snoeyink.A kinetic and equilibrium study of competitiveadsorption between atrazine and Congo red dye on activated carbon: theimportance of pore size distribution[J].Carbon,2001,39(1):25-37
    [206] R. J. Martin. Activated carbon product selection for water andwastewater-treatment[J]. Industrial&Engineering Chemistry ProductResearch And Development,1980,19(3):435-441
    [207] J. B. Rosen. Kinetics of a Fixed Bed System for Solid Diffusion intoSpherical Particles[J].Journal of Chemical Physics,1952,20(3):387-394
    [208] R. T. Yang. Gas Separation by Adsorption Processes [M]. Butterworth:Reprinted by Imperial College Press,London,1997:25-42
    [209] M. M. Dubinin. The Potential Theory of Adsorption of Gases and Vapors forAdsorbents with Energetically Nonuniform Surfaces[J].Chemical Reviews,1960,60(10):235-241
    [210] A. Kapoor,J. A. Ritter,R. T. Yang. On the dubinin radushkevich equation foradsorption in microporous solids in the henry law region [J]. Langmuir,1989,5(4):1118-1121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700