用户名: 密码: 验证码:
锌镉基硫化物光催化剂的制备及制氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用一种既不释放温室气体,也不产生其它污染物的方式来为世界提供能源是一项极具挑战的课题,而通过半导体光催化剂分解水制氢无疑是最吸引人的手段之一。在众多的光催化材料中,以ZnS及CdS为代表的硫化物光催化剂因其优异的光催化制氢性能受到了研究者的广泛关注,在此领域的研究也取得了很多深受瞩目的成果。本论文利用简单方法合成了一系列具有优异光催化制氢性能的锌镉基硫化物光催化材料,系统的研究了晶体结构、微观形貌、光生电荷分离与光催化制氢性能之间的关系。
     采用水热法首次合成了具有分级多孔结构的Cd、In共掺ZnS光催化剂,其BET比表面积最高可达127m2·g1。FESEM及TEM测试结果表明光催化剂是由纳米片随机自组装的花状微球构成,通过调节Cd与In的含量可使Cd,In共掺ZnS纳米片的晶体生长过程处于奥斯特瓦尔德熟化与侧向定向聚集晶体生长机制的竞争中,从而使得纳米片具有六方纤锌矿/立方闪锌矿异质结构,该异质结构对光生电子空穴分离具有促进作用。Cd,In共掺ZnS光催化剂对可见光的吸收主要源于Cd元素的掺杂。负载2wt%Pt的Cd,In共掺ZnS光催化剂的制氢活性最高可达3.7mmol·h1,是一种具有潜在应用价值的光催化材料。
     采用水热法合成了ZnIn2S4/CdIn2S4复合光催化剂,ZnIn2S4与CdIn2S4的形貌分别对应于纳米片紧密堆积的大花球与纳米片松散堆积的小花球。由于Cd与Zn在ZnIn2S4与CdIn2S4间的交互掺杂,复合光催化剂紫外可见吸收光谱的吸收边集中在540550nm范围内。通过在ZnIn2S4/CdIn2S4复合光催化剂中引入还原助催化Pt及氧化助催化剂PdS,确定了光催化制氢过程中的速度控制步骤为光催化氧化半反应。负载PdS助催化剂后的复合光催化剂的光催化制氢活性最高可达780μmol·h1,相比于纯相ZnIn2S4光催化剂性能提高近3倍。
     通过简便、快捷的微波辅助液相法合成了一系列CdxZn1xS固溶体光催化剂,15min内便能完成反应过程。所制备的光催化剂是由纳米晶团聚而成的无规则二次颗粒。通过在反应过程中引入阴离子表面活性剂十二烷基苯磺酸钠(SDBS),使得所制备的纳米晶具有孪晶结构,纳米晶中的孪晶结构可使光生电子空穴有效地分离。当SDBS浓度为0.6mol·L1时,所合成的Cd0.6Zn0.4S固溶体光催化剂无负载条件下制氢活性亦可达3.6mmol·h1。根据以纳米晶团聚而成的Cd0.6Zn0.4S光催化剂在首次循环后活性升高的现象,首次提出了聚集体系光催化剂初始反应阶段的“活化机制”,为合理评价聚集体系光催化剂的制氢性能提供了理论依据。
     通过溶剂热法首次将La掺入Cd0.6Zn0.4S固溶体的空间电荷层中,Mott–Schottky测试表明调节La的掺入量可调控Cd0.6Zn0.4S固溶体空间电荷层的厚度,XPS测试结果表明La原子以La–S–Zn键的形式存在。由于La的掺杂,Cd0.6Zn0.4S固溶体对光的吸收明显增强,350nm单色光下CZS:2%La的表观量子产率高达93.3%。而CZS:2%La光催化剂在模拟太阳光(AM1.5)的可见波段下的制氢活性最高可达1.39mmol·h1。此外,La修饰对光催化分解水制氢的促进作用在红色TiO2体系中也得到了验证。
Powering the world without emitting greenhouse gases or producing additional pollutants is a challenging issue. Photocatalytic H2evolution through solar water splitting using semiconductor photocatalyst is one of the most attractive routes to achieve this goal. Among the photocatalysts, sulfide photocatalysts, including ZnS, CdS, received much attention because of their outstanding performance for photocatalytic H2production. Research in this field have received remarkable achievements. In this thesis, a series of Zinc-and Cadmium-based sulfide photocatalytic materials have been synthesized through facile routes. The relationship between crystal structure, morphology, separation of photo-generated charges and performance of photocatalytic H2production has been investigated systematically.
     Hierarchical porous Cd, In co-doped ZnS photocatalyst was firstly synthesized through the hydrothermal method. BET specific surface area of the as-prepared samples was up to127m2·g1. FESEM and TEM results demonstrated that the photocatalysts were composed of flower-like microsphere by assembly of nanoflakes. By adjusting the amount of Cd and In components in Cd, In co-doped ZnS photocatalyst, the crystal growth process would be in a competition between Ostwald ripening and orientation attachment, which makes the nanoflakes present wurtzite/sphalerite heterostructures. The wurtzite/sphalerite heterostructures could contribute to the separation of photo-generated charges. The visible-light absorption was mainly attributed to the doping of Cd element. Performance of photocatalyst with2%Pt loaded for photocatalytic H2production reached3.7mmol·h1, which is a good candidate for potential applications.
     ZnIn2S4/CdIn2S4composite photocatalysts were synthesized through hydrothermal method. Morphologies of ZnIn2S4and CdIn2S4corresponding to bigger flower-like microspheres with denser packed nanoflakes and smaller flower-like microspheres with looser packed nanoflakes. Due to the cross-doping of Cd and Zn into the ZnIn2S4and CdIn2S4, the absorption edges of composite photocatalysts were mainly located between540and550nm. Through introducing the Pt reduction cocatalyst and PdS oxidation cocatalyst into the ZnIn2S4/CdIn2S4composite photocatalyst, the rate-determining step of the total photocatalytic hydrogen evolution reaction was confirmed to the photocatalytic oxidative half reaction. Performance of the composite photocatalyst for photocatalytic H2production could reach780μmol·h1after loading PdS cocatalyst, which is3times higher than the pure ZnIn2S4photocatalyst.
     A series of CdxZn1xS solid solution photocatalysts have been synthesized through a facile, fast microwave-assisted route, the photocatalyst powder could be obtained in15min. The as-prepared photocatalyst was composed of irregular secondary particles by assembly of nanocrystals. Through introducing sodium dodecyl benzene sulfonate (SDBS) as the anionic surfactant, the nanocrystals presented twin structures which could effectively separate the photo-generated electrons and holes. The photocatalytic H2production performance of Cd0.6Zn0.4S solid solution photocatalyst synthesized in the presence of0.6mol·L1of SDBS reached3.6mmol·h1even without loading any cocatalyst. According to the phenomenon that the performance of Cd0.6Zn0.4S photocatalyst composed of nanocrystals increased after first cycle, an “activation effect” of the photocatalyst in assemble system at the initial stage of photocatalytic reaction was proposed, which provides theoretical evidence for the rational evaluation of the photocatalytic hydrogen evolution performance of the photocatalysts in assemble system.
     La was firstly doped into the space charge layer of Cd0.6Zn0.4S solid solution through solvothermal method. Mott–Schottky test indicated the depth of space charge layer of Cd0.6Zn0.4S solid solution could be adjusted by changing the amount of La doped. XPS results demonstrated La was doped into the space charge layer in the form of La–S–Zn bonds. Attributed to the La doping, light-absorbing property of Cd0.6Zn0.4S solid solution was greatly improved. Furthermore, the apparent quantum yield of CZS:2%La was up to93.3%under the irradiation of350nm monochromatic light. And the photocatalytic performance for H2production of CZS:2%La photocatalyst under the irradiation of the visible region of simulated sunlight (AM1.5) could reach1.39mmol·h1. Moreover, the promotion of La modification on the photocatalytic H2production performance has also been verified in the red TiO2system.
引文
[1] A. J. Nozik, J. Miller. Introduction to solar photon conversion[J]. ChemicalReviews.2010,110(11):6443-6445.
    [2] A. E. Curtright, J. Apt. The character of power output from utility-scalephotovoltaic systems[J]. Progress in Photovoltaics: Research andApplications.2008,16(3):241-247.
    [3] M. Tanaka. Real-time pricing with ramping costs: A new approach tomanaging a steep change in electricity demand[J]. Energy Policy.2006,34(18):3634-3643.
    [4] M. Collares-Pereira, A. Rabl. The average distribution of solarradiation-correlations between diffuse and hemispherical and between dailyand hourly insolation values[J]. Solar Energy.1979,22(2):155-164.
    [5] T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, D. G.Nocera. Solar energy supply and storage for the legacy and nonlegacyworlds[J]. Chemical Reviews.2010,110(11):6474-6502.
    [6] D. M. Schultz, T. P. Yoon. Solar synthesis: prospects in visible lightphotocatalysis[J]. Science.2014,343(6174):1239176.
    [7] A. Fujishima, K. Honda. Electrochemical photolysis of water at asemiconductor electrode[J]. Nature.1972,238(5358):37-38.
    [8] X. B. Chen, S. H. Shen, L. J. Guo, S. S. Mao. Semiconductor-basedphotocatalytic hydrogen generation[J]. Chemical Reviews.2010,110(11):6503-6570.
    [9] A. Kudo, Y. Miseki. Heterogeneous photocatalyst materials for watersplitting[J]. Chemical Society Reviews.2009,38(1):253-278.
    [10] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye.Nano-photocatalytic materials: possibilities and challenges[J]. AdvancedMaterials.2012,24(2):229-251.
    [11][X. Lang, X. Chen, J. Zhao. Heterogeneous visible light photocatalysis forselective organic transformations[J]. Chemical Society Reviews.2014,43(1):473-486.
    [12] A. J. Bard, M. A. Fox. Artificial photosynthesis: solar splitting of water tohydrogen and oxygen[J]. Accounts of Chemical Research.1995,28(3):141-145.
    [13] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann. Environmentalapplications of semiconductor photocatalysis[J]. Chemical Reviews.1995,95(1):69-96.
    [14] A. L. Linsebigler, G. Lu, J. T. Yates. Photocatalysis on TiO2surfaces:principles, mechanisms, and selected results[J]. Chemical Reviews.1995,95(3):735-758.
    [15] K. Maeda, K. Domen. New non-oxide photocatalysts designed for overallwater splitting under visible light[J]. The Journal of Physical Chemistry C.2007,111(22):7851-7861.
    [16]温福宇,杨金辉,宗旭,马艺,徐倩,马保军,李灿.太阳能光催化制氢研究进展[J].化学进展.2009,21(11):2285-2302.
    [17] N. Serpone, A. V. Emeline. Semiconductor photocatalysis—past, present,and future outlook[J]. The Journal of Physical Chemistry Letters.2012,3(5):673-677.
    [18] H. Zhang, G. Chen, X. Li, Q. Wang. Electronic structure and water splittingunder visible light irradiation of BiTa1xCuxO4(x=0.00–0.04)photocatalysts[J]. International Journal of Hydrogen Energy.2009,34(9):3631-3638.
    [19] R. Konta, T. Ishii, H. Kato, A. Kudo. Photocatalytic activities of noblemetal ion doped SrTiO3under visible light irradiation[J]. The Journal ofPhysical Chemistry B.2004,108(26):8992-8995.
    [20] S. Nishimoto, M. Matsuda, M. Miyake. Photocatalytic activities ofRh-doped CaTiO3under visible light irradiation[J]. Chemistry Letters.2006,35(3):308-309.
    [21] Y. Okazaki, T. Mishima, S. Nishimoto, M. Matsuda, M. Miyake.Photocatalytic activity of Ca3Ti2O7layered-perovskite doped with Rh undervisible light irradiation[J]. Materials Letters.2008,62(19):3337-3340.
    [22] F. Ji, C. Li, J. Zhang. Hydrothermal synthesis of Li9Fe3P2O73PO42nanoparticles and their photocatalytic properties under visible-lightillumination[J]. ACS Applied Materials&Interfaces.2010,2(6):1674-1678.
    [23] Y. Ya-Hui, C. Qi-Yuan, Y. Zhou-Lan, L. Jie. Study on the photocatalyticactivity of K2La2Ti3O10doped with Zn[J]. Applied Surface Science.2009,255(20):8419-8424.
    [24] Y. Miseki, H. Kusama, H. Sugihara, K. Sayama. Cs-Modified WO3photocatalyst showing efficient solar energy conversion for O2productionand Fe (III) ion reduction under visible light[J]. The Journal of PhysicalChemistry Letters.2010,1(8):1196-1200.
    [25] T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura. Photocatalyticoxidation of water by visible light using ruthenium-doped titanium dioxidepowder[J]. Journal of Photochemistry and Photobiology A: Chemistry.1999,127(1-3):107-110.
    [26] H. Liu, R. Nakamura, Y. Nakato. A visible-light responsive photocatalyst,BiZn2VO6, for efficient oxygen photoevolution from aqueous particulatesuspensions[J]. Electrochemical and Solid-State Letters.2006,9(5):G187.
    [27] H. Liu, R. Nakamura, Y. Nakato. Bismuth-copper vanadate BiCu2VO6as anovel photocatalyst for efficient visible-light-driven oxygen evolution[J].ChemPhysChem.2005,6(12):2499-2502.
    [28] K. Sayama, H. Arakawa. Effect of carbonate salt addition on thephotocatalytic decomposition of liquid water over Pt–TiO2catalyst[J].Journal of the Chemical Society, Faraday Transactions.1997,93(8):1647-1654.
    [29] G. Wu, Y. Katsumura, Y. Muroya, M. Lin, T. Morioka. Temperaturedependence of carbonate radical in NaHCO3and Na2CO3solutions: is theradical a single anion?[J]. The Journal of Physical Chemistry A.2002,106(11):2430-2437.
    [30] K. Sayama, J. Augustynski, H. Arakawa. Significant effect of carbonateions on the photooxidation of water on mesoporous TiO2film electrodes[J].Chemistry Letters.2002,(10):994-995.
    [31] D. S. Kong, X. D. Zhang, J. Wang, C. Wang, X. Zhao, Y. Y. Feng, W. J. Li.A photoelectrochemical study on the features of carbonate-catalyzed wateroxidation at illuminated TiO2/solution interface[J]. Journal of Solid StateElectrochemistry.2012,17(1):69-77.
    [32] K. Sayama, N. Wang, Y. Miseki, H. Kusama, N. Onozawa-Komatsuzaki, H.Sugihara. Effect of carbonate ions on the photooxidation of water overporous BiVO4film photoelectrode under visible light[J]. Chemistry Letters.2010,39(1):17-19.
    [33] D. E. Dunstan, A. Hagfeldt, M. Almgren, H. O. G. Siegbahn, E. Mukhtar.Importance of surface reactions in the photochemistry of zinc sulfidecolloids[J]. Journal of Chemical Physics.1990,94(17):6797-6804.
    [34] N. Z. Bao, L. M. Shen, T. Takata, K. Domen. Self-templated synthesis ofnanoporous CdS nanostructures for highly efficient photocatalytic hydrogenproduction under visible light[J]. Chemistry of Materials.2008,20(1):110-117.
    [35] X. Chen, C. Li, M. Gratzel, R. Kostecki, S. S. Mao. Nanomaterials forrenewable energy production and storage[J]. Chemical Society Reviews.2012,41(23):7909-7937.
    [36] Z. S. Li, W. J. Luo, M. L. Zhang, J. Y. Feng, Z. G. Zou.Photoelectrochemical cells for solar hydrogen production: current state ofpromising photoelectrodes, methods to improve their properties, andoutlook[J]. Energy&Environmental Science.2013,6(2):347-370.
    [37] R. Abe. Recent progress on photocatalytic and photoelectrochemical watersplitting under visible light irradiation[J]. Journal of Photochemistry andPhotobiology C.2010,11(4):179-209.
    [38] B. Ohtani. Photocatalysis A to Z—What we know and what we do not knowin a scientific sense[J]. Journal of Photochemistry and Photobiology C.2010,11(4):157-178.
    [39] W. Choi, A. Termin, M. R. Hoffmann. Einflüsse vondotierungs-metall-ionen auf die photokatalytische reaktivit t vonTiO2-quantenteilchen[J]. Angewandte Chemie.1994,106(10):1148-1149.
    [40] M. Anpo. The design and development of highly reactive titanium oxidephotocatalysts operating under visible light irradiation[J]. Journal ofCatalysis.2003,216(1-2):505-516.
    [41] F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng. Self-doped Ti3+enhanced photocatalyst for hydrogen production under visible light[J].Journal of the American Chemical Society.2010,132(34):11856-11857.
    [42] M. Kitano, M. Takeuchi, M. Matsuoka, J. M. Thomas, M. Anpo.Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2thin film photocatalysts[J]. Catalysis Today.2007,120(2):133-138.
    [43] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-lightphotocatalysis in nitrogen-doped titanium oxides[J]. Science.2001,293(5528):269-271.
    [44] G. Liu, J. Pan, L. c. Yin, J. T. S. Irvine, F. Li, J. Tan, P. Wormald, H. M.Cheng. Heteroatom-modulated switching of photocatalytic hydrogen andoxygen evolution preferences of anatase TiO2microspheres[J]. AdvancedFunctional Materials.2012,22(15):3233-3238.
    [45] G. Liu, L. C. Yin, J. q. Wang, P. Niu, C. Zhen, Y. p. Xie, H. M. Cheng. A redanatase TiO2photocatalyst for solar energy conversion[J]. Energy&Environmental Science.2012,5(11):9603-9610.
    [46] X. Chen, L. Liu, P. Y. Yu, S. S. Mao. Increasing solar absorption forphotocatalysis with black hydrogenated titanium dioxide nanocrystals[J].Science.2011,331(6018):746-750.
    [47] J. Dong, D. Drabold. Atomistic structure of band-tail states in amorphoussilicon[J]. Physical Review Letters.1998,80(9):1928-1931.
    [48] K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen. Photocatalyticoverall water splitting on gallium nitride powder[J]. Bulletin of theChemical Society of Japan.2007,80(5):1004-1010.
    [49] J. Sato, N. Saito, Y. Yamada, K. Maeda, T. Takata, J. N. Kondo, M. Hara, H.Kobayashi, K. Domen, Y. Inoue. RuO2-loaded beta-Ge3N4as a non-oxidephotocatalyst for overall water splitting[J]. Journal of the AmericanChemical Society.2005,127(12):4150-4151.
    [50] Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, K. Domen. Effectof high-pressure ammonia treatment on the activity of Ge3N4photocatalystfor overall water splitting[J]. Journal of Physical Chemistry B.2006,110(35):17563-17569.
    [51] A. Kasahara, K. Nukumizu, G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H.Kobayashi, K. Domen. Photoreactions on LaTiO2N under visible lightirradiation[J]. Journal of Physical Chemistry A.2002,106(29):6750-6753.
    [52] A. Kasahara, K. Nukumizu, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi,K. Domen. LaTiO2N as a visible-light (λ≤600nm)-driven photocatalyst(2)[J]. Journal of Physical Chemistry B.2003,107(3):791-797.
    [53] M. Higashi, K. Domen, R. Abe. Fabrication of an efficient BaTaO2Nphotoanode harvesting a wide range of visible light for water splitting[J].Journal of the American Chemical Society.2013,135(28):10238-10241.
    [54] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen.Photocatalyst releasing hydrogen from water[J]. Nature.2006,440(7082):295-295.
    [55] K. Maeda, K. Domen. Photocatalytic water splitting: recent rrogress andfuture challenges[J]. The Journal of Physical Chemistry Letters.2010,1(18):2655-2661.
    [56] F. Tessier, P. Maillard, Y. Lee, C. l. Bleugat, K. Domen. Zinc Germaniumoxynitride: influence of the preparation method on the photocatalyticproperties for overall water splitting[J]. The Journal of Physical ChemistryC.2009,113(19):8526-8531.
    [57] Y. Hou, B. L. Abrams, P. C. Vesborg, M. E. Bjorketun, K. Herbst, L. Bech,A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S.Dahl, J. K. Norskov, I. Chorkendorff. Bioinspired molecular co-catalystsbonded to a silicon photocathode for solar hydrogen evolution[J]. NatureMaterials.2011,10(6):434-438.
    [58] F. Wang, W. K. H. Ng, J. C. Yu, H. Zhu, C. Li, L. Zhang, Z. Liu, Q. Li. Redphosphorus: An elemental photocatalyst for hydrogen formation fromwater[J]. Applied Catalysis B: Environmental.2012,111-112:409-414.
    [59] G. Liu, P. Niu, L. Yin, H. M. Cheng. Alpha-sulfur crystals as avisible-light-active photocatalyst[J]. Journal of the American ChemicalSociety.2012,134(22):9070-9073.
    [60] Y. D. Chiou, Y. J. Hsu. Room-temperature synthesis of single-crystalline Senanorods with remarkable photocatalytic properties[J]. Applied CatalysisB-Environmental.2011,105(1-2):211-219.
    [61] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K.Domen, M. Antonietti. A metal-free polymeric photocatalyst for hydrogenproduction from water under visible light[J]. Nature Materials.2009,8(1):76-80.
    [62] Y. Wang, X. Wang, M. Antonietti, Y. Zhang. Facile one-pot synthesis ofnanoporous carbon nitride solids by using soft templates[J]. ChemSusChem.2010,3(4):435-439.
    [63] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, H. Dai.N-doping of graphene through electrothermal reactions with ammonia[J].Science.2009,324(5928):768-771.
    [64] L. Zhao, N. Baccile, S. Gross, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M.M. Titirici. Sustainable nitrogen-doped carbonaceous materials frombiomass derivatives[J]. Carbon.2010,48(13):3778-3787.
    [65] Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, X. Wang. Excellentvisible-light photocatalysis of fluorinated polymeric carbon nitride solids[J].Chemistry of Materials.2010,22(18):5119-5121.
    [66] Y. Wang, H. Li, J. Yao, X. Wang, M. Antonietti. Synthesis of boron dopedpolymeric carbon nitride solids and their use as metal-free catalysts foraliphatic C–H bond oxidation[J]. Chemical Science.2011,2(3):446-450.
    [67] G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. Lu, H. M. Cheng. Uniqueelectronic structure induced high photoreactivity of sulfur-doped graphiticC3N4[J]. Journal of the American Chemical Society.2010,132(33):11642-11648.
    [68] K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti, K. Domen.Photocatalytic activities of graphitic carbon nitride powder for waterreduction and oxidation under visible light[J]. The Journal of PhysicalChemistry C.2009,113(12):4940-4947.
    [69] Q. Li, B. Yue, H. Iwai, T. Kako, J. Ye. Carbon nitride polymers sensitizedwith N-doped tantalic acid for visible light-induced photocatalytic hydrogenevolution[J]. The Journal of Physical Chemistry C.2010,114(9):4100-4105.
    [70] J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X. Fu, X.Wang. Sulfur-mediated synthesis of carbon nitride: band-gap engineeringand improved functions for photocatalysis[J]. Energy&EnvironmentalScience.2011,4(3):675-678.
    [71] Y. Wang, X. Wang, M. Antonietti. Polymeric graphitic carbon nitride as aheterogeneous organocatalyst: from photochemistry to multipurposecatalysis to sustainable chemistry[J]. Angewandte Chemie InternationalEdition.2012,51(1):68-89.
    [72] A. Vinu, K. Ariga, T. Mori, T. Nakanishi, S. Hishita, D. Golberg, Y. Bando.Preparation and characterization of well-ordered hexagonal mesoporouscarbon nitride[J]. Advanced Materials.2005,17(13):1648-1652.
    [73] C. Liang, Z. Li, S. Dai. Mesoporous carbon materials: synthesis andmodification[J]. Angewandte Chemie International Edition.2008,47(20):3696-3717.
    [74] Y. Wang, J. Zhang, X. Wang, M. Antonietti, H. Li. Boron-andfluorine-containing mesoporous carbon nitride polymers: metal-freecatalysts for cyclohexane oxidation[J]. Angewandte Chemie InternationalEdition.2010,49(19):3356-3359.
    [75] H. J. Yan, J. H. Yang, G. J. Ma, G. P. Wu, X. Zong, Z. B. Lei, J. Y. Shi, C. Li.Visible-light-driven hydrogen production with extremely high quantumefficiency on Pt–PdS/CdS photocatalyst[J]. Journal of Catalysis.2009,266(2):165-168.
    [76] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J. R. Gong. Highly efficientvisible-light-driven photocatalytic hydrogen production ofCdS-cluster-decorated graphene nanosheets[J]. Journal of the AmericanChemical Society.2011,133(28):10878-10884.
    [77] Z. Shen, G. Chen, Y. Yu, Q. Wang, C. Zhou, L. Hao, Y. Li, L. He, R. Mu.Sonochemistry synthesis of nanocrystals embedded in a MoO3–CdScore–shell photocatalyst with enhanced hydrogen production andphotodegradation[J]. Journal of Materials Chemistry.2012,22(37):19646-19651.
    [78] J. S. Jang, S. M. Ji, S. W. Bae, H. C. Son, J. S. Lee. Optimization ofCdS/TiO2nano-bulk composite photocatalysts for hydrogen productionfrom Na2S/Na2SO3aqueous electrolyte solution under visible light(λ≥420nm)[J]. Journal of Photochemistry and Photobiology A: Chemistry.2007,188(1):112-119.
    [79] L. Wang, W. Wang, M. Shang, W. Yin, S. Sun, L. Zhang. Enhancedphotocatalytic hydrogen evolution under visible light over Cd1xZnxS solidsolution with cubic zinc blend phase[J]. International Journal of HydrogenEnergy.2010,35(1):19-25.
    [80] W. Zhang, R. Xu. Surface engineered active photocatalysts without noblemetals: CuS–ZnxCd1x S nanospheres by one-step synthesis[J]. InternationalJournal of Hydrogen Energy.2009,34(20):8495-8503.
    [81] Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen, C. Li.Photocatalytic water reduction under visible light on a novel ZnIn2S4catalyst synthesized by hydrothermal method[J]. Chemical Communications.2003,(17):2142-2143.
    [82] S. Shen, L. Zhao, L. Guo. ZnmIn2S3+m (m=1–5, integer): a new series ofvisible-light-driven photocatalysts for splitting water to hydrogen[J].International Journal of Hydrogen Energy.2010,35(19):10148-10154.
    [83] B. B. Kale, J. O. Baeg, S. M. Lee, H. Chang, S. J. Moon, C. W. Lee.CdIn2S4nanotubes and “marigold” nanostructures: a visible-lightphotocatalyst[J]. Advanced Functional Materials.2006,16(10):1349-1354.
    [84] D. Chen, J. Ye. Photocatalytic H2evolution under visible light irradiation onAgIn5S8photocatalyst[J]. Journal of Physics and Chemistry of Solids.2007,68(12):2317-2320.
    [85] M. Tabata, K. Maeda, T. Ishihara, T. Minegishi, T. Takata, K. Domen.Photocatalytic hydrogen evolution from water using copper gallium sulfideunder visible-light irradiation[J]. The Journal of Physical Chemistry C.2010,114(25):11215-11220.
    [86] A. Kudo, M. Sekizawa. Photocatalytic H2evolution under visible lightirradiation on Zn1-xCuxS solid solution [J]. Catalysis Letters.1999,58(4):241-243.
    [87] L. Ren, F. Yang, Y. R. Deng, N. N. Yan, S. Huang, D. Lei, Q. Sun, Y. Yu.Synthesis of (CuIn)xCd2(1x)S2photocatalysts for H2evolution under visiblelight by using a low-temperature hydrothermal method[J]. InternationalJournal of Hydrogen Energy.2010,35(8):3297-3305.
    [88] Z. Shen, G. Chen, Y. Li, X. Wang, A. Zhou. Self-AssembledZnIn0.16Ag2xS1.24+x (x=0–0.025) Nanospheres by a simple hydrothermalmethod as visible light-driven photocatalysts[J]. Catalysis Letters.2009,132(3-4):454-459.
    [89] Y. Li, G. Chen, C. Zhou, J. Sun. A simple template-free synthesis ofnanoporous ZnS-In2S3-Ag2S solid solutions for highly efficientphotocatalytic H2evolution under visible light[J]. ChemicalCommunications.2009,(15):2020-2022.
    [90] Y. Li, G. Chen, Q. Wang, X. Wang, A. Zhou, Z. Shen. HierarchicalZnS-In2S3-CuS Nanospheres with nanoporous structure: facile synthesis,growth mechanism, and excellent photocatalytic activity[J]. AdvancedFunctional Materials.2010,20(19):3390-3398.
    [91] I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo. Novelstannite-type complex sulfide photocatalysts AI2-Zn-AIV-S4(AI=Cu and Ag;AIV=Sn and Ge) for hydrogen evolution under visible-light irradiation[J].Chemistry of Materials.2010,22(4):1402-1409.
    [92] G. Liu, J. C. Yu, G. Q. Lu, H. M. Cheng. Crystal facet engineering ofsemiconductor photocatalysts: motivations, advances and uniqueproperties[J]. Chemical Communications.2011,47(24):6763-6783.
    [93] H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng,G. Q. Lu. Anatase TiO2single crystals with a large percentage of reactivefacets[J]. Nature.2008,453(7195):638-641.
    [94] D. Zhang, G. Li, X. Yang, J. C. Yu. A micrometer-size TiO2single-crystalphotocatalyst with remarkable80%level of reactive facets[J]. ChemicalCommunications.2009,(29):4381-4383.
    [95] J. Pan, G. Liu, G. Q. Lu, H. M. Cheng. On the true photoreactivity order of{001},{010}, and {101} facets of anatase TiO2crystals[J]. AngewandteChemie International Edition in English.2011,50(9):2133-2137.
    [96] D. Wang, H. Jiang, X. Zong, Q. Xu, Y. Ma, G. Li, C. Li. Crystal facetdependence of water oxidation on BiVO4sheets under visible lightirradiation[J]. Chemistry.2011,17(4):1275-1282.
    [97] R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li.Spatial separation of photogenerated electrons and holes among {010} and{110} crystal facets of BiVO4[J]. Nature Communications.2013,4:1432.
    [98] R. Li, H. Han, F. Zhang, D. Wang, C. Li. Highly efficient photocatalystsconstructed by rational assembly of dual-cocatalysts separately on differentfacets of BiVO4[J]. Energy&Environmental Science.2014,7(4):1369-1376.
    [99] J. Jiang, K. Zhao, X. Xiao, L. Zhang. Synthesis and facet-dependentphotoreactivity of BiOCl single-crystalline nanosheets[J]. Journal of theAmerican Chemical Society.2012,134(10):4473-4476.
    [100] Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang,J. Cao, W. Luo, Z. Li, Y. Liu, R. L. Withers. An orthophosphatesemiconductor with photooxidation properties under visible-lightirradiation[J]. Nature Materials.2010,9(7):559-564.
    [101] Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye. Facet effect ofsingle-crystalline Ag3PO4sub-microcrystals on photocatalytic properties[J].Journal of the American Chemical Society.2011,133(17):6490-6492.
    [102] Y. Li, Y. Hu, S. Peng, G. Lu, S. Li. Synthesis of CdS nanorods by anethylenediamine assisted hydrothermal method for photocatalytic hydrogenevolution[J]. The Journal of Physical Chemistry C.2009,113(21):9352-9358.
    [103] L. Zheng, Y. Xu, Y. Song, C. Wu, M. Zhang, Y. Xie. Nearly monodisperseCuInS2hierarchical microarchitectures for photocatalytic H2evolutionunder visible light[J]. Inorganic Chemistry.2009,48(9):4003-4009.
    [104] I. Tsuji, H. Kato, H. Kobayashi, A. Kudo. Photocatalytic H2evolution undervisible-light irradiation over band-structure-controlled (CuIn)xZn2(1-x)S2solid solutions[J]. Journal of Physical Chemistry B.2005,109(15):7323-7329.
    [105] I. Tsuji, H. Kato, H. Kobayashi, A. Kudo. Photocatalytic H2evolutionreaction from aqueous solutions over band structure-controlled(AgIn)xZn2(1-x)S2solid solution photocatalysts with visible-light responseand their surface nanostructures[J]. Journal of the American ChemicalSociety.2004,126(41):13406-13413.
    [106] B. Ma, F. Wen, H. Jiang, J. Yang, P. Ying, C. Li. The synergistic effects oftwo co-catalysts on Zn2GeO4on photocatalytic water splitting[J]. CatalysisLetters.2009,134(1-2):78-86.
    [107] T. Sreethawong, S. Yoshikawa. Comparative investigation on photocatalytichydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2photocatalysts[J]. Catalysis Communications.2005,6(10):661-668.
    [108] I. Tsuji, H. Kato, A. Kudo. Visible-light-induced H2evolution from anaqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2solid-solution photocatalyst[J]. Angewandte Chemie International Editionin English.2005,44(23):3565-3568.
    [109] R. Navarro, F. Delvalle, J. Fierro. Photocatalytic hydrogen evolution fromCdS–ZnO–CdO systems under visible light irradiation: effect of thermaltreatment and presence of Pt and Ru cocatalysts[J]. International Journal ofHydrogen Energy.2008,33(16):4265-4273.
    [110] J. Yang, H. Yan, X. Wang, F. Wen, Z. Wang, D. Fan, J. Shi, C. Li. Roles ofcocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency forphotocatalytic hydrogen production[J]. Journal of Catalysis.2012,290:151-157.
    [111] F. Lin, D. Wang, Z. Jiang, Y. Ma, J. Li, R. Li, C. Li. Photocatalyticoxidation of thiophene on BiVO4with dual co-catalysts Pt and RuO2undervisible light irradiation using molecular oxygen as oxidant[J]. Energy&Environmental Science.2012,5(4):6400-6406.
    [112] J. Kiwi, E. Borgarello, E. Pelizzetti, M. Visca, M. Gr tzel. Cyclic watercleavage by visible light: drastic improvement of yield of H2and O2withbifunctional redox catalysts[J]. Angewandte Chemie International Editionin English.1980,19(8):646-648.
    [113] R. Abe, M. Higashi, K. Domen. Facile fabrication of an efficient oxynitrideTaON photoanode for overall water splitting into H2and O2under visiblelight irradiation[J]. Journal of the American Chemical Society.2010,132(34):11828-11829.
    [114] A. Iwase, H. Kato, A. Kudo. A novel photodeposition method in thepresence of nitrate ions for loading of an iridium oxide cocatalyst for watersplitting[J]. Chemistry Letters.2005,34(7):946-947.
    [115] P. W. Pan, Y. W. Chen. Photocatalytic reduction of carbon dioxide onNiO/InTaO4under visible light irradiation[J]. Catalysis Communications.2007,8(10):1546-1549.
    [116] Z. Zou, J. Ye, K. Sayama, H. Arakawa. Direct splitting of water undervisible light irradiation with an oxide semiconductor photocatalyst[J].Nature.2001,414(6864):625-627.
    [117] X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang, C. Li.Enhancement of photocatalytic H2evolution on CdS by loading MoS2asCocatalyst under visible light irradiation[J]. Journal of the AmericanChemical Society.2008,130(23):7176-7177.
    [118] W. Zhang, Y. Wang, Z. Wang, Z. Zhong, R. Xu. Highly efficient and noblemetal-free NiS/CdS photocatalysts for H2evolution from lactic acidsacrificial solution under visible light[J]. Chemical Communications.2010,46(40):7631-7633.
    [119] J. Zhang, J. Yu, Y. Zhang, Q. Li, J. R. Gong. Visible light photocatalyticH2-production activity of CuS/ZnS porous nanosheets based onphotoinduced interfacial charge transfer[J]. Nano Letters.2011,11(11):4774-4779.
    [120] X. An, J. C. Yu. Graphene-based photocatalytic composites[J]. RSCAdvances.2011,1(8):1426-1434.
    [121] X.Y. Zhang, H.P. Li, X.L. Cui, Y. Lin. Graphene/TiO2nanocomposites:synthesis, characterization and application in hydrogen evolution fromwater photocatalytic splitting[J]. Journal of Materials Chemistry.2010,20(14):2801-2806.
    [122] J. Zhang, J. G. Yu, M. Jaroniec, J. R. Gong. Noble metal-free reducedgraphene oxide-ZnxCd1-xS nanocomposite with enhanced solarphotocatalytic H2-production performance[J]. Nano Letters.2012,12(9):4584-4589.
    [123] H. Gao, C. Liu, H. E. Jeong, P. Yang. Plasmon-enhanced photocatalyticactivity of iron oxide on gold nanopillars[J]. ACS Nano.2012,6(1):234-240.
    [124] W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, S. B. Cronin.Photocatalytic conversion of CO2to hydrocarbon fuels viaplasmon-enhanced absorption and metallic interband transitions[J]. ACSCatalysis.2011,1(8):929-936.
    [125] J. Yu, G. Dai, B. Huang. Fabrication and characterization ofvisible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2nanotubearrays[J]. The Journal of Physical Chemistry C.2009,113(37):16394-16401.
    [126] P. Wang, B. Huang, X. Zhang, X. Qin, H. Jin, Y. Dai, Z. Wang, J. Wei, J.Zhan, S. Wang, J. Wang, M. H. Whangbo. Highly efficient visible-lightplasmonic photocatalyst Ag@AgBr[J]. Chemistry.2009,15(8):1821-1824.
    [127] J. Z. Y. Tan, Y. Fernández, D. Liu, M. Maroto-Valer, J. Bian, X. Zhang.Photoreduction of CO2using copper-decorated TiO2nanorod films withlocalized surface plasmon behavior[J]. Chemical Physics Letters.2012,531:149-154.
    [128] S. Linic, P. Christopher, D. B. Ingram. Plasmonic-metal nanostructures forefficient conversion of solar to chemical energy[J]. Nature Materials.2011,10(12):911-921.
    [129] A. Kubacka, M. Fernandez-Garcia, G. Colon. Advanced nanoarchitecturesfor solar photocatalytic applications[J]. Chemical Reviews.2012,112(3):1555-1614.
    [130] J. Zhang, Q. Xu, Z. c. Feng, M. j. Li, C. Li. Importance of the relationshipbetween surface phases and photocatalytic activity of TiO2[J]. AngewandteChemie International Edition.2008,47(9):1766-1769.
    [131] X. Wang, Q. Xu, M. R. Li, S. Shen, X. L. Wang, Y. C. Wang, Z. C. Feng, J.Y. Shi, H. X. Han, C. Li. Photocatalytic overall water splitting promoted byan alpha-beta phase junction on Ga2O3[J]. Angewandte ChemieInternational Edition in English.2012,51(52):13089-13092.
    [132] M. C. Liu, L. Z. Wang, G. Q. Lu, X. D. Yao, L. J. Guo. Twins in Cd1xZnxSsolid solution: Highly efficient photocatalyst for hydrogen generation fromwater[J]. Energy&Environmental Science.2011,4(4):1372-1378.
    [133] M. Liu, D. Jing, Z. Zhou, L. Guo. Twin-induced one-dimensionalhomojunctions yield high quantum efficiency for solar hydrogengeneration[J]. Nature Communications.2013,4:2278.
    [134] J. Li, X. Yang, X. Yu, L. Xu, W. Kang, W. Yan, H. Gao, Z. Liu, Y. Guo. Rareearth oxide-doped titania nanocomposites with enhanced photocatalyticactivity towards the degradation of partially hydrolysis polyacrylamide[J].Applied Surface Science.2009,255(6):3731-3738.
    [135] Z. Jian, Y. Pu, J. Fang, Z. Ye. Microemulsion synthesis of nanosized TiO2particles doping with rare-earth and their photocatalytic activity[J].Photochemistry and Photobiology.2010,86(5):1016-1021.
    [136] P. Du, A. Buenolopez, M. Verbaas, A. Almeida, M. Makkee, J. Moulijn, G.Mul. The effect of surface OH-population on the photocatalytic activity ofrare earth-doped P25-TiO2in methylene blue degradation[J]. Journal ofCatalysis.2008,260(1):75-80.
    [137] D. Y. Lee, B. Y. Kim, N. I. Cho, Y. J. Oh. Electrospun Er3+–TiO2nanofibrous films as visible light induced photocatalysts[J]. CurrentApplied Physics.2011,11(3):S324-S327.
    [138] A. S. Weber, A. M. Grady, R. T. Koodali. Lanthanide modifiedsemiconductor photocatalysts[J]. Catalysis Science&Technology.2012,2(4):683-693.
    [139] K. M. Parida, N. Sahu. Visible light induced photocatalytic activity of rareearth titania nanocomposites[J]. Journal of Molecular Catalysis A:Chemical.2008,287(1-2):151-158.
    [140] A. Xu. The preparation, characterization, and their photocatalytic activitiesof rare-earth-doped TiO2nanoparticles[J]. Journal of Catalysis.2002,207(2):151-157.
    [141] L. Lin, Y. Chai, Y. Yang, X. Wang, D. He, Q. Tang, S. Ghoshroy.Hierarchical Gd–La codoped TiO2microspheres as robust photocatalysts[J].International Journal of Hydrogen Energy.2013,38(6):2634-2640.
    [142] J. Liqiang, S. Xiaojun, X. Baifu, W. Baiqi, C. Weimin, F. Honggang. Thepreparation and characterization of La doped TiO2nanoparticles and theirphotocatalytic activity[J]. Journal of Solid State Chemistry.2004,177(10):3375-3382.
    [143] K. V. Baiju, P. Periyat, P. Shajesh, W. Wunderlich, K. A. Manjumol, V. S.Smitha, K. B. Jaimy, K. G. K. Warrier. Mesoporous gadolinium dopedtitania photocatalyst through an aqueous sol–gel method[J]. Journal ofAlloys and Compounds.2010,505(1):194-200.
    [144] Q. Z. Yan, X. T. Su, Z. Y. Huang, C. C. Ge. Sol–gel auto-igniting synthesisand structural property of cerium-doped titanium dioxide nanosizedpowders[J]. Journal of the European Ceramic Society.2006,26(6):915-921.
    [145] T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B.Ohtani, A. Kudo, S. Kuwabata. Facile synthesis of ZnS-AgInS2solidsolution nanoparticles for a color-adjustable luminophore[J]. Journal of theAmerican Chemical Society.2007,129(41):12388-12389.
    [146] I. Tsuji, H. Kato, A. Kudo. Photocatalytic hydrogen evolution onZnS CuInS2AgInS2solid solution photocatalysts with wide visible lightabsorption bands[J]. Chemistry of Materials.2006,18(7):1969-1975.
    [147] H. Zhang, J. F. Banfield. Understanding polymorphic phase transformationbehavior during growth of nanocrystalline aggregates: insights from TiO2[J].The Journal of Physical Chemistry B.2000,104(15):3481-3487.
    [148] Z. Chen, D. Li, W. Zhang, C. Chen, W. Li, M. Sun, Y. He, X. Fu.Low-temperature and template-free synthesis of ZnIn2S4microspheres[J].Inorganic Chemistry.2008,47(21):9766-9772.
    [149] C. Schliehe, B. H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel,A. Meyer, S. Foerster, A. Kornowski, C. Klinke, H. Weller. Ultrathin PbSsheets by two-dimensional oriented attachment[J]. Science.2010,329(5991):550-553.
    [150] M. H. Tsai, S. Y. Chen, P. Shen. Imperfect oriented attachment: accretionand defect generation of nanosize rutile condensates[J]. Nano Letters.2004,4(7):1197-1201.
    [151] R. L. Penn. Imperfect oriented attachment: dislocation generation indefect-free nanocrystals[J]. Science.1998,281(5379):969-971.
    [152] M. A. Sriram, P. H. McMichael, A. Waghray, P. N. Kumta, S. Misture, M. A.Sriram. Chemical synthesis of the high-pressure cubic-spinel phase ofZnIn2S4[J]. Journal of Materials Science.1998,33(17):4333-4339.
    [153] X. Gou, F. Cheng, Y. Shi, L. Zhang, S. Peng, J. Chen, P. Shen.Shape-controlled synthesis of ternary chalcogenide ZnIn2S4andCuIn(S,Se)2nano-/microstructures via facile solution route[J]. Journal ofthe American Chemical Society.2006,128(22):7222-7229.
    [154] H. Zhang, J. F. Banfield. Aggregation, coarsening, and phase transformationin ZnS nanoparticles studied by molecular dynamics simulations[J]. NanoLetters.2004,4(4):713-718.
    [155] Y. W. Zhao, Y. Zhang, H. Zhu, G. C. Hadjipanayis, J. Q. Xiao.Low-temperature synthesis of hexagonal wurtzite ZnS nanocrystals[J].Journal of the American Chemical Society.2004,126(22):6874-6875.
    [156] Z. W. Wang, L. L. Daemen, Y. S. Zhao, C. S. Zha, R. T. Downs, X. D. Wang,Z. L. Wang, R. J. Hemley. Morphology-tuned wurtzite-type ZnSnanobelts[J]. Nature Materials.2005,4(12):922-927.
    [157] S. Hamad, S. Cristol, C. R. Catlow. Simulation of the embryonic stage ofZnS formation from aqueous solution[J]. Journal of the American ChemicalSociety.2005,127(8):2580-2590.
    [158] C. Feigl, S. P. Russo, A. S. Barnard. Safe, stable and effectivenanotechnology: phase mapping of ZnS nanoparticles[J]. Journal ofMaterials Chemistry.2010,20(24):4971-4980.
    [159] X. Zhang, D. Jing, L. Guo. Effects of anions on the photocatalytic H2production performance of hydrothermally synthesized Ni-dopedCd0.1Zn0.9S photocatalysts[J]. International Journal of Hydrogen Energy.2010,35(13):7051-7057.
    [160] Z. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying. Role of particle size innanocrystalline TiO2-based photocatalysts[J]. The Journal of PhysicalChemistry B.1998,102(52):10871-10878.
    [161] Y. Hong, J. Zhang, X. Wang, Y. Wang, Z. Lin, J. Yu, F. Huang. Influence oflattice integrity and phase composition on the photocatalytic hydrogenproduction efficiency of ZnS nanomaterials[J]. Nanoscale.2012,4(9):2859-2862.
    [162] B. Chai, T. Peng, P. Zeng, X. Zhang, X. Liu. Template-free hydrothermalsynthesis of ZnIn2S4floriated microsphere as an wfficient photocatalyst forH2production under visible-light irradiation[J]. The Journal of PhysicalChemistry C.2011,115(13):6149-6155.
    [163] S. Shen, L. Zhao, Z. Zhou, L. Guo. Enhanced photocatalytic hydrogenevolution over Cu-Doped ZnIn2S4under visible light irradiation[J]. Journalof Physical Chemistry C.2008,112(41):16148-16155.
    [164] S. K. Apte, S. N. Garaje, R. D. Bolade, J. D. Ambekar, M. V. Kulkarni, S. D.Naik, S. W. Gosavi, J. O. Baeg, B. B. Kale. Hierarchical nanostructures ofCdIn2S4via hydrothermal and microwave methods: efficientsolar-light-driven photocatalysts[J]. Journal of Materials Chemistry.2010,20(29):6095-6102.
    [165]周智华,莫红兵,徐国荣,唐安平.稀散金属铟富集与回收技术的研究进展[J].有色金属.2005,57(1):71-80.
    [166] J. Wei, H. Wang, Y. Deng, Z. Sun, L. Shi, B. Tu, M. Luqman, D. Zhao.Solvent evaporation induced aggregating assembly approach tothree-dimensional ordered mesoporous silica with ultralarge accessiblemesopores[J]. Journal of the American Chemical Society.2011,133(50):20369-20377.
    [167] Y. Hao, G. Meng, Z. L. Wang, C. Ye, L. Zhang. Periodically twinnednanowires and polytypic nanobelts of ZnS: the role of mass diffusion invapor-liquid-solid growth[J]. Nano Letters.2006,6(8):1650-1655.
    [168] A. Liscio, G. De Luca, F. Nolde, V. Palermo, K. Mullen, P. Samori.Photovoltaic charge generation visualized at the nanoscale: a proof ofprinciple[J]. Journal of the American Chemical Society.2008,130(3):780-781.
    [169] P. M. Diehm, P. Agoston, K. Albe. Size-dependent lattice expansion innanoparticles: reality or anomaly?[J]. ChemPhysChem.2012,13(10):2443-2454.
    [170] P. K. Babu, A. Lewera, J. H. Chung, R. Hunger, W. Jaegermann, N.Alonso-Vante, A. Wieckowski, E. Oldfield. Selenium becomes metallic inRu-Se fuel cell catalysts: an EC-NMR and XPS investigation[J]. Journal ofthe American Chemical Society.2007,129(49):15140-15141.
    [171]王超.金属/有机涂层电解质溶液中腐蚀的半导体行为研究.上海大学.2009.
    [172] R. Beranek, H. Tsuchiya, T. Sugishima, J. M. Macak, L. Taveira, S.Fujimoto, H. Kisch, P. Schmuki. Enhancement and limits of thephotoelectrochemical response from anodic TiO2nanotubes[J]. AppliedPhysics Letters.2005,87(24):243114.
    [173]庄朋强,肖占文,朱向东,范红松,张兴栋.钽阳极氧化膜的半导体性研究[J].电子元件与材料.2011,30(8):35-39.
    [174] N. Korozlu, K. Colakoglu, E. Deligoz. The effects of concentration on theelectronic and optical properties in CdxZn1xS ternary alloys[J]. physicastatus solidi (b).2010,247(5):1214-1219.
    [175] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer.Surface-plasmon-enhanced light emitters based on InGaN quantum wells[J].Nature Materials.2004,3(9):601-605.
    [176] M. Holtz, W. M. Duncan, S. Zollner, R. Liu. Visible and ultraviolet Ramanscattering studies of Si1xGex alloys[J]. Journal of Applied Physics.2000,88(5):2523-2528.
    [177] X. Quan, H. Tan, Q. Zhao, X. Sang. Preparation of lanthanum-doped TiO2photocatalysts by coprecipitation[J]. Journal of Materials Science.2007,42(15):6287-6296.
    [178] S. Bingham, W. A. Daoud. Recent advances in making nano-sized TiO2visible-light active through rare-earth metal doping[J]. Journal of MaterialsChemistry.2011,21(7):2041-2050.
    [179] R. Tomaszek, L. Pawlowski, L. Gengembre, J. Laureyns, Z. Znamirowski, J.Zdanowski. Microstructural characterization of plasma sprayed TiO2functional coating with gradient of crystal grain size[J]. Surface andCoatings Technology.2006,201(1-2):45-56.
    [180] L. K. Randeniya, A. Bendavid, P. J. Martin, E. W. Preston.Photoelectrochemical and structural properties of TiO2and N-doped TiO2thin films synthesized using pulsed direct current plasma-activatedchemical vapor deposition[J]. The Journal of Physical Chemistry C.2007,111(49):18334-18340.
    [181] C. Wang, Q. Hu, J. Huang, L. Wu, Z. Deng, Z. Liu, Y. Liu, Y. Cao. Efficienthydrogen production by photocatalytic water splitting using N-doped TiO2film[J]. Applied Surface Science.2013,283:188-192.
    [182] S. H. Yu, Z. H. Han, J. Yang, H. Q. Zhao, R. Y. Yang, Y. Xie, Y. T. Qian, Y.H. Zhang. Synthesis and formation mechanism of La2O2S via a novelsolvothermal pressure-relief process[J]. Chemistry of Materials.1999,11(2):192-194.
    [183] C. H. Liang, F. B. Li, C. S. Liu, J. L. Lü, X. G. Wang. The enhancement ofadsorption and photocatalytic activity of rare earth ions doped TiO2for thedegradation of Orange I[J]. Dyes Pigments.2008,76(2):477-484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700