用户名: 密码: 验证码:
无轴承异步电机及其运行控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无轴承电机突破传统电机保持气隙磁场平衡,仅仅产生电磁转矩的旧框架,利用磁轴承结构和电机定子结构的相似性,通过定子中两套不同极对数绕组磁场的相互作用,破坏传统电机气隙磁场的对称性,产生电磁转矩和径向力,能同时实现转子悬浮和旋转功能。
     无轴承异步电机(Bearingless Induction Motor, BIM)集异步电机(结构简单、齿槽脉动转矩低、易于弱磁控制、可靠性高等)和磁轴承(无磨损、无接触、无噪声、无需润滑和寿命长等)优点和功能于一体,能实现高速及超高速、真空、洁净、腐蚀等特殊环境的无轴承支承运行,能推动装备向高、精、尖方向发展,目前已经成为特种驱动/传动领域的研究热点之一
     本文在国家自然科学基金项目(61104016、60974053)和江苏省高校自然科学基金项目(11KJB510002)的资助下,为了解决BIM应用于高速驱动/传动领域中遇到的技术难题,并以实现BIM高速度、高可靠、低成本运行为目标,对其可实现结构、数学模型、电磁分析、多变量非线性解耦控制、无速度传感器运行、数字控制系统实现等方面进行了重点研究,主要研究工作及取得的成果如下:
     1.在介绍传统电机中存在的麦克斯韦力和洛仑兹力基础上,阐述了BIM径向力产生机理;基于电磁场理论,分析了BIM转子所受的洛伦兹力,以及转子不偏心和偏心两种情况下转子所受的麦克斯韦力,并进行了数学推导;在分析比较不同BIM可实现结构一般形式的基础上,设计了实验用BIM系统机械结构。
     2.详细推导BIM数学模型,并提出采用有限元瞬态法,通过详细分析不同情况下BIM电磁场分布和径向力计算值,验证了BIM悬浮机理以及径向力数学模型的正确性和精确度,为BIM进一步的悬浮解耦控制奠定了基础。
     3.针对BIM多变量、非线性、强耦合的特点,分别以2自由度和5自由度BIM为被控对象,将逆系统与最小二乘支持向量机(LSSVM)目结合,提出了基于LSSVM逆的BIM动态解耦控制方法。建立2自由度BIM状态方程,证明其可逆,通过LSSVM逼近原系统的逆模型,并将其串接于原系统之前,将2自由度BIM线性化解耦成位移、转速和磁链子系统,并设计复合控制器,仿真结果表明采用该策略系统具有优良的解耦效果和动态特性。鉴于LSSVM逆方法的优越性,充分利用LSSVM在有限数据样本下对高维非线性函数的回归能力,辨识5自由度BIM逆模型,并利用粒子群算法优化LSSVM参数,以提高其对逆模型的拟合和预测精度。将LSSVM逆与原系统串联得到伪线性系统,并运用线性系统理论设计闭环控制器,仿真结果表明该方法同样实现了5自由度BIM转速、磁链、径向位移和轴向位移之间的高精度非线性动态解耦控制。
     4.针对BIM无速度传感器运行的需要,提出一种基于LSSVM左逆的转速软测量策略。根据BIM数学模型参量的内在约束关系,建立转速与转矩绕组电流关系的转速子系统,并证明其可逆。采用LSSVM构造转速子系统左逆软测量模型,并将其与原转速子系统相串联,复现该子系统的转速输入,从而实现了对转子速度的有效观测。应用该策略构建BIM无速度传感器矢量控制系统仿真平台,仿真结果表明该策略能在BIM全速范围内准确观测出转子速度,实现BIM在无速度传感器方式下的稳定悬浮运行。
     5.针对BIM控制系统采用电流调节型脉宽调制(CRPWM)逆变器实现转速和径向位移单闭环控制的不足,提出了基于空间电压矢量脉宽调制(SVPWM)算法的BIM矢量控制策略,对BIM转矩绕组和径向力绕组分别增加了电流内环,改善了系统的控制性能。构建了以TMS320F2812数字信号处理器(DSP)为核心的BIM数字控制系统硬件和软件系统,并在此数字控制实验平台上进行了BIM动态悬浮运行的实验研究,最后给出了实验波形并分析了实验结果。实验结果表明所设计的数字控制系统能实现BIM的稳定悬浮运行,而且具有优良的静、动态特性。
A bearingless motor is a new type of motor which breaks through the traditional motor theory of keeping the balance of air-gap magnetic field to produce electromagnetic torque. Using the structure similarity between the magnetic bearing and motor'stator, the bearingless motor is embedded in two sets of different pole-pair windings to destroy the symmetry of air-gap magnetic field, and thus to produce electromagnetic torque and radial force so as to realize the functions of rotor suspension and rotation.
     Compared with other types of bearingless motors, the bearingless induction motor.(BIM), which not only contains the advantages of conventional induction motor, such as simple structure, low pulsating torque andeasy flux-weakening control, but also the virtues of magnetic bearing, such as no contact, no abrasion, no lubrication, no pollution and long service life, can make it popular in the special drive fields including high and ultra-high speed operation, vacuum, clean and corrosion environment, and promote the development of equipment toward high-grade, high-precision and sophisticated. Furthermore, the BIM has become one of the hot spots in the research fields of bearingless motors presently.
     Under the susports of the National Natural Science Foundation of China(61104016) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (11KJB510002), in order to solve the application of BIM with high speed, high reliability and low cost in driving field, a comparative systematical and deep research of the BIM is made, including mechanical structures, mathematical model, electromagnetic analysis, decoupling control, speed-sensorless operation, and digital control system implementation and so on. The main contents of the dissertation and the achievement are as follows:
     1. The Maxwell force and Lorentz force in traditional motors are elaborated, and then the producing principle of radial suspension forces in the BIM is introduced. Based on the electromagnetic theory, the analytical expressions of the Lorentz force and Maxwell force with the eccentricity and non-eccentricity in the location of rotor are analysed and deduced. Through analyzing and comparing the performance characteristics of different BIM structures, the experimental mechanical structure system of BIM is designed.
     2. Based on the principle of virtual displacement, the mathematical models of BIM taking into account the rotor eccentricity are derived in detail, and their accuracy and precision are verified by the transient finite element method. This work lays the foundation for further suspension decoupling control of BIM.
     3. A novel decoupling control strategy based on least squares support vector machine(LSSVM) inverse are proposed for the2-degree-of-freedom and5-degree-of-freedom BIM, respectively, which are multi-variable, nonlinear and stongly coupled systems. Firstly, according to the reversibility analysis of original system, the inverse model of the2-degree-of-freedom BIM was approximated by LSSVM and connected with the original system to construct pseudo-linear system. The pseudo-linear system is equivalent to two independent linear displacement subsystems, a linear rotor speed subsystem and a linear magnetic flux linkage subsystem. And then the compound controller is designed. The simulation results show that this strategy has excellent decoupling effect and dynamic characteristics. Secondly, In view of the superiority of LSSVM inverse method, the inverse model of5-degree-of-freedom BIM is built using LSSVM which has a good fitting capability to high dimensional nonlinear functions with limited samples. In addition, the particle swarm optimization algorithm is used to optimize parameters of the LSSVM, which can improve the precision of the predictive model, and then the LSSVM inverse model is combined with the original system to constitute the pseudo linear system, and then PID closed-loop regulators are designed to realize the compound control for5-degree-of-freedom BIM. The dynamic decoupling control among the radial and axial displacements, speed and flux linkage are also achieved and the simulation researches verify the effectiveness of the proposed control strategy.
     4. Aiming at the need of speed sensorless operation for BIM, a novel rotor speed soft-sensing method based on LSSVM left inverse is proposed. Firstly, according to the inherent relationship among the variables of BIM, the speed subsystem consisting of rotor speed and stator currents of the torque winding is established and proved to be invertible. Secondly, the left inverse model was constructed using LSSVM, and then the obtained inverse model is combined with this subsystem, the rotor speed input of the subsystem is gained, i.e., the rotor speed is observed effectively. Finally, a vector control simulation platform of BIM is established to evaluate the proposed method. The simulation results demonstrates the proposed LSSVM left inverse method can accurately identify the speed parameter in a full speed operation region with good dynamic and static performance.
     5. According to the deficiency of single closed-loop control of the speed and radial displacement with the current regulated pulse width modulated (CRPWM) inverter in BIM control system, the vector control strategy based on the space vector pulse width modulation (SVPWM) is proposed. In order to improve the performance of the control system,the current closed-loops are adopted for both torque winding control and suspension force winding control. The hardware and software of digital control system are built with the core of digital signal processor TMS320F2812. And then, the experimental studies are carried out, and the experimental results verify that the stable suspension and operation of the BIM can be perfectly realized through the SVPWM control strategy.
引文
[1]国家自然科学基金委员会工程与材料学部.机械工程学科发展战略报告(2011-2020)[M].北京:科学出版社,2010.
    [2]国家中长期科学和技术发展规划纲要(2006-2020)[M].北京:中国法制出版社,2006.
    [3]张涛,朱熀秋,孙晓东,等.基于有限元法的高速永磁转子强度分析[J].电机与控制学报.2012,16(6):63-68.
    [4]崔立,王黎钦,郑德志.航空发动机高速滚子轴承动态特性分析[J].航空学报,2008,29(2):492-498.
    [5]范冬,杨艳,邓智泉,等.无轴承高速开关磁阻电机设计中的关键问题[J].电机与控制学报,2006,10(6):547-548.
    [6]冯宪章.先进制造技术基础[M].北京:北京大学出版社,2009.
    [7]虞烈著.可控磁悬浮转子系统[M].北京:科学出版社,2003.
    [8]胡业发,周祖德,江征风,等.磁力轴承的基础理论与应用[M].北京:机械工业出版社,2006.
    [9]K. Hijikata, M. Takemoto, S. Ogasawara, et al. Behavior of a novel thrust magnetic bearing with a cylindrical rotor on high speed rotation[J]. IEEE Transactions on Magnetics,2009,45(10):4617-4620.
    [10]C. Weissbacher, H. Stelzer, K. Hameyer. Application of a tubular linear actuator as an axial magnetic bearing[J]. IEEE/ASME Transactions on Mechatronics,2010,15(4): 615-622.
    [11]张云鹏,刘淑琴,李红伟,等.基于磁路分析的轴向混合磁轴承径向承载力解析计算[J].电工技术学报,2012,27(5):137-142.
    [12]张维煜,朱熀秋.基于麦克斯韦张量法的交流磁轴承径向悬浮力建模[J].科学通报,2012,57(11):976-986.
    [13]N. A. Greatrex, D. L. Timms, N. Kurita, et al. Axial magnetic bearing development for the bivacor rotary bivad/tah[J]. IEEE Transactions on Biomedical Engineering,2010, 57(3):714-721.
    [14]G. G. Sotelo, D. H. N. Dias, R. de Andrade, et al. Tests on a superconductor linear magnetic bearing of a full-scale magLev vehicle[J]. IEEE Transactions on Applied Superconductivity,2011,21(3):1464-1468.
    [15]侯二永,刘昆.混合磁轴承磁场与磁力解析计算[J].机械工程学报,2012,48(6):193-198.
    [16]A. Chiba, D. T. Power, M. A. Rahman. Analysis of no-load characteristics of a bearingless induction motor[J]. IEEE Transactions on Industry Applications,1995, 31(1):77-83.
    [17]A. Chiba, T. Fukao, O. Ichikawa. Magnetic bearings and bearingless drives[M]. Tokyo: Newnes,2005.
    [18]A. O. Salazar, A. Chiba, T. Fukao. A review of developments in bearingless motors [C]. In 7th International Symposium on Magnetic Bearings (ISMB), ETH Zurich, Switzerland,2000,335-340.
    [19]R. Bosch. Development of a bearingless motor[C]. In Proceedings on international Conference of Electric Machines (ICEM'88), Pisa, Italy,1988,373-375.
    [20]朱熀秋,成秋良.基于磁链等效虚拟绕组电流分析方法的无轴承电机径向悬浮力控制[J].科学通报,2009,54(2):262-268.
    [21]廖启新,王晓琳,邓智泉,等.3对极无轴承交替极薄片电机的理论与实现[J].中国电机工程学报,2008,28(36):68-72.
    [22]K. A. Blumenstock, G. L. Brown. Novel integrated radial and axial magnetic bearing[C]. In 7th International Symposium on Magnetic Bearings (ISMB), ETH Zurich, Switzerland, August 23-25,2000,467-472.
    [23]G. H. Liu, Y. K. Su, H. Zhang, et al. Decoupling control of bearingless switched reluctance motors based on neural network inverse system [J]. Transactions of China Electrotechnical Society,2005,20(9):39-43.
    [24]A. Chiba, D. T. Power, M. A. Rahman. Characteristics of a bearingless induction motor[J]. IEEE Transactions on Magnetics,1991,27(6):5199-5201.
    [25]C. Michioka, T. Sakamoto, O. Ichikawa, et al. A decoupling control method of reluctance-type bearingless motors considering magnetic saturation[J]. IEEE Transactions on Industry Applications,1996,32(5):1204-1210.
    [26]R.Schoeb. Beitrage zur lagerlosen Asynchronmachine[D]. Zurich, Switzerland: Eidgenoessische Technische Hochschule(ETH),1993.
    [27]年珩.无轴承电机的设计与控制研究[D].杭州:浙江大学,2005.
    [28]W. Amrhein, S. Silber, K.Nenninger. Developments on bearingless drive technology[C]. In 8th International Symposium on Magnetic Bearings (ISMB), Tokyo, Japan,2002, 229-234.
    [29]P. K. Hermann. A radial active magnetic bearing[P]. London Patent:No.1478868, October 20,1973.
    [30]P. K. Hermann. A radial active magnetic bearing having a rotating drive[P]. London Patent:No.1500809, February 9,1974.
    [31]P. Meinke, G. Flachenecker. Electromagnetic drive assembly for rotary bodies using a magnetically mounted rotor[P]. United States Patent:No.3988658, July 29,1974.
    [32]张涛,朱熀秋.无轴承永磁同步电机转子质量不平衡补偿控制[J].中国电机工程学 报,2007,27(15):33-37.
    [33]K. Nonami, L. Z. He. Adaptive unbalance vibration control of magnetic bearing system using frequency estimation for periodic disturbances with noise [C]. Proceedings of IEEE International Conference Control Applications. Hawaii, USA,1999:576-581.
    [34]高剑,黄守道,马晓枫,等.基于交互式MRAS策略的无轴承异步电机无速度传感器矢量控制系统[J].电工技术学报,2008,23(11):41-46.
    [35]A. Chiba, K. Kiryu, M. A. Rahman, et al. Radial force and speed detection for improved magnetic suspension in bearingless motors[J]. IEEE Transactions on Industry Applications,2006,42(2):415-422.
    [36]A. Chiba, J. A. Santisteban. A PWM Harmonics Elimination Method in Simultaneous Estimation of Magnetic Field and Displacements in Bearingless Induction Motors[J]. IEEE Transactions on Industry Applications,2012,48(1):124-131.
    [37]项倩雯,孙玉坤,张新华.磁悬浮开关磁阻电机建模与参数优化设计[J].电机与控制学报,2011,15(4):74-79.
    [38]孙玉坤,任元,黄永红.磁悬浮开关磁阻电机悬浮力与旋转力的神经网络逆解耦控制[J].中国电机工程学报,2008,28(9):81-85.
    [39]朱志莹,孙玉坤,黄永红.磁悬浮开关磁阻电机逆动力学建模与控制[J].电机与控制学报,2011,15(3):79-85.
    [40]J. Bichsel. Beitraege zum lagerlosen Elektromotor[D]. Zuerich, Switzerland: Eidgenoessische Technische Hochschule(ETH),1990.
    [41]A. Chiba, K. Chida, T. Fukao. Principles and characteristics of a reluctance motor with windings of magnetic bearing[C]. In International Power Electronics Conference (IPEC), Tokyo, Japan:1990:919-926.
    [42]Y. Okada, T. Ohishi, K. Dlzjima. Levitation control of permanent magnet (PM) type rotating motor[C]. In Proceddings of MAG'92, Magnetic Bearings, Magnetic Drives and Dry Gas Seals Conference & Exhibition, Alexandria, VA, US, July 29-31,1992, 157-165.
    [43]Schoeb R, Bichsel J. Vector control of the bearingless motor[C]. In 4th International Symposium on Magnetic Bearings (ISMB), ETH Zurich, Switzerland, August 23-26, 1994,327-332.
    [44]N. Barletta, R. Schoeb. Principle and application of a bearingless slice motor[C]. In 5th International Symposium on Magnetic Bearings (ISMB), Kanazawa, Japan, August 28-30,1996,313-318.
    [45]H. Zhu, L. Fang. Suspension principle and digital control for bearingless permanent magnet slice motors[C]. In CES/IEEE 5th International Power Electronics and Motion Control Conference(IPEMC), Shanghai, China, August 14-16,2006,1807-1810.
    [46]M. T. Bartholet, T. Nussbaumer, J. W. Kolar. Comparison of voltage-source inverter topologies for two-phase bearingless slice motors[J]. IEEE Transactions on Industrial Electronics,2011,58(5):1921-1925.
    [47]Q. Li, P. Boesch, M. Haefliger, et al. Basic characteristics of a 4kW permanent-magnet type bearingless slice motor for centrifugal pump system [C]. In 11th International Conference on Electrical Machines and Systems(ICEMS), Wuhan, China October 17-20,2008,3037-3042.
    [48]K. Nenninger, W. Amrhein, S. Silber, et al. Bearingless single-phase PM motor with low-cost rotary angle sensor[C]. In 6th International Symposium on Magnetic Suspension Technology, (ISMST 6), Turin, Italy, October,2001.
    [49]P. N. Boesch, N. Barletta. High power bearingless slice motor(3-4 kW)for bearingless caned pumps [C]. In 8th International Symposium on Magnetic Bearings (ISMB), Lexington, Kentucky, USA,2004,159-164.
    [50]A. Chiba, T. Fukao. Vibration suppression of a flexible shaft with a simplified bearingless induction motor drive[J]. IEEE Transactions on Industry Applications.2008, 44(3):745-752.
    [51]S. Silber, W. Amrhein, P. N. Boesch, R. Schob, N. Barletta. Design aspects of bearingless slice motors[J]. IEEE/ASME Transactions on Mechatronics,2005,10(6): 611-617.
    [52]A. Chiba, D. Akamastu, T. Fukao. An improved rotor resistance identification method for magnetic field regulation in bearingless induction motor drives[J]. IEEE.Transactions on Industrial Electronics,2008,55(2):852-860.
    [53]A. Chiba, M. Hanazawa, T. Fukao, et al. Effects of magnetic saturation on radial force of bearingless synchronous reluctance motors[J]. IEEE Transactions on Industry Applications,1996,32(2):354-362.
    [54]M. Ooshima, A. Chiba, T. Fukao, et al. Design and analysis of permanent magnet-type bearingless motors[J]. IEEE Transactions on Industrial Electronics,1996,43(2): 292-299.
    [55]M. Ooshima, S. Miyazawa, A. Chiba, et al. Performance evaluation and test results of a 11, OOOr/min,4kW surface-mounted permanent magnet-type bearingless motor[C]. In 7th International Symposium on Magnetic Bearings (ISMB), ETH Zurich, Switzerland, 2000,377-382.
    [56]Y. Okada, S. Miyamoto, T. Ohishi. Levitation and torque control of internal permanent magnet type bearingless motor[J]. IEEE Transactions on Control Systems Technology, 1996,4(5):565-571.
    [57]M. Ooshima, S. Miyazawa, T. Deido, et al. Characteristics of a permanent magnet type bearingless motor[J]. IEEE Transactions on Industry Applications,1996,32(2): 363-370.
    [58]H.Onuma, T. Masuzawa, Y. Okada. Magnetically levitated centrifugal blood pump with radially suspended self-bearing motor[C]. In 8th International Symposium on Magnetic Bearings(ISMB), Mito, Japan,2002,3-8.
    [59]Y. Okada, N. Yamashiro, K. Ohmori, et al. Mixed flow artificial heart pump with axial self-bearing motor[J]. IEEE/ASME Transactions on Mechatronics,2005,10(6): 658-665.
    [60]Z. Q Wang, X. X Liu. Nonlinear internal model control for bearingless induction motor based on neural network inversion[J]. Acta Automatica Sinica,2013,39(4):433-439.
    [61]Z. H. Ren, L. S. Stephens. Force characteristics and gain determination for a slotless self-bearing motor[J]. IEEE Transactions on Magnetics,2006,42(7):1849-1860.
    [62]Z. H. Ren, L. S. Stephens. Closed-loop performance of a six degree-of-freedom precision magnetic actuator[J]. IEEE/ASME Transactions on Mechatronics,2005, 10(6):666-674.
    [63]Z. H. Ren, L. S. Stephens, A. V. Radun. Improvements on winding flux models for a slotless self-bearing motor[J]. IEEE Transactions on Magnetics,2006,42(7): 1838-1848.
    [64]H. Grabner, H. Bremer, W. Amrhein, et al. Radial vibration analysis of bearingless slice motors[C]. In 9th International Symposium on Magnetic Bearings (ISMB), Kentucky USA,2004,256-260.
    [65]T. Schneider, A. Binder. Design and evalution of a 60000rpm permanent magnet bearingless high speed motor[C]. In 7th International Conference on Power Electronics and Drive System,2007,1-8.
    [66]T. Schneider, J. Petersen, A. Binder. Influence of pole pair combinations on high-speed bearingless permanent magnet motor performance[C]. In 4th IET Conference on Power Electronics,Machines and Drive,2008,707-711.
    [67]G. Munteanu, A. Binder, T. Schneider, et al. No-load tests of a 40kW high-speed bearingless permanent magnet synchronous motor [C]. In 2010 International symposium on Power Electronics Electrical Drives Automation and Motion, 2010,1460-1465.
    [68]J. Amemiya, A. Chiba, D. G. Dorrell, et al. Basic characteristics of a consequent pole-type bearingless motor[J]. IEEE Transactions on Magnetics,2005,41(1):82-89.
    [69]M. Nakagawa, Y. Asano, A. Mizuguchi, et al. Optimization of Stator Design in a Consequent-Pole Type Bearingless Motor Considering Magnetic Suspension Characteristics[J]. IEEE Transactions on Magnetics,2006,42(10):3422-3424.
    [70]N. Watanabe, H. Sugimoto, A. Chiba, et al. Basic Characteristic of the Multi-Consequent-Pole Bearingless Motor[C]. Power Conversion Conference, Nagoya, 2007,1565-1570.
    [71]M. Amada, A. Mizuguchi, Y. Asano, et al. Winding design and characteristic of a consequent-pole type bearingless motor with 4-axis active magnetic suspension[C]. IEEE Industry Applications Conference,42nd IAS Annual Meeting. Conference Record of the 2007,552-557.
    [72]J. Asama, Y. Hamasaki, T. Oiwa, A. Chiba. Proposal and Analysis of a Novel Single-Drive Bearingless Motor[J]. IEEE Transactions On Industrial Electronics,2013, 60(1):129-138.
    [73]J.Asama, R.Natsume, H.Fukuhara, et al. Optimal Suspension Winding Configuration in a Homo-Polar Bearingless Motor[J]. IEEE Transactions On Magnetics,2012,48(11): 2973-2976.
    [74]王凤翔,徐隆亚.一种用于人工心脏的无轴承无刷永磁直流电动机的设计与特性[J].电机与控制学报,1997,1(4):203-207.
    [75]王凤翔,郑柒拾,王宝国.不同转子结构无轴承电动机的磁悬浮力分析与计算[J].电工技术学报,2002,17(5):6-10.
    [76]王宝国,王凤翔.磁悬浮无轴承电机悬浮力绕组励磁及控制方式分析[J].中国电机工程学报,2002,22(5):105-108.
    [77]B. G. Wang, Z. Wang, F. X. Wang. Levitation Force control by current Vector Orientation for a Bearingless Motor with Hybrid Rotor Stucture[C]. Electrical and Computer Engineering, IEEE CCECE 2003. Canadian,2003,383-386.
    [78]王凤翔,王宝国,徐隆亚.一种新型混合转子结构无轴承电动机磁悬浮力的矢量控制[J].中国电机工程学报,2005,25(5):98-103.
    [79]邓智泉,张宏全,王晓琳,等.基于气隙磁场定向的无轴承异步电机非线性解耦控制[J].电工技术学报,2002,17(6):19-24.
    [80]邓智泉,王晓琳,张宏荃,等.无轴承异步电机的转子磁场定向控制[J].中国电机工程学报,2003,23(3):89-92.
    [81]邓智泉,王晓琳,李冰,等.无轴承异步电机悬浮子系统独立控制的研究[J].中国电机工程学报,2003,23(9):107-111.
    [82]邓智泉,仇志坚,王晓琳,等.无轴承永磁同步电机的转子磁场定向控制研究[J].中国电机工程学报,2005,25(1):104-108.
    [83]仇志坚,邓智泉,王晓琳.无轴承永磁同步电动机的独立控制研究[J].中国电机工程学报,2006,26(1):115-119.
    [84]仇志坚,邓智泉,王晓琳,等.计及偏心及洛仑兹力的永磁型无轴承电机建模与控制研究[J].中国电机工程学报,2007,27(9):64-70.
    [85]廖启新,邓智泉,王晓琳.无轴承薄片电机磁体形状优化设计及系统实现[J].中国电机工程学报,2007,27(12):28-32.
    [86]岳盛奏,王晓琳,廖启新,等.无轴承薄片电机的自诊断容错运行[J].电工技术学报,2010,25(5):76-81.
    [87]朱俊,邓智泉,王晓琳,等.单绕组无轴承永磁薄片电机的原理和实现[J].中国电机工程学报,2008,28(33):68-74.
    [88]盛旺,王晓琳,邓智泉,等.单绕组无轴承永磁薄片电机短路容错运行[J].中国电机工程学报,2011,31(6):66-72.
    [89]仇志坚,邓智泉,王晓琳,等.新型交替极无轴承永磁电机的原理与实现[J].中国电机工程学报,2007,27(33):1-5.
    [90]廖启新,邓智泉,王晓琳,等.交替极无轴承永磁电机的悬浮力脉动分析[J].中国电机工程学报,2007,27(30):49-54.
    [91]黄燕,王晓琳,仇志坚,等.交替极无轴承电机的转矩与悬浮特性[J].电机与控制学报,2010,14(12):91-95.
    [92]解超,王晓琳,邓智泉,等.无轴承交替极电机控制系统改进及实现[J].中国电机工程学报,2010,30(18):78-84.
    [93]邓智泉,杨钢,张媛,等.一种新型的无轴承开关磁阻电机数学模型[J].中国电机工程学报,2005,25(9):139-146.
    [94]曹鑫,邓智泉,杨钢,等.新型无轴承开关磁阻电机双相导通数学模型[J].电工技术学报,2006,21(4):50-56.
    [95]曹鑫,邓智泉,杨钢,等.无轴承开关磁阻电机麦克斯韦应力法数学模型[J].中国电机工程学报,2009,29(3):78-83.
    [96]G. Yang, Z. Deng, X. Cao, et al. Optimal winding arrangements of a bearingless switched reluctance motor[J]. IEEE Transactions on Power Electronics,2008,23(6): 3056-3066.
    [97]X. Cao, Z. Deng. A full-period generating mode for bearingless switched reluctance generators[J]. IEEE Transactions on Applied Superconductivity,2010,20(3): 1072-1076.
    [98]刘泽远,邓智泉,曹鑫,等.全周期无轴承开关磁阻发电机的设计[J].中国电机工程学报,2011,31(12):77-83.
    [99]年珩,贺益康.感应型无轴承电机磁悬浮力解析模型及其反馈控制[J].中国电机工程学报,2003,23(11):139-144.
    [100]Y. K. He, H. Nian. Analytical Model and Feedback Control of the Levitation Force for an Induction-Type Bearingless Motor. Power Electronics and Drive Systems[C]. In 5th International Conference on Power Electronics and Drive Systems, Singapore. 2003,242-246.
    [101]贺益康,年珩,阮秉涛.感应型无轴承电机的优化气隙磁场定向控制[J].中国电机工程学报,2004,24(6):116-121.
    [102]周媛,贺益康,年珩.永磁型无轴承电机的完整数学模型[J].中国电机工程学报, 2006,26(6):134-139.
    [103]年珩,贺益康,秦峰,等.永磁型无轴承电机的无传感器运行研究[J].中国电机工程学报,2004,24(11):101-105.
    [104]Y. Zhou, Y. K. He, H. Nian. The integrated mathematic model of a permanent magnet type bearingless motor[C]. Proceedings of 8th International Conference on Electrical Machines and Systems,2005,898-902.
    [105]年珩,贺益康.永磁型无轴承电机的设计与运行分析[J].浙江大学学报(工学版),2005,39(6):891-895.
    [106]秦峰,贺益康,刘毅,等.两种高频注入法的无传感器运行研究[J].中国电机工程学报,2005,25(5):116-121.
    [107]H. Nian, Y. K. He, D. Chen, et al. Self-sensing of the rotor position and displacement for an inset permanent magnet type bearingless motor[C]. Electrical Machines and Systems,2007. ICEMS. International Conference on 2007:1508-1512.
    [108]年珩,贺益康,黄雷.内插式永磁无轴承电机转子位置/位移综合自检测[J].中国电机工程学报,2007,27(9):52-58.
    [109]黄雷.永磁型无轴承电机系统的无传感器运行研究[D].杭州:浙江大学,2008.
    [110]H. Nian, Y. Quan, J. W. Li. Rotor Displacement Sensorless Control Strategy for PM Type Bearingless Motor Based on the Parameter Identification[C]. International Conference on Electrical Machines and Systems,2009,1-5.
    [111]卜文绍,黄声华,万山明,等.无轴承同步电机旋转惯性振动抑制模型[J].华中科技大学学报(自然科学版),2009,37(1):116-118.
    [112]卜文绍,万山明,黄声华,等.无轴承电机的通用可控磁悬浮力解析模型[J].中国电机工程学报,2009,29(30):84-89.
    [113]卜文绍,乔岩珂,祖从林,等.三相无轴承异步电机的磁场定向控制[J].电机与控制学报,2012,16(7):52-57.
    [114]曹建荣,虞烈,谢友柏.感应型磁悬浮电动机的解耦控制[J].电工技术学报,2000,15(5):1-5.
    [115]曹建荣,虞烈,谢友柏.磁悬浮电动机的状态反馈线性化控制[J].中国电机工程学报,2001,21(9):22-26.
    [116]朱熀秋,陈雷刚,李亚伟,等.Halbach阵列无轴承永磁电机有限元分析[J].电机与控制学报,2013,17(4):39-44.
    [117]朱烷秋,成秋良,王成波.基于机械/电气坐标系变换的无轴承永磁同步电机建模[J].中国科学:技术科学,2010,40(1):52-58.
    [118]陈雷刚,朱幌秋.无轴承无刷直流电机径向悬浮力精确数学模型[J].中国电机工程学报,2012,32(36):75-81.
    [119]孙晓东,陈龙,杨泽斌,等.考虑偏心及绕组耦合的无轴承永磁同步电机建模[J].电工技术学报,2013,28(3):63-70.
    [120]H. Q. Zhu, Y. Zhou. Decoupling control of 5 degrees of freedom bearingless induction motors using a-th order inverse system Method[J]. Acta Automatica Sinica,2007, 33(3):273-278.
    [121]X. D. Sun, H. Q. Zhu. Decoupling control of bearingless permanent magnet-type synchronous motor using artificial neural networks-based inverse system method[J], International Journal of Modelling Identification and Control,2009,8(2):114-121.
    [122]X. D. Sun, H. Q. Zhu. Artificial neural networks inverse control of 5 degrees of freedom bearingless induction motor [J]. International Journal of Modelling, Identification and Control,2012,15(3):156-163.
    [123]朱熀秋,曹莉,李衍超,等.基于最小二乘支持向量机逆系统的5自由度无轴承同步磁阻电机解耦控制[J].中国电机工程学报,2013,33(15):99-108.
    [124]孙晓东,朱熀秋,杨泽斌.基于左逆系统的无轴承异步电机无速度传感器运行[J].控制与决策,2012,27(8):1256-1260.
    [125]许波,朱熀秋,姬伟,等.改进型平方根无迹卡尔曼滤波及其在无轴承永磁同步电机无速度传感器运行中的应用[J].控制理论与应用,2012,29(1):53-58.
    [126]朱熀秋,翟海龙.无轴承永磁同步电机控制系统设计与仿真[J].中国电机工程学报,2005,25(14):120-124.
    [127]T. Masuzawa, T. Kita, Y. Okada. An ultradurable and compact rotary blood pump with a magnetically suspended impeller in the radial direction[J]. International Society for Artificial Organ,2001,25(5):395-399.
    [128]R. Vuillemin, B. Aeschlimann, M. Kuemmerle, et al. Low cost active magnetic bearings for hard disk drive spindle motor[C]. In 6th International Symposium on Magnetic Bearings (ISMB), Boston, US,1998,3-9.
    [129]M. Neff, N. Barletta, R. Schoeb. Bearingless centrifugal pump for highly pure chemicals[C]. In 8th International Symposium on Magnetic Bearings (ISMB), Mito, Japan, August 2002,283-287.
    [130]R. Schoeb, N. Barletta, M. Weber, et al. Design of a bearingless bubble bed reactor[C]. In 6th International Symposium on Magnetic Bearings (ISMB), Boston, US,1998, 507-516.
    [131]M. Ohsawa, S. Mori, T. Satoh. Study of the induction type bearingless motor[C]. In 7th International Symposium on Magnetic Bearings (ISMB), ETH Zurich, Switzerland, August 23-25,2000,389-394.
    [132]H. Kanebako, Y. Okada. New design of hybrid type self-bearing motor for high-speed miniature spindle[C]. In 8th International Symposium on Magnetic Bearings (ISMB), Mito, Japan, August 2002,65-70.
    [133]C. Redemann, P. Meuter, A. Ramella, et al.30 kW bearingless canned motor pump on the test bed[C]. In 7th International Symposium on Magnetic Bearings (ISMB) ETH Zurich, Switzerland, August 23-25,2000,189-194.
    [134]C. Redemann, P. Meuter, A. Ramella, et al. Development and prototype of a 30 kW bearingless canned motor pump[C]. In International Power Electronics Conference (IPEC), Tokyo, Japan:Institute of Electrical Engineering of Japan (IEEJ), April 3-7, 2000,377-382.
    [135]关勇,李红伟,刘淑琴.轴流式磁悬浮人工心脏泵磁悬浮轴承系统设计[J].山东大学学报(工学版),2011,41(1):151-155.
    [136]R. Schoeb, N. Barletta, A. Fleischli, et al. A bearingless motor for a left ventricular assist device (LVAD)[C]. In 7th International Symposium on Magnetic Bearings (ISMB), ETH Zurich, Switzerland, August 23-25,2000,383-388.
    [137]U. A. U. Amirulddin, G. M. Asher, P. Sewell, et al. Dynamic field modelling of torque and radial forces in vector-controlled induction machines with bearing relief[J]. IEEE Proceedings Electric Power Applications,2005,152(4):894-904.
    [138]朱熀秋,沈玉祥,张腾超,等.无轴承异步电机数学模型与解耦控制[J].电机与控制学报,2007,11(4):321-325.
    [139]S. Nomura, A. Chiba, F. Nakamura, et al. A radial position control of induction type bearingless motor considering phase delay caused by the rotor squirrel cage[C]. In Conference Record of the 1993 Power Conversion Conference, Yokohama, Japan, April 19-21,1993,438-443.
    [140]王宇,邓智泉,王晓琳.无轴承异步电机的直接转矩控制技术研究[J].中国电机工程学报,2008,28(21):80-84.
    [141]董磊,刘贤兴,孙宇新.无轴承异步电机径向悬浮力的微分几何变结构解耦控制[C].第26届中国控制会议,2007,17-21.
    [142]S. Yajima, M. Takemoto, Y. Tanaka, A. Chiba, T. Fukao. Total efficiency of a deeply buried permanent magnet type bearingless motor equipped with 2-pole motor windings and 4-pole suspension windings[C]. In 2007 IEEE Power Engineering Society General Meeting Tampa, FL, US, June 2007,24-28.
    [143]汤蕴璆.电机内的电磁场[M].北京:科学出版社,1981.
    [144]邱家俊.机电耦联动力系统的振动[M].北京:科学出版社,1996.
    [145]A. Chiba, T. Fukao. Optimal design of rotor circuits in induction type bearingless motors[J]. IEEE Transactions on Magnetics,1998,34(4):2108-2110.
    [146]J. M. S. Ferreira, M. Zucca, A. O. Salazar, L. Donadio. Analysis of a bearingless induction machine with divided windings[J]. IEEE Transactions on Magnetics,2005, 41(10):3931-3933.
    [147]J. Huang, M. Kang, J. Yang. Analysis of a new 5-phase bearingless induction motor[J]. Journal of Zhejiang University(Science A:An International Applied Physics and Engineering Journal),2007,8(8):1311-1319.
    [148]J. Santisteban, O. Salazar, R. Stephan, W. Dunford. A bearingless machine-an alternative approach[C]. In 5th International Symposium on Magnetic Bearings (ISMB), Kanazawa, Japan, August 28-30,1996,345-349.
    [149]P. Kascak, R. Jansen, T. Dever. Conical bearingless motor/generator[P]. United States Patent:No.2005/0264118A1, December 1,2005.
    [150]P. Kascak, R. Jansen, T. Dever, et al. Bearingless five-axis rotor levitation with two pole pair separated conical motors[C]. In 2009 IEEE Industry Applications Society Annual Meeting, Houston, Texas, US, October 4-8,2009,1-9.
    [151]P. Kascak, R. Jansen, T. Dever, et al. Motoring performance of a conical pole-pair separated bearingless electric machine[C]. In 2011 IEEE Energytech, Case Western Reserve University, May 25-26,2011,179-184.
    [152]孙晓东,左文全,杨泽斌,等.锥形无轴承异步电机[P].中国,专利申请号:201110357855.6,2011.
    [153]杨泽斌,孙晓东,朱熀秋,等.无轴承异步电机最小二乘支持向量机逆解耦控制[J].江苏大学学报(自然科学版),2013,03:184-189.
    [154]孙晓东,朱熀秋.基于神经网络逆系统理论无轴承异步电动机解耦控制[J].电工技术学报,2010,25(1):43-49.
    [155]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letter,1999,9(3):293-300.
    [156]Vapnik V. An overview of statistical learning theory[J]. IEEE Transactions on Neural Netwroks,1999,10(5):988-999.
    [157]Snykens J A K, Vandewalle J. Recurrent least squares support vector machines[J]. IEEE Transactions on Circuits and Systems-I,2000,47(7):1109-1114.
    [158]Snykens J A K. Support vector machines:a nonlinear modeling and control perspective[J]. European Journal of Control,2001,7(2):311-327.
    [159]付忠广,靳涛,周丽君,等.复杂系统反向建模方法及偏最小二乘法建模应用研究[J].中国电机工程学报,2009,29(2):25-29.
    [160]秦业,袁海文,袁海斌,等.基于优化最小二乘支持向量机的电能质量扰动分类[J].电工技术学报,2012,27(8):209-214.
    [161]戴先中.多变量非线性系统的神经网络逆控制方法[M].北京:科学出版社,2005.
    [162]李春文,冯元琨.多变量非线性控制的逆系统方法[M].北京:清华大学出版社,1991.
    [163]张兴华,戴先中.基于逆系统的感应电机调速控制系统[J].控制与决策,2000,11.15(6):708-711.
    [164]朱永利,尹金良.组合核相关向量机在电力变压器故障诊断中的应用研究[J].中国电机工程学报,2013,33(22):68-75.
    [165]赵斐,陆宁云,杨毅.基于工况识别的注塑过程产品质量预测方法[J].化工学报,2013,64(7):2527-2534.
    [166]傅平,沈润杰,帅光举,等.2自由度行波型超声波电机定子的数学模型与实验研究[J].振动与冲击,2013,32(14):16-23.
    [167]J. Kennedy, R. C Eberhart. Particle swarm optimization[C]. Proceedings of International Conference on Neural Networks. New York:IEEE,1995:1942-1948.
    [168]J. Kennedy, R. C.Eberhart. Shi Y H. Swarm intelligence[M]. San Francisco:Morgan Kaufrnan Publisher,2001:1943-1948.
    [169]T. Suzuki, A. Chiba, A. Rahman, et al. An air-gap-flux-oriented vector controller for stable operation of bearingless induction motors[J]. IEEE Transactions on Industry Applications,2000,36(4):1069-1076.
    [170]王礼鹏,张化光,刘秀翀.永磁同步电动机无速度传感器矢量调速系统的积分反步控制[J].控制理论与应用,2012,29(2):199-204.
    [171]Gao Qiang, Asher Greg, Sumner Mark. Sensorless position and speed control of induction motors using high frequency injection and without off-line pre-commissioning[C]. Industrial Electronics Society,2005:1371-1376.
    [172]K. L. Shi, T. F.Chan, Wong Y K, et al. Speed Estimation of an Induction Motor Drive Using an optimized Extended Kalman Filter[J]. IEEE Transactions on Industrial Electronics,2002,49(1):124-133.
    [173]Gadoue S M, Giaouris D, Finch J W. MRAS sensorless vector control of an induction motor using new sliding-mode and fuzzy logic adaptation mechanisms[J]. IEEE Transactions on Energy Conversion,2010,25(2):394-402.
    [174]Cirrincione M, Pucci M. Sensorless direct torque control of an induction motor by a TLS-based MRAS observer with adaptive integration [J]. Automatica,2005,41(11): 1843-1854.
    [175]杨泽斌,孙晓东,张婷婷,等.检测无轴承异步电机转速的无速度传感器构造方法[P].国家发明专利授权号,ZL201110003563.2,2012.
    [176]陈坚.交流电机数学模型及调速系统[M].北京:国防工业出版社,1989.
    [177]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2006.
    [178]秦忆.现代交流伺服系统[M].武汉:华中理工大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700