用户名: 密码: 验证码:
基于含氮及羧酸复合配体的过渡金属配位聚合物的制备、结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文综合利用含N配体与羧酸类配体与过渡金属离子在水热条件下合成21个新型配位聚合物。考察了反应条件、配体和辅助配体的几何构型、分子间作用力、氢键等因素对配位聚合物结构的影响,通过IR、元素分析、XRD和X-射线单晶衍射对晶体结构进行了表征,探究了分子自组装原理,分析了配位聚合物的网络所属的拓扑类型,并对化合物的光致发光性质和机理、热稳定性进行了初步研究。
     论文共分八章,主要研究内容和结论如下:
     第一章,主要阐述了金属有机配位聚合物的发展历程、分类、网络拓扑方法、合成方法及其应用研究,并对本论文的选题依据和目的做了总结。
     第二章,利用二苯甲酮-2,4'-二甲酸(H2L)作为第一配体,分别采用4,4'-联吡啶(4,4'-bipy)、1,3-二(4-吡啶)丙烷(bpp)、2-(4-吡啶)苯并咪唑(PyBIm)、1,4'-二(2-甲基咪唑)丁烷(bib)和咪唑(im)作为第二配体,用水热法设计合成了5个配位聚合物:[Ni2(L)2(4,4'-bipy)3)]·H2O]n、[Ni2(L)2(O)(bpp)2]n、[Zn(L)(bib)0.5]n、[Zn(L)(PyBIm)]n和[Zn3(L)2(μ3-OH)(im)]n。其中,配合物[Ni2(L)2(4,4'-bipy)3)]·H2O]n是一个以Ni(II)离子为4连接点的{42·63·8}拓扑结构;配合物[Zn3(L)2(μ3-OH)(im)]n为{36·46·53}的拓扑结构。所得配位聚合物均具有较强的荧光活性。这一研究为半刚性二羧酸配体的研究提供一些借鉴。
     第三章,采用5-羟基间苯二甲酸(H2L)和1,4-二(2-甲基咪唑)丁烷(bib)用水热方法在不同的pH值下构建了两个结构不同的二元Zn(II)配位聚合物:[Zn(L)(bib)]n和[Zn(L)(bib)0.5]n。晶体结构分析结果表明,配合物[Zn(L)(bib)]n为二维层状结构,进而由分子内氢键连接形成三维结构;而配合物[Zn(L)(bib)0.5]n为六连接的三维网状结构,且两者均为pcu型拓扑结构(α-Po型拓扑),其中配合物[Zn(L)(bib)0.5]n为二重互穿结构。这两个配位聚合物均具有较强的荧光发射,这可为定向设计特定结构的有机金属骨架提供一些借鉴。
     第四章,采用半刚性的有机桥连配体3,5-二(1-咪唑基)吡啶(L)作为第一配体,分别用刚性的邻苯二甲酸(H2bdc),间苯二甲酸(H2ipa)和对苯二甲酸(H2pta)作为第二配体来满足金属离子在组装过程中的配位几何,采用水热方法合成了3个配位聚合物:[Zn4(bdc)5(L)4]n、[Cd(ipa)(L)(H2O)]n和[Co(pta)(L)]n。配位聚合物[Zn4(bdc)5(L)4]n为coo型拓扑结构,拓扑符号为{65·8};[Cd(ipa)(L)(H2O)]n和[Co(pta)(L)]n为cds型拓扑结构,拓扑符号为{65·8}。此外,所得配位聚合物均具有一定的荧光活性。
     第五章,采用有机桥连配体3,5-二(1-咪唑基)吡啶和苯甲酸(Hba)作为原料,用水热方法合成了3个配位聚合物:{[Co(L)2(H2O)2]·2NO3}n、{[Mn(L)2(H2O)2]·2Cl·3H2O}n和[ZnL(ba)2]n。配合物{[Co(L)2(H2O)2]·2NO3}n和{[Mn(L)2(H2O)2]·2Cl·3H2O}n只有含N配体参与配位,均为一元配位聚合物,配合物[ZnL(ba)2]n为二元配位聚合物。配合物{[Co(L)2(H2O)2]·2NO3}n为一维链状结构,相邻的链由氢键和NO3
     相互连接形成三维网状结构。配合物{[Mn(L)2(H2O)2]·2Cl·3H2O}n为二维层状结构;配合物[ZnL(ba)2]n为一维zigzag链状结构,相互交联形成三维结构。此外,所得配位聚合物均具有一定的荧光活性。
     第六章,采用有机桥连配体3,5-二(1-咪唑基)吡啶作为第一配体,分别采用4,4'-联苯二甲酸(H2bpdc)和噻吩-2,5-二甲酸(H2tda)作为第二配体,用水热方法合成了3个Zn(II)和Cd(II)配位聚合物:[Zn(bpdc)(L)]n·2nH2O、[Zn(tda)(L)]n、和[Cd(tda)(L)(H2O)]n。配位聚合物[Zn(bpdc)(L)]n·2nH2O的拓扑结构为sql型,拓扑符号为{44}。[Zn(tda)(L)]n的拓扑结构为hcb型,拓扑符号为{63}。此外,所得配位聚合物均具有不同程度的荧光活性。
     第七章,采用有机桥连配体3,5-二(1-苯并咪唑基)吡啶作为第一配体,分别采用苯甲酸(Hba)、邻苯二甲酸(H2bdc)、间苯二甲酸(H2ipa)和噻吩-2,5-二甲酸(H2tda)作为第二配体,用水热方法合成了5个配位聚合物:[Cd2(ba)4(L)2]n、[Cd3(bdc)3(L)3(H2O)3]n、[Cd(ipa)(L)]n、[Zn(tda)(L)]n和[Co(tda)(L)]n。[Cd2(ba)4(L)2]n和[Cd3(bdc)3(L)3(H2O)3]n均为三连接的hcb型网络拓扑结构,拓扑符号为{63};[Cd(ipa)(L)]n为pcu型拓扑结构,拓扑符号为{412·63};而[Zn(tda)(L)]n和[Co(tda)(L)]n均为三连接的网状Kia型拓扑结构,拓扑符号为{82·10}。此外,所得配合物均具有不同程度的荧光活性。
     第八章为结论部分。
     本论文详细地阐述了上述21个配位聚合物的合成条件、结构特点、拓扑类型、荧光和热稳定性等性质研究等,探讨了配体类型、金属种类、反应pH对配位聚合物结构的影响,在丰富了配位聚合物合成化学和结构化学的同时,为配位聚合物的定向合成、可控组装及晶体工程理论积累了有价值的实验事实。
In this study,21new coordination polymers were synthesized by comprehensiveutilization of N-containing ligands, carboxylic acid ligands and transition metal ionsunder hydrothermal conditions. The influence of reaction conditions, geometricstructure of coordination ligands, intermolecular force, hydrogen bond on thestructure of coordination polymers were studied. Meanwhile, the structures ofcoordination polymers were characterized by IR, elemental analysis, XRD and X-raydiffraction analysis. The self-assembly principles of these coordination polymers wereinvestigated and the topology analysis were carried out to understand the structures ofcoordination polymers more clearly. Furthermore, the thermogravimetric analyseswere carried out to study the thermal stability of the compounds, whilephotoluminescence properties were also investigated in the solid state at roomtemperature.
     The thesis includes eight chapters, and the main contents and conclusions are asfollows:
     Chapter1maily focuses on the development history, classification of metal-organic coordination polymers, the network topology methods, the synthesis andapplications of metal-organic coordination polymers, the basis and purpose of thisresearch.
     In chapter2, five new coordination polymers, namely,[Ni2(L)2(4,4'-bipy)3)]·H2O]n,[Ni2(L)2(O)(bpp)2]n,[Zn(L)(bib)0.5]n,[Zn(L)(PyBIm)]n, and[Zn3(L)2(OH)(im)]n[H2L=benzophenone-2,4'-dicarboxylic acid,4,4'-bipy=4,4'-bipyridine, bpp=1,3-bis(4-pyridyl)propane, PyBIm=2-(4-pyridyl) benzimidazole, and im=imidazole] were synthesized under hydrothermal conditions.Structure determination revealed that [Ni2(L)2(4,4'-bipy)3)]·H2O]nis a3D networkand exhibits a4-connected metal-organic framework with {42·63·8} topology.[Zn3(L)2(OH)(im)]npossesses a6-connected node with the Schl fli symbol of{36·46·53}. All the obtained coordination polymers demonstrate good luminescentproperties.
     In chapter3, two new coordination polymers [Zn(L)(bib)]nand [Zn(L)(bib)0.5]n[L=5-hydroxyisophthalic acid and bib=1,4-bis(2-methyl-imidazol-1-yl)butane] havebeen synthesized and characterized. The structural analysis indicates that[Zn(L)(bib)]nis a2D layered structure, which are further assembled into a3Dsupramolecular structure by intermolecular hydrogen bonding;[Zn(L)(bib)0.5]npossesses a3D6-connected net. Both of them exhibit pcu topology, wheras[Zn(L)(bib)0.5]nfeatures a two-fold interpenetrated structure. Moreover, both of themhave luminescent properties.
     In chapter4, three coordination polymers [Zn4(bdc)5(bip)4]n,[Cd(ipa)(bip)(H2O)]nand [Co(pta)(bip)]n[bip=3,5-bis(imidazole-1-yl)pyridine, H2bdc=1,2-benzene dicarboxylate acid, H2ipa=isophthalic acid, H2pta=terephthalic acid]were synthesized and characterized.[Zn4(bdc)5(bip)4]npossesses coo type topologywith a symbol of {65·8}, while both of [Cd(ipa)(bip)(H2O)]nand [Co(pta)(bip)]ntakecds type topology with a symbol of {65·8}. All of the three coordination polymershave luminescent properties.
     In chapter5, three metal coordination polymers {[Co(L)2(H2O)2]·2NO3}n,{[Mn(L)2(H2O)2]·2Cl·3H2O}nand [Zn(L)(ba)2]n[bip=3,5-bis(imidazole-1-yl)pyridine, Hba=benzoic acid] were synthesized and structurally characterized.{[Co(L)2(H2O)2]·2NO3}nshows a1D chain structure, and the adjacent chains areconnected by hydrogen bonding and nitrate groups to form a3D network.{[Mn(L)2(H2O)2]·2Cl·3H2O}nfeatures a2D layer structure. A3D network isconstructed through the cluster consisting of two chloride ions and three watermolecules.[Zn(L)(ba)2]nshows a1D zigzag chain structure that further twiststogether to form a3D network. Moreover, all these three coordination polymers show good luminescent properties.
     In chapter6, three metal coordination polymers [Zn(bpdc)(bip)]n·2nH2O,[Zn(tda)(bip)]nand [Cd(tda)(bip)]n[bip=3,5-bis (imidazole-1-yl)pyridine, H2bpdc=biphenyl-4,4'-dicarboxylate, H2tda=thiophene-2,5-dicarboxylate] were synthesizedunder hydrothermal conditions by employing N-containing ligand L and the auxiliarycarboxylic acids.[Zn(bpdc)(bip)]n·2nH2O possesses sql type topology with a symbolof {44}, while [Zn(tda)(bip)]nshowes hcb type topology with a symbol of {63}. Inaddition, both of the two coordination polymers show good luminescent properties.
     In chapter7, five metal coordination polymers [Cd2(ba)4(L)2]n,[Cd3(bdc)3(L)3(H2O)3]n,[Cd(ipa)(L)]n,[Zn(tda)(L)]nand [Co(tda)(L)]n[Hba=benzoic acid, H2bdc=1,2-benzene dicarboxylate acid, H2ipa=isophthalic acid,H2tda=thiophene-2,5-dicarboxylate] were synthesized under hydrothermalconditions.[Cd2(ba)4(L)2]n,[Cd3(bdc)3(L)3(H2O)3]npossess3-connected hcb typetopology with a symbol of {63};[Cd(ipa)(L)]nshowes pcu type type topology with asymbol of {412·63};Both of [Zn(tda)(L)]nand [Co(tda)(L)]ngive rise to uniform3-connected kia type nets with Point (Schl fli) symbol of {82·10}. The TG analysisindicate coordination polymers [Zn(tda)(L)]nand [Co(tda)(L)]nare stable up to400℃. Moreover, all of these five complexes show luminescent properties.
     Chapter8is the conclusion.
     This thesis describes in detail the synthesis, structural characteristics, topology,luminescent property and thermostability of the above21coordination polymers.Meanwhile, the influence of ligands, metal ions and pH value on the coordinationpolymer structure and topology were explored. This research not only enriches thesynthesis and structural diversity of coordination polymers, but also accumulatesvaluable experimental facts for the oriented synthesis, controllable assembly and thecrystal engineering theory of coordination polymers.
引文
[1]石春成.基于多酸/氮配体构筑的配位聚合物及其性质研究:[博士学位论文].西安:西北大学,2013.
    [2] B. F. Hoskins, R. Robson. Infinite polymeric frameworks consisting of three dimensionallylinked rod-like segments. J. Am. Chem. Soc.,1989,111,5962-5964.
    [3] B. F. Hoskins, R. Robson. Design and construction of a new class of scaffolding-like materialscomprising infinite polymeric frameworks of3D-linked molecular rods. A reappraisal of the zinccyanide and cadmium cyanide structures and the synthesis and structure of the diamond-relatedframeworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc.,1990,112(4),1546–1554.
    [4]谢凤桐.过渡金属-羟基多羧酸配位聚合物的合成、结构与性能研究:[博士学位论文].长春:吉林大学,2005.
    [5] H. L. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi. Design and synthesis of an exceptionallystable and highly porous metal-organic framework. Nature,1999,402,276-279.
    [6] M. Eddaoudi, J. Kim, N. L. Rosi, D. T. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi.Systematic design of pore size and functionality in isoreticular metal-organic frameworks andapplication in methane storage. Science,2002,295,469-472.
    [7] H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. B. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe, O.M. Yaghi. A route to high surface area, porosity and inclusion of large molecules in crystals.Nature,2004,427,523-527.
    [8] G. Férey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surblé, J. Dutour, I. Margiolaki. Ahybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, andpowder diffraction. Angew. Chem. Int. Ed.,2004,43(46),6296-6301.
    [9] G. Férey, C. Mellot-Draznieks, C. Serre1, F. Millange, J. Dutour1, S. Surblé1, I. Margiolaki. Achromium terephthalate-based solid with unusually large pore volumes and surface area. Science,2005,309(5743),2040-2042.
    [10] H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr,M. O'Keeffe, J. Kim, O. M. Yaghi. Ultra-high porosity in metal-organic frameworks. Science,2010,329,424-428.
    [11] H. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M.Yaghi. Multiple functional groups of varying ratios in metal-organic frameworks. Science,2010,327,846-850.
    [12] H. X. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A.C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart, O. M.Yaghi. Large-pore apertures in a series of metal-organic frameworks. Science,2012,336,1018-1023.
    [13] M. Fujita, Y. J. Kwon. S. Washizu, K. Ogura. Preparation, clathration ability, and catalysis ofa two-dimensional square network material composed of cadmium(11) and4,4’-bipyridine. J. Am.Chem. Soc.,1994,116(3),1151-1152.
    [14] K. Biradha, Y. Hongo, M. Fujita. Open square-grid coordination polymers of the dimensions20×20: Remarkably stable and crystalline solids even after guest removal. Angew. Chem. Int.Ed.,2000,39,3843-3845.
    [15] K. S. Park, Z. Ni, A. P. C té, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M.O'Keeffe, O. M. Yaghi. Exceptional chemical and thermal stability of zeolitic imidazolateframeworks. Proc. Natl. Acad. Sci. U.S.A.,2006,103,10186-10191.
    [16] H. Hayashi, A. P. C té, H. Furukawa, M. O'Keeffe, O. M. Yaghi. Zeolite a imidazolateframeworks. Nature Mater.,2007,6,501-506.
    [17] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O. M. Yaghi.High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2capture.Science,2008,319,939-943.
    [18] B. Wang, A. P. C té, H. Furukawa, M. O'Keeffe, O. M. Yaghi. Colossal cages in zeoliticimidazolate frameworks as selective carbon dioxide reserviors. Nature,2008,453,207-211.
    [19] Y. B. Zhang, J. Su, H. Furukawa, Y. Yun, F. Gándara, A. Duong, X. Zou, O. M. Yaghi.Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc.,2013,135,16336-16339.
    [20] S. Noro, S. Kitagawa, T. Akutagawa, T. Nakamura. Coordination polymers constructed fromtransition metal ions and organic N-containing heterocyclic ligands: Crystal structures andmicroporous properties. Prog. Polym. Sci.,2009,34(3),240-279.
    [21] Z. H. Su, Z. F. Zhao, B. B. Zhou, Q. H. Cai, Y. N. Zhang. Three novel coordination polymersconstructed from [Cu(CN)] chains. CrystEngComm,2011,13,1474-1479.
    [22] M. Yamada, F. Hamada. Supramolecular assemblies with water-soluble p-sulfonatothiacalix[6]arene lanthanide complexes: One-dimensional ‘ladder-type’ coordinationpolymers and one-dimensional hydrogen-bonded polymers. CrystEngComm,2013,15,5703-5712.
    [23] S. L. James. Phosphines as building blocks in coordination-based self-assembly. Chem. Soc.Rev.,2009,38,1744-1758.
    [24] P. Wang, R. Q. Fan, Y. L. Yang, X. R. Liu, P. Xiao, X. Y. Li, W. Hasi, W. W. Cao.1-D helicalchain,2-D layered network and3-D porous lanthanide–organic frameworks based on multiplecoordination sites of benzimidazole-5,6-dicarboxylic acid: Synthesis, crystal structure,photoluminescence and thermal stability. CrystEngComm,2013,15,4489-4506.
    [25] A. F. Wells. Three-dimensional nets and polyhedra, Wiley, New York,1977.
    [26] A. F.Wells. Structrual inorganic chemistry,5thed., Oxford Univ. Press,1983.
    [27] M. Li, D. Li, M. O'Keeffe, O. M. Yaghi. Topological analysis of metal-organic frameworkswith polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem.Rev.,2014,114,1343-1370.
    [28]王崇臣.基于多羧酸配体的金属-有机骨架的合成与表征:[博士学位论文].北京:北京化工大学,2012.
    [29]郝向荣.基于刚性配体和模板效应构筑的MOF孔道材料-合成、结构及性质研究:[博士学位论文].长春:东北师范大学,2012.
    [30] M. O'Keeffe, O. M. Yaghi. Deconstructing the crystal structures of metal-organic frameworksand related materials into their underlying nets. Chem. Rev.,2012,112,675-702.
    [31] S. T. Meek, J. A. Greathouse, M. D. Allendorf. Metal-organic frameworks: A rapidly growingclass of versatile nanoporous materials. Adv. Mater.,2011,23(2):249-267.
    [32] N. Stock, S. Biswas. Synthesis of metal-organic frameworks (MOFs): Routes to various MOFtopologies, morphologies, and composites. Chem. Rev.,2012,112(2),933–969.
    [33] J. Klinowski, F. A. A. Paz, P. Silva, J. Rocha. Microwave–assisted synthesis of metal–organic frameworks. Dalton Trans.,2011,40,321–330.
    [34] J. H. Bang, K. S. Suslick. Applications of ultrasound to the synthesis of nanostructuredmaterials. Adv. Mater.,2010,22(10),1039–1059.
    [35] T.Fri i. New opportunities for materials synthesis using mechanochemistry. J. Mater.Chem.,2010,20,7599-7605.
    [36] K. Y. Cheng, J. C. Wang, C. Y. Lin, W. R. Lin, Y. A. Chen, F. J. Tsai, Y. C. Chuang, G. Y. Lin,C. W. Ni, Y. T. Zeng, M. L. Ho. Electrochemical synthesis, characterization of Ir–Zn containingcoordination polymer, and application in oxygen and glucose sensing. Dalton Trans.,2014, DOI:10.1039/C3DT53504E.
    [37] J. J. Wang, J. F. Lv, P. X. Cao, M. L. Zhang, L. J. Gao, L. Lv, Y. X. Ren, X. Y. Hou. Effect ofmetal ions on the structures of coordination polymers based on biphenyl-2,2′,4,4′-tetracarboxylate. Z. Anorg. Allg. Chem.,2011,637(11),1585–1589.
    [38] Y. Liu, Y. Qi, Y. H. Su, F. H. Zhao, Y. X. Che, J. M. Zheng. Five novel cobalt coordinationpolymers: effect of metal–ligand ratio and structure characteristics of flexible bis(imidazole)ligands. CrystEngComm,2010,12,3283-3290.
    [39] K. Chen, Z. G. Sun, Y. Y. Zhu, Z. M. Liu, F. Tong, D. P. Dong, J. Li, C. Q. Jiao, C. Li, C. L.Wang. Syntheses, crystal structures, and luminescence properties of three novel leadcarboxyphosphonates with3D framework structures using rigid aromatic carboxylic acids assecond organic ligands. Cryst. Growth Des.,2011,11(10),4623–4631.
    [40] X. C. Huang, J. P. Zhang, Y. Y. Lin, X. M. Chen. Triple-stranded helices and zigzag chains ofcopper(I)2-ethylimidazolate: solvent polarity-induced supramolecular isomerism. Chem.Commun.,2005,2232-2234.
    [41] S. H. Cho, B. Ma, S. T. Nguyen, J. T. Hupp, T. E. Albrecht-Schmitt. A metal–organicframework material that functions as an enantioselective catalyst for olefin epoxidation. Chem.Commun.,2006,2563-2565.
    [42] Q. Yu, X. Q. Zhang, H. D. Bian, H. Liang, B. Zhao, S. P. Yan, D. Z. Liao. pH-dependentCu(II) coordination polymers with tetrazole-1-acetic acid: Synthesis, crystal structures, EPR andmagnetic properties. Cryst. Growth Des.,2008,8(4),1140-1146.
    [43] J. X. Yang, X. Zhang, J. K. Cheng, J. Zhang, Y. G. Yao. pH influence on the structuralvariations of4,4’-oxydiphthalate coordination polymers. Cryst. Growth Des.,2012,12(1),333-345.
    [44] P. M. Forster, A. R. Burbank, C. Livage, G. Férey, A. K. Cheetham. The role of temperaturein the synthesis of hybrid inorganic–organic materials: the example of cobalt succinates. Chem.Commun.,2004,368-369.
    [45] S. Masaoka, D. Tanaka, Y. Nakanishi, S. Kitagawa. Reaction temperature-dependentsupramolecular isomerism of coordination networks based on the organometallic building block
    [CuI2(μ2-BQ)(μ2-OAc)2](BQ=p-benzoquinone). Angew. Chem. Int. Ed.,2004,43,2530-2534.
    [46] S. L. Zhong, L. F. Luo, L. Wang, L. F. Zhang. DyPO4flower-like superstructures andmacroporous microstructures from dysprosium-based coordination polymer wires. PowderTechnol.,2012,230,151-157.
    [47] T. P. Hu, H. Y. He, F. N. Dai, X. L. Zhao, D. F. Sun. A new Cu(i) coordination polymer withthe CdSO4structure type prepared via biphasic solvothermal reaction. CrystEngComm,2010,12,2018-2020.
    [48] Y. C. Liang, R. Cao, W. P. Su, M. C. Hong, W. J. Zhang. Syntheses, structures, and magneticproperties of two Gadolinium(III)–Copper(II) coordination polymers by a hydrothermal reaction.Angew. Chem. Int. Ed.,2000,39,3304-3307.
    [49] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim. A horochiral metal-organicporous material for enantioselective separation and catalysis. Nature,2000,404,982-986.
    [50] H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, C. J. Chang. A molecular MoS2edge site mimic for catalytic hydrogen generation. Science,2012,335,698-702.
    [51] J. L. C. Rowsell, O. M. Yaghi. Effects of functionalization, catenation, and variation of themetal oxide and organic linking units on the low-pressure hydrogen adsorption properties ofmetal-organic frameworks. J. Am. Chem. Soc.,2006,128,1304–1315.
    [52] O. K. Farha, A.. Yazayd n, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S.T. Nguyen, R. Q. Snurr, J. T. Hupp. De novo synthesis of a metal-organic framework materialfeaturing ultrahigh surface area and gas storage capacities. Nat. Chem.,2010,2,944–948.
    [53] A. G. Wong-Foy, A. J. Matzger, O. M. Yaghi. Exceptional H2saturation uptake inmicroporous metal-organic frameworks. J. Am. Chem. Soc.,2006,128,3494–3495.
    [54] B. L. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi. High H2adsorption in a microporous metalorganic framework with open metal sites. Angew. Chem. Int.Ed.,2005,44,4745–4749.
    [55] M. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim. Hydrogen storage in metal-organicframeworks. Chem. Rev.,2012,112,782–835.
    [56] S. Noro, S. Kitagawa, M. Kondo, K. Seki. A new, methane adsorbent, porous coordinationpolymer [{CuSiF6(4,4′-bipyridine)2}n]. Angew. Chem. Int. Ed.,2000,39,2081–2084.
    [57] http://www.greencarcongress.com/2010/10/basf-develops-method-for-industrial-scale-mof-synthesis-trials-underway-in-natural-gas-vehicle-tanks.html.
    [58] A. R. Millward, O. M. Yaghi. Metal-organic frameworks with exceptionally high capacity forstorage of carbon dioxide at room temperature. J. Am. Chem. Soc.,2005,127,17998–17999.
    [59] H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi. The chemistry and applications ofmetal-organic frameworks. Science,2013,341,1230444.
    [60] S. Q. Ma, D. Q. Yuan, X. S. Wang, H. C. Zhou. Microporous lanthanide metal-organicframeworks containing coordinatively linked interpenetration: Syntheses, gas adsorption studies,thermal stability analysis, and photoluminescence investigation. Inorg. Chem.,2009,48(5),2072–2077.
    [61] S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, Dramatic tuning of carbon dioxide uptake viametal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc.,2008,130,10870–10871.
    [62] E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long.Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites.Science,2012,335,1606-1610.
    [63] Z. R. Herm, B. M. Wiers, J. A. Mason, J. M. van Baten, M. R. Hudson, P. Zajdel, C. M.Brown, N. Masciocchi, R. Krishna, J. R. Long. Separation of hexane isomers in a metal-organicframework with triangular channels. Science,2013,340,960-964.
    [64] Y. Takashima, V. M. Martinez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M.Nakahama, K. Sugimoto, S. Kitagawa. Molecular decoding using luminescence from an entangledporous framework. Nat. Commun.,2011,2,168.
    [65] N. L. Rosi, M. Eddaoudi, D. T. Vodak, J. Eckert, M. O’Keeffe, O. M. Yaghi. Hydrogenstorage in microporous metal-organic frameworks. Science,2003,300,1127-1129.
    [66] D. F. Sun, D. J. Collins, Y. X. Ke, J. L. Zuo, H. C. Zhou. Construction of open metal–organicframeworks based on predesigned carboxylate isomers: from achiral to chiral nets. Chem. Eur. J.2006,12,3768-3776.
    [67] S. S. Kaye, A. Dailly, O. M. Yaghi, J. R. Long. Impact of preparation and handling on thehydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5). J. Am. Chem. Soc.,2007,129,14176-14177.
    [68] Y. B. Zhang, W. X. Zhang, F. Y. Feng, J. P. Zhang, X. M. Chen. A highly connected porouscoordination polymer with unusual channel structure and sorption properties. Angew. Chem. Int.Ed.,2009,48,5287-5290.
    [69] X. Y. Wang, L. Gan, S. W. Zhang, S. Gao. Perovskite-like metal formates with weakferromagnetism and as precursors to amorphous materials. Inorg. Chem.,2004,43(15),4615-4625.
    [70] A. Rodriguez-Dieguez, J. Cano, R. Kivek s, A. Debdoubi, E. Colacio. Self-assembledcationic heterochiral honeycomb-layered metal complexes with the in situ generatedpyrimidine-2-carboxylato bisdidentate ligand. Hydrothermal synthesis, crystal structures,magnetic properties, and theoretical study of [M2(μ-pymca)3]OH H2O (M=FeII, CoII). Inorg.Chem.,2007,46,2503-2510.
    [71] H. B. Xu, B. W. Wang, F. Pan, Z. M. Wang, S. Gao. Stringing oxo-centered trinuclear
    [MnIII3O] units into single-chain magnets with formate or azide linkers. Angew. Chem. Int. Ed.,2007,46,7388-7392.
    [72] J. D. Rinehart, K. R. Meihaus, J. R. Long. Observation of a secondary slow relaxationprocess for the field-induced single-molecule magnet U(H2BPz2)3. J. Am. Chem. Soc.,2010,132(22),7572-7573.
    [73] X. L. Chen, B. Zhang, H. M. Hu, F. Fu, X. L. Wu, T. Qin, M. L. Yang, G. L. Xue, J. W. Wang.Three novel heterobimetallic Cd/Zn-Na coordination polymers: Syntheses, crystal structure, andluminescence. Cryst. Growth Des.,2008,8,3706-3712.
    [74] L. Yan, Q. Yue, Q. X. Jia, G. Lemercier, E. Q. Gao. Lanthanide metal organic frameworksbased on octahedral secondary building units: Rare net topology and luminescence. Cryst. GrowthDes.,2009,9,2984-2987.
    [75] J. Ni, L. Y. Zhang, H. M. Wen, Z. N. Chen. Luminescence vapochromic properties of aplatinum(II) complex with5,5'-bis(trimethylsilylethynyl)-2,2'-bipyridine. Chem. Commun.,2009,25,3801-3803.
    [76] C. Kachi-Terajima, K. Yanagi, T. Kaziki, T. Kitazawa, M. Hasegawa. Luminescence tuning ofimidazole-based lanthanide(III) complexes [Ln=Sm, Eu, Gd, Tb, Dy]. Dalton Trans.,2011,40,2249-2256.
    [77] J. R. Li, Y. Tao, Q. Yu, X. H. Bu, H. Sakamoto, S. Kitagawa. Selective gas adsorption andunique structural topology of a highly stable guest-free zeolite-type MOF material with N-richchiral open channels. Chem. Eur. J.,2008,14(9),2771-2776.
    [78] W. M. Xuan, C. F. Zhu, Y. Liu, Y. Cui. Mesoporous metal–organic framework materials.Chem. Soc. Rev.,2012,41,1677–1695.
    [79] G. P. Yang, Y. Y. Wang, W. H. Zhang, A. Y. Fu, R. T. Liu, E. K. Lermontova, Q. Z. Shi. Aseries of Zn(II) coordination complexes derived from isomericphenylenediacetic acid anddipyridyl ligands: syntheses, crystal structures, and characterizations. CrystEngComm,2010,12,1509-1517.
    [80] E. Y. Choi, C. A. Wray, C. H. Hu, W. Y. Choe. Highly tunable metal–organic frameworks withopen metal centers. CrystEngComm,2009,11,553-555.
    [81] G. J. Xu, Y. H. Zhao, K. Z. Shao, G. Yuan, Z. M. Su, L. K. Yan. A novel luminescent3dmetal-organic framework possessing4-fold interpenetrating (3,4)-connected net. Inorg. Chem.Commun.,2009,12,969-971.
    [82] Z. H. Zhang, M. Du. Flexible and versatile anionic modules in the direction of1-D,2-D, and3-D coordination frameworks by metal–ligand synergistic interactions. CrystEngComm,2008,10,1350-1357.
    [83] F. Luo, Y. X. Che, J. M. Zheng. A ternary metal-organic framework built on triangular organicspacers, square and tetrahedral Co2secondary building units. Cryst. Growth Des.,2008,8,176-178.
    [84] X. L. Wang, C. Qin, E. B. Wang, L. Xu, Z. M. Su, C. W. Hu. Interlocked and interdigitatedarchitectures from self-assembly of long flexible ligands and cadmium salts. Angew. Chem. Int.Ed.,2004,43,5036-5040.
    [85] X. X. Xu, Y. Lu, E. B. Wang, Y. Ma, X. L. Bai. Metal-controlled assembly of coordinationpolymers with the flexible ligand1,1'-biphenyl-2,2'-dicarboxylate acid. Cryst. Growth Des.,2006,6,2029-2035.
    [86] F. Guo, J. K. Xu, X. L. Zhang, B. Y. Zhu. Hydrothermal synthesis, crystal structures andphotoluminescent properties of four cadmium(II) coordination polymers derived from diphenicacid and auxiliary ligands. Inorg. Chim. Acta,2010,363,3790-3797.
    [87] R. H. Wang, L. Han, F. L. Jiang, Y. F. Zhou, D. Q. Yuan, M. C. Hong. Three novelcadmium(II) complexes from different conformational1,1′-biphenyl-3,3′-dicarboxylate.Cryst. Growth Des.,2005,5,129-135.
    [88] F. Guo, B. Y. Zhu, X. L. Zhang, Y. L. Song, P. Wu. Synthesis and crystal structures of twonew zigzag versus helical coordination polymers based on diphenic acid. J. Coord. Chem.,2010,63,1130-1138.
    [89] N. Li, L. Gou, H. M. Hu, S. H. Chen, X. L. Chen, B. C. Wang, Q. R. Wu, M. L. Yang, G. L.Xue. The effect of organic acid on self-assembly process: Syntheses and characterizations of sixnovel cadmium(II)/zinc(II)complexes derived from mixed ligands. Inorg. Chim. Acta,2009,362,3475-3483.
    [90] X. Y. Yi, P. Y. Yin, L. Tong, Z. G. Gu, J. H. Chen, H. G. Jin, S. S. Li, X. Gong, Y. P. Cai. Onenew2D cadmium-organic framework containing2,4′-biphenyldicarboxylate ligand. Inorg.Chem. Commun.,2011,14,247-250.
    [91] R. H. Wang, D. Q. Yuan, F. L. Jiang, L. Han, Y. Q. Gong, M. C. Hong. Anion effect on thestructural conformation of tetranuclear cadmium(II) complexes. Cryst. Growth Des.,2006,6,1351-1360.
    [92] X. L. Wang, C. Qin, E. B. Wang, Z. M. Su. Metal nuclearity modulated four-, six-, andeight-connected entangled frameworks based on mono-, bi-, and trimetallic cores as nodes. Chem.Eur. J.,2006,12,2680-2691.
    [93] C. Y. Kong. Hydrothermal synthesis of metal–organic coordination polymers constructedfrom asymmetric semi-rigid V-shaped dicarboxylate and nitrogen-contained mixed ligands. J.Inorg. Organomet. Polym.,2011,21,189-194.
    [94] C. Y. Kong. Synthesis and crystal structure of a new Mn(ΙΙ) coordination polymer based onasymmetric semi-rigid V-shaped dicarboxylate. Chin. J. Struct. Chem.,2011,30,336-339.
    [95] M. Kondo, Y. Irie, Y. Shimizu, M. Miyazawa, H. Kawaguchi, A. Nakamura, T. Naito, K.Maeda, F. Uchida. Dynamic coordination polymers with4,4'-Oxybis(benzoate): Reversibletransformations of nano-and nonporous coordination frameworks responding to present solvents.Inorg. Chem.2004,43,6139-6141.
    [96] L. P. Zhang, J. F. Ma, J. Yang, Y. Y. Pang, J. C. Ma. Series of2D and3D coordinationpolymers based on1,2,3,4-benzenetetracarboxylate and N-donor ligands: synthesis, topologicalstructures, and photoluminescent properties. Inorg. Chem.,2010,49(4),1535-1550.
    [97] X. X. Zhou, M. S. Liu, X. M. Lin, H. C. Fang, J. Q. Chen, D. Q. Yang, Y. P. Cai. Constructionof three low dimensional Zn(II) complexes based on different organic-carboxylic acids. Inorg.Chim. Acta,2009,362,1441-1447.
    [98] X. Y. Huang, K. F. Yue, J. C. Jin, J. Q. Liu, C. J. Wang, Y. Y. Wang, Q. Z. Shi.Three-dimensional five-fold interpenetrating microporous metal-organic framework based onmixed flexible ligands. Inorg. Chem. Commun.,2010,13,338-341.
    [99] H. Wang, M. X. Li, M. Shao, X. He. Syntheses, structures and luminescences of four copper(I)cyanide coordination polymers based on2-(n-pyridyl) benzimidazole ligands (n=2,3, and4).Polyhedron,2007,26,5171-5176.
    [100] C. K. Xia, C. Z. Lu, Q. Z. Zhang, X. He, J. J. Zhang, D. M. Wu. Syntheses, structures andphotoluminescent properties of three silver (I) coordination polymers with2-(4-pyridyl)benzimidazole. Cryst. Growth Des.,2005,5,1569-1574.
    [101] S. L. Zheng, M. L. Tong, S. D. Tan, Y. Wang, J. X. Shi, Y. X. Tong, H. K. Lee, X. M. Chen.Syntheses, structures, and properties of three novel coordination polymers of silver (I) aromaticcarboxylates with hexamethylenetetramine exhibiting unique metal-p interaction. Organometallics,2001,20,5319-5325.
    [101] R. Q. Fan, D. S. Zhu, Y. Mu, G. H. Li, Y. L. Yang, Q. Su, S. H. Feng. Syntheses, structures,and luminescent properties of [Bis(iminoalkyl)pyridine] cadmium(II) complexes. Eur. J. Inorg.Chem.,2004,2004,4891-4897.
    [102] X. Feng, Y. H. Wen, Y. Z. Lan, Y. L. Feng, C. Y. Pan, Y. G. Yao. Multifunctional zinc(II)urocanate with rare five-fold interpenetrating diamondoid network. Inorg. Chem. Commun.,2009,12,89-91.
    [103] Z. Su, J. Xu, J. Fan, D. J. Liu, Q. Chu, M. S. Chen, S. S. Chen, G. X. Liu, X. F. Wang, W. Y.Sun. Synthesis, crystal structure, and photoluminescence of coordination polymers with mixedligands and diverse topologies. Cryst. Growth Des.2009,9,2801-2811.
    [104] J. H. Park, W. R. Lee, Y. Kim, H. J. Lee, D. W. Ryu, W. J. Phang, C. S. Hong.Interpenetration control, sorption behavior, and framework flexibility in Zn(II) metal–organicframeworks. Cryst. Growth Des.,2014,14(2),699–704.
    [105] C. S. Liu, J. J. Wang, Z. Chang, L. F. Yan, X. H. Bu. Cadmium(II) coordination polymersbased on a bulky anthracene-based dicarboxylate ligand: Crystal structures and luminescentproperties. CrystEngComm.,2010,12,1833-1841.
    [106] J. F. Ma, J. Yang, G. L. Zheng, L. Li, J. F. Liu. A porous supramolecular architecture from acopper(II) coordination polymer with a3D four-connected86net. Inorg. Chem.,2003,42,7531-7534.
    [107] J. Yang, J. F. Ma, Y. Y. Liu, S. L. Li, G. L. Zheng. Four novel3D copper(II) coordinationpolymers with different topologies. Eur. J. Inorg. Chem.,2005,11,2174-2180.
    [108] K. Jian, L. F. Ma, X. Y. Sun, L. Y. Wang. Syntheses, structures and luminescent properties ofzinc(II) coordination polymers based on bis(imidazole) and dicarboxylate. CrystEngComm.,2011,13,330-338.
    [109] L. B. Ni, R. H. Zhang, Q. X. Liu, W. S. Xia, H. X. Wang, Z. H. Zhou. pH-and mol-ratiodependent formation of zinc(II) coordination polymers with iminodiacetic acid: Synthesis,spectroscopic, crystal structure and thermal studies. J. Solid State Chem.,2009,182,2698-2706.
    [110] D. Liu, Z. G. Ren, H. X. Li, Y. Chen, J. Wang, Y. Zhang, J. P. Lang. pH-dependentsolvothermal formation of two different3D multiple interpenetrating nets from the samecomponents of Zn(NO3)2,1,3-benzenedicarboxylate and1,4-bis[2-(4-pyridyl) ethenyl]benzene.CrystEngComm.,2010,12,1912-1919.
    [111] P. X. Yin, J. Zhang, Z. J. Li, Y. Y. Qin, J. K. Cheng, L. Zhang, Q. P. Lin, Y. G. Yao.Supramolecular isomerism and various chain/layer substructures in silver(I) compounds:Syntheses, structures, and luminescent properties. Cryst. Growth Des.,2009,9,4884-4896.
    [112] M. Xue, G. S. Zhu, Y. J. Zhang, Q. R. Fang, I. J. Hewitt, S. L. Qiu. Rational design andcontrol of the dimensions of channels in a series of3D pillared metal organic frameworks:Synthesis, structures, adsorption, and luminescence properties. Cryst. Growth Des.,2008,8,427-434.
    [113] F. Guo, B. Y. Zhu, X. L. Zhang. Synthesis and crystal structures of two new coordinationpolymers based on diphenic acid. J. Inorg. Organomet. Polym.,2010,20,118-123.
    [114] L. F. Ma, L. Y. Wang, J. L. Hu, Y. Y. Wang, G. P. Yang. Syntheses, structures, andphotoluminescence of a series of d10coordination polymers with R-isophthalate (R=OH, CH3,and C(CH3)3). Cryst. Growth Des.,2009,9,5334-5342.
    [115] X. L. Zhang, M. F. Jin, Y. E. Qiu, F. Guo. Syntheses, crystal structures and luminescentproperties of two new Zn(II) coordination polymers based on rigid biphenyldicarboxylate. Inorg.Chem. Commun.,2011,14,952-955.
    [116] S. Y. Lee, S. Park, H. J. Kim, J. H. Jung, S. S. Lee. Ligand-and anion-directed assembly ofexo-coordinated mercury(II) halide complexes with O2S2-donor macrocycles. Inorg. Chem.,2008,47,1913-1915.
    [117] D. Sun, Z. H. Wei, C. F. Yang, D. F. Wang, N. Zhang, R. B. Huang, L. S. Zheng.pH-dependent Ag(I) coordination architectures constructed from4-cyanopyridine and phthalicacid: from discrete structure to2D sheet. CrystEngComm.,2011,13,1591-1601.
    [118] L. Y. Zhang, G. F. Liu, S. L. Zheng, B. H. Ye, X. M. Zhang, X. M. Chen. Helical ribbons ofcadmium(II) and zinc(II) dicarboxylates with bipyridyl-like chelates syntheses, crystal structuresand photoluminescence. Eur. J. Inorg. Chem.,2003,2003,2965-2971.
    [119] S. Ganguly, P. Pachfule, S. Bala, A. Goswami, S. Bhattacharya, R. Mondal.Azide-functionalized lanthanide-based metal–organic frameworks showing selective CO2gasadsorption and postsynthetic cavity expansion. Inorg. Chem.,2013,52,3588–3590.
    [120] L. Hamon, N. Heymans, P. L. Llewellyn, V. Guillerm, A. Ghoufi, S. Vaesen, G. Maurin, C.Serre, G. De Weireld, G. D. Pirngruber. Separation of CO2–CH4mixtures in the mesoporousMIL-100(Cr) MOF: experimental and modelling approaches. Dalton Trans.,2012,41,4052–4059.
    [121] J. Park, J. R. Li, Y. P. Chen, J. Yu, A. A. Yakovenko, Z. U. Wang, L. B. Sun, P. B. Balbuena,H. C. Zhou. A versatile metal–organic framework for carbon dioxide capture and cooperativecatalysis. Chem. Commun.,2012,48,9995–9997.
    [122] L. F. Ma, M. L. Han, J. H. Qin, L. Y. Wang, M. Du. MnIIcoordination polymers based on bi-,tri-, and tetranuclear and polymeric chain building units: crystal structures and magnetic properties.Inorg. Chem.,2012,51,9431–9442.
    [123] J. P. Ma, Y. Yu, Y. B. Dong. Fluorene-based Cu(II)-MOF: a visual colorimetric anion sensorand separator based on an anion-exchange approach. Chem. Commun.,2012,48,2946–2948.
    [124] J. Y. Zou, H. L. Gao, W. Shi, J. Z. Cui, P. Cheng. Auxiliary ligand-assisted structuraldiversities of three metal–organic frameworks with potassium1H-1,2,3-triazole-4,5-dicarboxylic acid: syntheses, crystal structures and luminescence properties. CrystEngComm.,2013,15,2682–2687.
    [125] C. H. Ke, G. R. Lin, B. C. Kuo, H. ManLee. Coordination polymers with bulkybis(imidazole) and aromatic carboxylate ligands: Diversity in metal-containing nodes andthree-dimensional net topologies. Cryst. Growth Des.,2012,12,3758–3765.
    [126] X. P. Zhou, M. Li, J. Liu, D. Li, J. Am. Gyroidal metal–organic frameworks. Chem. Soc.2012,134,67–70.
    [127] L. Schlechte, V. Bon, R. Grünker, N. Klein, I. Senkovska, S. Kaskel. Structural diversity ofcobalt (II) coordination compounds involving bent imidazole ligand: A route from0D dimer to3Dcoordination polymer. Polyhedron,2012,44,179–186.
    [128] F. Guo, F. Wang, H. Yang, X. L. Zhang, J. Zhang. Tuning structural topologies of threephotoluminescent metal–organic frameworks via isomeric biphenyldicarboxylates. Inorg. Chem.,2012,51,9677–9682.
    [129] L. Wang, Z. Jun, L. Ni, J. Yao. Synthesis, structures, fluorescence properties, and naturalbond orbital (NBO) analysis of two metal [EuIII, CoII] coordination polymers containing1,3-benzenedicarboxylate and2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthrolineligands. Z. Anorg. Allg. Chem.,2012,638,224–230.
    [130] X. C. Wang, C. B. Liu, X. Y. Li, G. B. Che, Y. S. Yan. Synthesis and characterization of threenew zipper-like lanthanide [Ln=TmIII, NdIII, CeIII] coordination polymers containing1,3-benzenedicarboxylate and2-phenyl-1H-1,3,7,8-tetraazacyclopenta[l]phenanthrene Ligands. Z.Anorg. Allg. Chem.,2011,637,698–702.
    [131] P. F. Yao, C. J. Ye, F. P. Huang, H. D. Bian, Q. Yu, K. Hu. Synthesis and structuralcharacterization of2D Zn(II), Cd(II), and Co(II) coordination polymers containing3-chloro-1,2-benzenedicarboxylate and positional isomers of triazole-bipyridine. J. Coord. Chem.,2013,66,1591–1601.
    [132] M. Dai, L. W. Zhu, J. H. Yang, H. X. Li, M. M. Chen, Z. G. Ren, J. P. Liang. Spacer lengtheffect on the formation of different zinc coordination polymers of1,4-benzenedicarboxylate andflexible bipyrazolyl ligands. Inorg. Chem. Commun.,2013,29,70–75.
    [133] M. L. Qi, K. Yu, Z. H. Su, C. X. Wang, C. M. Wang, B. B. Zhou, C. C. Zhu. Assembly offour new supramolecular compounds based on Keggin phosphomolybdate and differentorganocations. Chim. Acta.,2013,400,59–66.
    [134] J. G. Wang, N. Chai, S. C. Wang, L. F. Ma, L. Y. Wang. Two new3-D coordination polymerswith5-tert-butyl isophthalic acid and flexible N-donor co-ligands bearing linear trinuclearsecondary building blocks. Inorg. Chem. Commun.,2013,30,143–146.
    [135] H. D. Guo, Z. A. Fu, X. M. Guo, X. L. Li, R. Z. Chen, Y. J. Qi, H. Y. Zou. An unusualtwo-fold interpenetrating polyrotaxane motif comprised of two interlocked sets of identicaldiamond nets. J. Mol. Struct.,2013,1038,8–11.
    [136] G. B. Yang, Z. H. Sun. Tuning the structural topologies of two luminescent metal-organicframeworks through altering auxiliary ligand. Inorg. Chem. Commun.,2013,29,94–96.
    [137] A. T. Pu, J. Yang, W. Q. Kan, Y. Yang, J. F. Ma. Syntheses, structures and photoluminescentproperties of a series of divalent nickel and cadmium complexes based on3-carboxy-1-(4′-(2″-carboxy)biphenylmethyl)-2-oxidopyridinium and structurally different N-donor ligands.Polyhedron,2013,50,556–570.
    [138] S. S. Chen, Y. Zhao, J. Fan, T. Okamura, Z. S. Bai, Z. H. Chen, W. Y. Sun. Construction ofcoordination frameworks based on4-imidazolyl tecton1,4-di (1H-imidazol-4-yl) benzene andvaried carboxylic acids. CrystEngComm.,2012,14,3564–3576.
    [139] L. Wang, W. Gu, J. X. Deng, M. L. Liu, N. Xu, X. Liu. Syntheses, structures, andphotoluminescent and magnetic properties of four novel complexes constructed from2,4,5-Tri(4-pyridyl)-imidazole and benzene-1,3,5-tricarboxylic acid. Z. Anorg. Allg. Chem.,2010,636,1124–1128.
    [140] H. Zhao, Q. Ye, Q. Wu, Y. M. Song, Y. J. Liu, R. G. Xiong. A novel one-dimensional zinccoordination polymer,[zinc{(4,5-ditetrazoyl)-imidazole}{(1,10)-phenanthroline}(H2O)]n. Z.Anorg.Allg. Chem.,2004,630,1367–1370.
    [141] L. Luo, Y. Zhao, Y. Lua, T. Okamura, W. Y. Sun. Coordination polymers constructed bydiverse metal centers and the rigid ligand3,5-di(1H-imidazol-1-yl)pyridine: Synthesis, structureand properties. Polyhedron,2012,38,88–96.
    [142] J. Y. Lee, C. Y. Chen, H. M. Lee, E. Passaglia, F. Vizza, W. Oberhauser. Zinc coordinationpolymers with2,6-Bis(imidazole-1-yl)pyridine and benzenecarboxylate: Pseudo-supramolecularisomers with and without interpenetration and unprecedented trinodal topology. Cryst. GrowthDes.,2011,11,1230–1237.
    [143] C. C. Ji, J. Li, Y. Z. Li, Z. J. Guo, H. G. Zheng. Solvothermal synthesis, structures andphysical properties of four new complexes constructed from multi-variant tricarboxylate ligandand pyridyl-based ligands. CrystEngComm.,2011,13,459–466.
    [144] F. J. Liu, H. J. Hao, C. J. Sun, X. H. Lin, H. P. Chen, R. B. Huang, L. S. Zheng. Syntheses,structures, and photoluminescence of four Cd(II)coordination architectures based on1-(4-pyridylmethyl)-2-methylimidazole and aromatic carboxylates: from one-dimensional chain tothree-dimensional coordination architecture. Cryst. Growth Des.,2012,12,2004-2012.
    [145] S. Mukherjee, D. Samanta, P. S. Mukherjee. New structural topologies in a series of3dmetal complexes with isomeric phenylenediacetates and1,3,5-tris(1-imidazolyl)benzene ligand:Syntheses, structures, and magnetic and luminescence properties. Cryst. Growth Des.,2013,13(12),5335–5343.
    [146] X. L. Wang, J. Luan, F. F. Sui, H. Y. Lin, G. C. Liu, C. Xu. Structural diversities andfluorescent and photocatalytic properties of a series of CuIIcoordination polymers constructedfrom flexible bis-pyridyl-bis-amide ligands with different spacer lengths and different aromaticcarboxylates. Cryst. Growth Des.,2013,13(8),3561–3576.
    [147] K. Liu, W. Shi, P, Cheng. The coordination chemistry of Zn(II), Cd(II) and Hg(II)complexes with1,2,4-triazole derivatives. Dalton Trans.,2011,40,8475-8490.
    [148] D. S. Deng, L. L. Liu, B. M. Ji, G. J. Yin, C. X. Du. Temperature, cooling Rate, andadditive-controlled supramolecular isomerism in four Pb(II) coordination polymers with an in situligand transformation reaction. Cryst. Growth Des.,2012,12(11),5338–5348.
    [149] L. N. Li, S. Y. Wang, T. L. Chen, Z. H. Sun, J. H. Luo, M. C. Hong. Solvent-dependentformation of Cd(II) coordination polymers based on a C2-symmetric tricarboxylate linker. Cryst.Growth Des.,2012,12(8),4109–4115.
    [150] Y. Y. Liu, H. J. Li, Y. Han, X. F. Lv, H. W. Hou, Y. T. Fan. Template-assisted synthesis of Co,Mn-MOFs with magnetic properties based on pyridinedicarboxylic acid. Cryst. Growth Des.,2012,12(7),3505–3513.
    [151] J. Z. Gu, Z. Q. Gao, Y. Tang. pH and auxiliary ligand influence on the structural variationsof5(2′-carboxylphenyl) nicotate coordination polymers. Cryst. Growth Des.,2012,12(6),3312–3323.
    [152] G. D. Feng, L. Jiang, Z. M. Su. Synthesis, crystal structure,and fluorescent property of achiral2D polymer based on bis(2-benzimidazoles) and aromatic carboxylate ligands. Z. Anorg.Allg. Chem.,2011,637,2211–2214.
    [153] L. L. Xu, J. G. Cheng, K. F. Yue, Y. L. Liu, C. J. Wang, Y. Y. Wang. Two new zinc(II)coordination polymers based on1,6-Bis(2-methyl-imidazole-1-yl)-hexane ligand: Synthesis,structures, and properties. Z. Anorg. Allg. Chem.,2012,638,366–371.
    [154] J. Y. Wang, J. Wang, H. P. You. Syntheses and characterizations of two zinc(II)metal-organic frameworks based on1,4-naphthalenedicarboxylate and imidazole ligands. Z.Anorg. Allg. Chem.,2011,637,415–420.
    [155] A. Erxleben. Structures and properties of Zn(II) coordination polymers. Coord. Chem. Rev.,2003,246,203-208.
    [156] Y. L. Chen, J. Yang, J. F. Ma. Syntheses, crystal structures, and characterization of sevencoordination compounds based on flexible1,1′-(1,4-butanediyl)bis(3-carboxyl-2-oxidopyridinium). J. Coord. Chem.,2012,65,3708-3720.
    [157] H. L. Wen, T. T. Wang, C. B. Liu, M. He, Y. X. Wang. Hydrothermal syntheses andstructures of transition metal2-(4,5-diphenyl-1H-imidazol-2-yl)benzoic acid complexes. J. Coord.Chem.,2012,65,856-864.
    [158] J. P. Zou, S. C. Dai, W. T. Guan, H. B. Yang, Y. F. Feng, X. B. Luo. Syntheses, crystalstructures, and optical properties of a series of transition metal coordination polymers withchelidamic acid and4,4′-bipyridine. J. Coord. Chem.,2012,65,2877-2892.
    [159] L. N. Yang, Y. X. Zhi, J. H. Hei, J. Li, F. X. Zhang, S. Y. Gao. Two coordination polymersbased on2,2′-biimidazoles and d10metal ions: syntheses, structures, and luminescence. J. Coord.Chem.,2011,64,2912-2922.
    [160] S. W. Jin, D. Q. Wang, Y. C. Xu. Five new metal(II) complexes with3-D network structuresbased on carboxylate and bis(imidazole) ligands: syntheses and structures. J. Coord. Chem.,2012,65,1953-1969.
    [161] C. Z. Li, X. R. Huang, Y. H. Chen. Auxiliary ligand-directed structural variation of theZn(II)–1,4-bis(imidazol-1-yl)benzene net: synthesis, characterization, and luminescence. J. Coord.Chem.,2012,65,3699-3707.
    [162] D. Zhao, Y. Xiu, X. L. Zhou, X. R. Meng. Syntheses, structures, and fluorescent propertiesof two new d10-metal coordination polymers containing1-((benzotriazol-1-yl)methyl)-1-H-1,2,4-triazole ligand. J. Coord. Chem.,2012,65,112-121.
    [163] F. H. Zhao, Y. X. Che, J. M. Zheng. Three2D complexes with helical chains constructedfrom pimelic acid and rigid bis(imidazole) ligand: Syntheses, structures, thermal andphotoluminescent properties. Inorg. Chem. Commun.,2012,17,99-103.
    [164] Y. Wang, F. H. Zhao, Y. X. Che, J. M. Zheng. A3D photoluminescent Cd(II) polymer basedon mixed3,5-bis-oxyacetate-benzoic acid and rigid bis(imidazole) ligands with an unusual (4,8)-connected topology. Inorg. Chem. Commun.,2012,17,180-183.
    [165] H. Qu, L. Qiu, X. K. Leng, M. M. Wang, S. M. Lan, L. L. Wen, D. F. Li. Structures andphotocatalytic activities of metal-organic frameworks derived from rigid aromatic dicarboxylateacids and flexible imidazole-based linkers. Inorg. Chem. Commun.,2011,14,1347-1351.
    [166] R. H. Cui, Y. H. Xu, Z. H. Jiang. Syntheses, structures, and photoluminescence of two Cd(II)coordination polymers constructed from analogue (pyridyl)imidazole derivative andpolycarboxylate acid. Inorg. Chem. Commun.,2009,12,933-936.
    [167] J. D. Lin, C. C. Jia, Z. H. Li, S. W. Du, Syntheses, topological analyses and magneticproperties of two3D supramolecular nickel-organic frameworks constructed from1,3,5-benzenetricarboxylate and flexible imidazole-based ligands. Inorg. Chem. Commun.,2009,12,558-562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700