用户名: 密码: 验证码:
基于影像匹配技术的地震形变监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
差分雷达干涉测量技术(Differential Interferometric Synthetic Aperture Radar,D-InSAR)是新近发展起来的用于监测地表形变的新技术,但对于地震引起的巨大地表形变,容易超出D-InSAR形变监测能力或引起严重去相关而无法干涉,而利用影像灰度信息进行相关匹配计算形变能很好地弥补该缺陷。影像匹配技术是指利用遥感影像的灰度信息,通过相关技术实现主从影像的精确配准,得到对应像素的偏移量;然后根据该偏移量与地表形变的转换关系,从偏移量中提取我们所需的形变信息,从而实现该技术在地表形变监测中的应用。本文主要研究影像匹配技术在地震形变监测中的应用。
     本文首先介绍了SAR影像匹配技术的原理和方法,包括SAR影像配准、偏移量估计流程等。然后,在深入理解SAR偏移量组成部分及其关系的基础上,针对传统的SAR估计流程的缺陷,提出了一种新的无需地面控制点的地表形变计算流程,并成功地将新流程运用于2008年汶川地震和2010年玉树地震的同震形变监测实验中。最后,为了耀光学影像匹配技术与SAR影像的差异,本文亦对光学影像匹配技术进行了初步的研究,采用地震发生前后的两景SPOT数据进行实验,实现了精度达分米级的正射校正和配准,获取了美国1999年赫克托矿地震沿地表东西向和南北向的同震形变。
D-InSAR is a new technology that was developed and widely used in surface deformation monitoring in recent years. But for large deformation caused by earthquake, D-InSAR is always unusable due to signal saturation or serious decorrelation. Image matching technology can be a very good complementary for D-InSAR. The imgae matching technology firstly obtains pixel offset through the precise co-registration between the master and slave image by the cross-correlation method, and then, according to the relationship between offset and deformation, extract the useful deformation. This paper will focus on the image matching technology and its application on monitoring the earthquake deformation.
     Firstly, this paper introduces the principle and theory of SAR image matching, including SAR images co-registration and the procedure of offset estimation. Secondly, to resolve the drawback of traditional methods for removing orbit offset, we present a new data processing chain of SAR image matching, which is simpler and does not need ground control points (GCPs). We applied this new chain to the 2008 Ms 8.0 WenChuan earthquake and 2010 Ms 7.1 YuShu earthquake and got satisfied results. Finally, in order to compare the SAR image matching and the optical image matching technology, we made a primary research on optical image matching. According to the automatic and precise co-registration of optical satellite images, we conducted an experiment by using two SPOT images, and obtained the NS and EW horizontal deformation caused by 1999 Hector Mine earthquake in California.
引文
[1]Rosen P A, Hensley S, Joughin I R, et al. Synthetic Aperture Radar Interferometry. IEEE Transactions on Geoscience and Remote Sensing,2000,88(3):333-382
    [2]Graham, L. C., Synthetic interferometer radar for topographic mapping [J]. Proceedings of the IEEE,1974,62(6):763-768
    [3]Gabiel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas:differential radar interferometry. Journal of Geophysical Research, 1989,94:9183-9191
    [4]Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry. Nature,1993,364:138-142
    [5]Kontoes C., Elias P. and Sykioti O. Displacement field and fault model for the September 7,1999 Athens earthquake inferred from ERS2 satellite radar interferometry. Geophysical Research Letters,2000,27(24):3989-3992
    [6]Fialko Y., Sandwell D., Agnew D., et al. Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science,2002,297:1858-1862
    [7]张红,王超等.获取张北地震同震形变场的差分干涉测量技术.中国图象图形学报,2000,5(6):497-500
    [8]Zhong L., Wicks J. C., Power J. A., et al. Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry. Journal of Geophysical Research,2000,105(B9): 21483-21495
    [9]Rikke P., Freysteinn S., Kurt L., et al. Coseismic interferograms of two Ms=6.6 earthquakes in the South Iceland Seismic Zone, June 2000. Geophysical Research Letters,2001,28(17):3341-3344
    [10]Amelung F. Interferometric synthetic aperture radar observations of the 1994 Double Spring Flat, Nevada, earthquake:Main shock accompanied by triggered slip on a conjugate fault. Journal of Geophysical,2003,108:ETG10-1-ETG10-11
    [11]L.Zhang, J.C.Wu, L.L.Ge, X.L.Ding, et al., Determining fault slip distribution of the Chi-Chi Taiwan earthquake with GPS and InSAR data using triangular dislocation elements. Journal of Geodynamics,2008,45:163-168
    [12]Hua W., Caijun X., Linlin G. Coseismic deformation and slip distribution of the 1997 Mw7.5 Manyi, Tibet, earthquake from InSAR measurements. Journal of Geodynamics,2007,44:200-212
    [13]Ken X. H., Hongjun S., Hiroyuki F., et al. Coseismic surface-ruptures and crustal deformations of the 2008 Wenchuan earthquake Mw7.9, China. Geophysical Research Letters,2009,36:L11303, doi:10.1029/2009GL037971
    [14]Massonnet D., Feigl K.L. RADAR Interferometry and its application to changes in the earth's surface. Geophysical radar interferometry,1998,36:441-500
    [15]Goldstein R. M., Zebker H. A., and et al. Satellite radar interferometry:Two-dimensional phase unwrapping. Radio Science,1988,23(4): 713-720
    [16]Peltzer G, Crampe F., King G, Evidence of nonlinear elasticity of the crust from the Mw7.6 Manyi(Tibet)earthquake. Science,1999,286:272-276
    [17]Baran I., Stewart M., and et al. A new functional model for determining minimum and maximum detectable deformation gradient resolved by satellite radar interferometry. IEEE Transactions on Geoscience and Remote Sensing,2005,43: 675-682
    [18]GuangCai F., Eric A. Hetland, and et al. Coseismic fault slip of the 2008 Mw7.9 Wenchuan earthquake estimated from InSAR and GPS measurements. Geophysical Research Letters,2010,37:L01302
    [19]Michel R., Avouac J.P., Taboury J. Measuring ground displacements from SAR amplitude images:application to the Landers Earthquake. Geophysical Research Letters,1999,26:875-878
    [20]Hudnut K. W. and 16 others. Coseismic displacements of the 1992 Landers earthquake sequence. Bull. Seism. Soc. Am.,1994,84:625-645
    [21]Levy F., Hsu Y, Simons M., et al., Distribution fo coseismic slip for the 1999 ChiChi Taiwan earthquake:new data and implications of varying 3D fault geometry. EOS Transactions of the American Geophysical Union,2005,86
    [22]Fialko Y., Sandwell D., et al. Three-dimensional deformation caused by the Bam,Iran,earthquake and the origin of shallow slip deficit. Nature,2005,435(19): 295-299
    [23]Funning G J, Parsons B, Wright T J, et al. Surface displacements and source parameters of the 2003 Bam (Tran) earthquake from Envisat advanced synthetic aperture radar imagery. J. Geophys Res,2005,110:B09406,1-23
    [24]Pathier E., Fielding E.J., Wright T.J., et al., Displacement field and slip distribution of the 2005 Kashmir earthquake from SAR imagery. Geophysical Research Letters,2006,33:L20310, doi:10.1029/2006GL027193
    [25]王华.利用InSAR研究青藏高原地区若干同震与震间形变.[D].武汉:武汉大学,2007
    [26]Hua W., Linlin G, Caijun X.,3-D Coseismic displacement field of the 2005 Kashmir earthquake inferred from satellite radar imagery. Earth Planets Space, 2006
    [27]Hu J., Li Z.W., Zhu J.J., et al. Two-dimensional Co-Seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching. Sensors,2008,8:6484-6495
    [28]Hu, J., Li, Z.W., Zhu, J.J., et al. The Study of Inferring Three-dimensional Surface Displacement Field from Combining Ascending and Descending SAR Interferometric Phase and Amplitude. Science in China Series D:Earth Sciences, 2010,40(3):307-318
    [29]Pablo J., Gonzalez, J. F., Antonio G, et al. Coseismic Three-Dimensional Displacements Determined Using SAR Data:Theory and an Application Test. Pure and Applied Geophysics,2009,166(8-9):1403-1424
    [30]Amighpey M., Vosooghi B., Dehghani M., Earth surface deformation analysis of 2005 Qeshm earthquake based on three-dimensional displacement field derived from radar imagery measurements. International Journal of Applied Earth Observation and Geoinformation,2009,11:156-166
    [31]Sarti F., Pierre B., and Pirri M., Coseismic fault rupture detection and slip measurement by ASAR precise correlation using coherence maximization: application to a north-south blind fault in the vicinity of bam. IEEE Geoscience and Remote Sensing Letters,2006,3:187-191
    [32]Li H., Manjunath B.S. and Mitra S.K. A contour-based approach to multisensor image registration. IEEE Transaction on Image Processing,1995,4(3):320-334
    [33]Paillou Ph. and Gelautz M. The optimal gradient matching method:application to X-SAR and Magellan Stereo images. Proceedings of IGARSS'98,1998
    [34]Tian Q., and Huhns M.N. Algorithms for subpixel registration, Computer Vision, Graphics, and Image Processings,1986,35:220-233
    [35]Gabriel A.K. and Goldstein R.M. Crossed orbit interferometry:theory and experimental results from SIR-B, International Journal of Remote Sensing,1988, 9:857-872
    [36]Schaum A. and Mchugh M. Analytic method of image registration displacement estimation and resampling. Report of the Naval Research Laboratory,1991, NRL Report
    [37]Oppenheim A., Schafer R., and Buck J. Discrete-Time signal processing,2nd ed. Upper Saddle River, NJ:Prentice Hall,1999.
    [38]Puymbroeck V. N., Michel R., and et al. Measuring earthquakes from optical satellite images. Applied Optics,2000,39(20):3486-3494.
    [39]Binet R. and Bollinger L. Horizontal coseismic deformation of the 2003 Bam (Iran) earthquake measured from SPOT-5 THR satellite imagery. Geophysical Research Letters,2005,32(2)
    [40]Dominguez S., Avouac P. J., and et al. Horizontal coseismic deformation of the 1999 Chi-Chi earthquake measured from SPOT satellite images:Implications for the seismic cycle along the western foothills of central Taiwan. Journal of Geophysical Research,2003,108(B2)
    [41]Michel R. and Avouac J. P. Deformation due to the 17 August 1999 Izmit, Turkey, earthquake measured from SPOT images. Journal of Geophysical Research,2002, 107(B4)
    [42]Leprince S. Monitoring Earth Surface Dynamics With Optical Imagery [D] California:California Institute of Technology Pasadena,2008
    [43]Leprince S., Barbot S., et al. Automatic and Precise Ortho-rectification, Co-registration and Sub-Pixel Correlation of Satellite Images, Application to Ground Deformation Measurements. IEEE Transactions on Geoscience and Remote Sensing,2007,45(6):1529-1558
    [44]Ayoub F., Leprince S., et al. Co-registration and correlation of aerial photographs for ground deformation measurements. ISPRS Journal of Photogrammetry and Remote Sensing,2009,64:551-560
    [45]Ayoub F., Leprince S., and et al. The 2005,Mw 7.6 Kashmir earthquake, rupture kinematics from sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth and Planetary Science Letters,2006,249(3-4):514-528.
    [46]Ayoub F., Klinger Y., and et al. Co-Registration of Optically Sensed Images and corrrelation(COSI-Corr):an Operational Methodology for Ground Deformation Measurements. International Geoscience and Remote Sensing Symposium,2007, 6:2700-2702.
    [47]黄磊,李震.光学遥感影像的山地冰川运动速度分析方法.冰川冻土,2009,31(5):0935-0940
    [48]Simons M. and Rosen P. A., Interferometric Synthetic Aperture Radar Geodesy. [M]. USA:California Institute of Technology,2007
    [49]Wegmuller U. and Werner C. Gamma Documentation-user's guide, Interferometric SAR Processor-ISP [S]. Version 1.1-November 2008
    [50]牛瑞InSAR复影像配准方法与实践:[硕士论文].郑州:中国人民解放军信息工程大学,2005
    [51]Gabriel A. K. and Goldstein R. M., Crossed orbit interferometry:Theory and experimental results from SIR-B, Int. J. Remote Sensing,1988,9(8):857-872
    [52]Lin Q., Vesecky J. F., and Zebker H. A., New approaches in interferometric SAR data-processing, IEEE Trans. Geoscience Remote Sensing.,1992,30(3):560-567
    [53]赵超英.差分干涉雷达技术用于不连续形变的监测研究.[D].西安:长安大学,2009
    [54]张祖勋,张剑清.数字摄影测量学.[M].武汉:武汉测绘科技大学出版社,1996
    [55]Werner C, Wegmuller U., Strozzi T., et al. Precision Estimation of Local Offsets Between Pairs of SAR SLCs and Detected SAR Images. International Geoscience and Remote Sensing Symposium, Seoul, Korea.2005,4803-4805
    [56]Weibao Z. Improving the Accuracy of Image Co-registration in InSAR. [D]. Hong Kong:The Hong Kong Polytechnic University,2004
    [57]Julie L. Elliott, Jeffrey T., et al. Coseismic deformation of the 2002 Denali fault earthquake Contributions from synthetic aperture radar range offsets. Journal of Geophysical Research,2007,112:B06421,doi:10.1029/2006JB004428
    [58]Wegmuller U. and Werner C. Gamma Documentation-user's guide, Differential Interferometry and Geocoding Software-DIFF&GEO. Version 1.1-November 2008
    [59]许小兰,李斐InSAR及其在差分技术在仲巴地震中的应用.武汉大学学报.信息科学版,2008,33(7):727-729
    [60]许才军,温扬茂.基于InSAR数据的西藏玛尼Ms7.9级地震的地壳不均匀性研究.武汉大学学报.信息科学版,2008,33(8):846-849
    [61]Okada Y. Surface Deformation Due to Shear and Tensile Faults in a Half-space [J]. Bull Seismol Soc Amer,1985,75(4):1135-1154
    [62]Funning G J, Parsons B, Wright T J, et al. Surface Displacements and Source Parameters of the 2003 Bam (Tran) Earthquake from Envisat Advanced Synthetic Aperture Radar Imagery. J Geophys Res,2005,110:B094061-23
    [63]单新建,屈春燕等.汶川Ms8.0级地震InSAR同震形变场观测与研究.地球物理学报,2009,52(2):496-504
    [64]孙建宝,梁芳等.汶川Ms8.0地震InSAR形变观测及初步分析.地震地质,2008,30(3):789-795
    [65]屈春燕,宋小刚等.汶川Ms8.0地震InSAR同震形变场特征分析.地震地质,2008,30(4):1076-1084
    [66]蒋弥,丁晓利等.用L波段和C波段SAR数据研究汶川地震的同震形变.大地测量与地球动力学,2009,29(1):21-26
    [67]国家重大科学工程“中国地壳运动观测网络”项目组.GPS测定的2008年汶川Ms8.0级地震的同震位移场.中国科学,2008,38(10):1195-1206
    [68]徐锡伟,闻学泽等.汶川Ms8.0地震地表破裂带及其发震构造.地震地质,2008,30(3):597-629
    [69]GEO's Yushu Event Website, http://supersites.unavco.org/yushu.php
    [70]http://web2.ges.gla.ac.uk/-zhli/Qinghai_Yushu_EQ.htm
    [71]Ramon F. Hanssen. Radar Interferometry data interpretation and error analysis. [M]. Kluwer Academic Publishers
    [72]Wegmuller U. and Werner C. Gamma documentation-user's guide, Differential Interferometry-DIFF. Version 1.2-November,2008
    [73]周荣军,闻学泽,蔡长星等.甘孜-玉树断裂带的近代地震与未来地震趋势估计.地震地质,1997(2)
    [74]Li, Z W, Ding, X L, Huang, C, et al. Filtering Method for Radar Interferogram with Strong noise. International Journal of Remote Sensing,2006,27(14): 2991-3000
    [75]Riazanoff S., SPOT Satellite geometry handbook, SPOT Image,5rue des Satellites,31030 Toulouse Cedex4, France,2002
    [76]Keys R., Cubic convolution interpolation for digital image processing. IEEE Transactions on acoustics, Speech, and Signal Processing,1981,29(6): 1153-1160
    [77]Ayoub F., Leprince S., et al. User's guide to COSI-CORR Co-registration of Optically Sensed Images and Correlation. USA:California Institute of Technology,2009
    [78]Treiman J. A., Kendrick K. J., and et al. Primary surface rupture associated with the Mw 7.116 October 1999 Hector Mine earthquake, San Bernardino County, California. Bulletin of the Seismological Society of America,2002,92(4): 1171-1191
    [79]Peltzer G, Crampe F., and et al. The Mw7.1, Hector Mine, California earthquake: surface rupture, surface displacement field, and fault slip solution from ERS SAR data. C. R. Acad. Sci. Paris, Earth and Planetary Sciences,2001,333:545-555
    [80]Fialko Y., Simons M, and et al. The complete (3D) surface displacement field in the epicentral area of the 1999 Mw 7.1 Hector Mine earthquake, California, from space geodetic observations. Geophysical Research Letters,2001,28(16): 3063-3066

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700